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T-minima on convex sets and Mosco-convergence

Lucio Boccardo and Chiara Leone

To Umberto, our teacher since 50+25 years.

Abstract. Half century ago, Umberto Mosco was the “relatore di tesi (tesi about the Mosco-
convergence) di laurea” of the first author; a quart of century ago, the first author was the “re-
latore di tesi di laurea” of the second author. The roots of this paper are the Mosco-convergence
of convex sets and the minimization of integral functionals of the Calculus of Variations.

We consider integral functionals of the type

J(v) =

∫
Ω
j(x,Dv) −

∫
Ω
f(x) v(x).

We study the existence of T-minima (infinite energy minima) on convex sets of the Sobolev

space W 1,p
0 (Ω) and the stability of the T-minima under the Mosco-convergence of the convex

sets.

1. Introduction

Half century ago, Umberto Mosco was the “relatore di tesi (tesi about the Mosco-
convergence) di laurea” of the first author; a quart of century ago, the first author
was the “relatore di tesi di laurea” of the second author.

The roots of this paper are the Mosco-convergence of convex sets (see [15],
[14]) and the minimization of integral functionals of the Calculus of Variations
(see [12]) like

J(v) =

∫
Ω

j(x,Dv)−
∫

Ω

f(x) v(x), (1.1)

even in the case of meagre summability of f(x). Here Ω is a bounded subset of RN ,
N > 2, f(x) belongs to some Lebesgue space and j(x, ξ) is a real valued convex
function on ξ, with growth of order p with respect to ξ.

If the datum f belongs to a “large Lebesgue space”, as L1(Ω), it is not possible
to use the standard definition of minimum, because in the functional J(v), v ∈
W 1,p

0 (Ω), p > 1, the term
∫

Ω
f(x) v(x) is not well defined on the energy space

W 1,p
0 (Ω).

Nevertheless in [5] and [13] the authors give a suitable definition (T-minima),
which coincides with the usual definition of minimum in the standard framework
and with many useful properties (see [5] and [13] for the proofs). In some sense,
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we can say that T-minima are infinite energy minima, since they are outside of the
energy space W 1,p

0 (Ω). The main property is that the T-minimum is a solution of
an appropriate Euler-Lagrange equation (see [4]).

We recall the following contributions about T-minima.

A The question of existence, uniqueness and continuous dependence with respect
to the forcing terms has been successfully solved in [5] and [13].

B Summability of u and of Du (if the function f is not enough summable and
we are beyond the duality pairing) are studied in [7] (“a tribute to Guido
Stampacchia on the 30th anniversary of his death”), if p = 2, and in [9], if
p > 1.

C The stability of the T-minima with respect to the Γ(weak)-convergence of the
integral functionals has been studied in [13] and [9].

The aim of this paper is twofold.

• The study of the existence of T-minima on convex subsets of W 1,p
0 (Ω).

• The study of the continuous dependence of T-minima if the convex subsets
(of obstacle type) converge in the sense of Mosco.

The last subject is related to the results of [10], where the continuous dependence
of the standard minima is studied if the convex subsets converge in the sense of
Mosco.

In this paper we do not assume the differentiability of the functionals, since
we do not use Euler-Lagrage equations.

1.1. Assumptions

Let j(x, ξ) be a function defined in Ω×RN , satisfying the standard hypotheses of
the integrands in the Calculus of Variations:{

the function j(x, ξ) is measurable with respect to x

and strictly convex with respect to ξ,
(1.2)

there exist α, β > 0 such that

α|ξ|p ≤ j(x, ξ) ≤ β|ξ|p, ∀ ξ ∈ RN , a.e. in Ω, 1 < p ≤ N. (1.3)

We recall (see [18]) the definition of truncation Tk : R 7→ R

Tk(t) =


t , |t| ≤ k ,

k
t

|t|
, |t| > k ,

and the definition of T-minima.
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Definition 1.1 ([5]). Let f ∈ L1(Ω). A measurable function u is a T-minimum
for the functional

J(v) =

∫
Ω

j(x,Dv)−
∫

Ω

f(x) v(x) (1.4)

if 

Ti(u) ∈W 1,p
0 (Ω), ∀ i ∈ R+ :

∫
{|u−ϕ|≤i}

j(x,Du)−
∫

Ω

f(x)Ti[u− ϕ] ≤
∫
{|u−ϕ|≤i}

j(x,Dϕ),

∀ ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀ i ∈ R+.

(1.5)

or equivalently (see [13])

Ti(u) ∈W 1,p
0 (Ω), ∀ i ∈ R+ :

∫
Ω

j(x,D{ϕ+ Ti[u− ϕ]})−
∫

Ω

f(x)Ti[u− ϕ] ≤
∫

Ω

j(x,Dϕ),

∀ ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀ i ∈ R+.

(1.6)

Remark 1.2. Let us recall that for a measurable function u such that Ti(u) ∈
W 1,p

0 (Ω) for every i > 0, there exists a measurable function Φ: Ω→ RN such that
DTi(u) = Φχ{|u|≤i} a.e. in Ω (see Lemma 2.1 in [4]). This function Φ, which
is unique up to almost everywhere equivalence, will be denoted by Du. Note
that Du coincides with the distributional gradient of u whenever u ∈ L1

loc(Ω),

Ti(u) ∈W 1,p
0 (Ω) for every i > 0, and Du ∈ L1(Ω,RN ).

Minimization problems for integral functionals with nonregular data are also
studied in many papers (see the References in [9]); here we recall [6, 8, 16, 17].

2. Existence of T-minima on convex sets of obstacle type

In this section, we assume (1.2), (1.3),

f ∈ L1(Ω), (2.1)

and we consider the set

K(ψ) = {v ∈W 1,p
0 (Ω) : v ≥ ψ}, ψ ∈W 1,p

0 (Ω) ∩ L∞(Ω).

If f ∈ Lm(Ω), m ≥ 1, as in [5], we define

Jn(v) =

∫
Ω

j(x,Dv)−
∫

Ω

fn(x) v(x), (2.2)
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where {fn} is a sequence of bounded functions converging to f in Lm(Ω), and such
that

|fn(x)| ≤ |f(x)|, (2.3)

as fn(x) = Tn[f(x)] or fn(x) =
f(x)

1 + 1
n |f(x)|

.

The existence of the minimum wn ∈ W 1,p
0 (Ω) of Jn on K(ψ) is classical. We

will prove the following existence and uniqueness theorem.

Theorem 2.1. Assume (1.2), (1.3), and (2.1). There exists a unique measurable
function u such that

u ≥ ψ a.e. in Ω, Ti(u) ∈W 1,p
0 (Ω) ∀i > 0,

∫
Ω

j(x,D{ϕ+ Ti[u− ϕ]})−
∫

Ω

f(x)Ti[u− ϕ] ≤
∫

Ω

j(x,Dϕ),

∀ ϕ ∈ K(ψ) ∩ L∞(Ω), ∀ i > 0.

(2.4)

Proof. In the definition of minimum

wn ∈ K(ψ) : Jn(wn) ≤ Jn(v), v ∈ K(ψ),

we insert v = wn − Ti[wn − ψ] and we have∫
Ω

j(x,Dwn) ≤
∫

Ω

j(x,D{wn − Ti[wn − ψ]}) +

∫
Ω

fn(x)Ti[wn − ψ],

that is ∫
{0≤wn−ψ≤i}

j(x,Dwn) ≤
∫
{0≤wn−ψ≤i}

j(x,Dψ) + i ‖f‖
1

(2.5)

and (since ψ ∈W 1,p
0 (Ω))

α

∫
{0≤wn−ψ≤i}

|Dwn|p ≤
∫

Ω

j(x,Dψ) + i ‖f‖
1
≤ β‖ψ‖p

W 1,p
0 (Ω)

+ i ‖f‖
1
, (2.6)

which implies∫
{0≤wn−ψ≤i}

|D(wn − ψ)|p ≤ 2p−1

(
‖ψ‖p

W 1,p
0 (Ω)

+
β

α
‖ψ‖p

W 1,p
0 (Ω)

+ i
‖f‖

1

α

)
≤ C i,

for every i ≥ 1. Together with the fact that ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω), this implies∫

{|wn|≤j}
|Dwn|p ≤

∫
{|wn−ψ|≤|ψ|+j}

|Dwn|p

≤ 2p−1

∫
{|wn−ψ|≤M̃+j}

|D(wn − ψ)|p + 2p−1

∫
Ω

|Dψ|p

≤ 2p−1C (j + M̃) + 2p−1

∫
Ω

|Dψ|p ≤ C j,

(2.7)
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where M̃ = ‖ψ‖
L∞(Ω)

and j ≥ 1. Following exactly the proofs of [4] (see Lemma

4.1 and Lemma 4.2), we can deduce the Marcinkiewicz estimates
measure{x : j < |wn|} ≤

C

j
(p−1)N
N−p

,

measure{x : λ < |Dwn|} ≤
C

λ
(p−1)N
N−1

,

(2.8)

for every j, λ ≥ 1. Moreover (see once again [4]), the following scheme of conver-
gence holds true:{

wnk
converges to u a.e. in Ω,

∀j > 0, Tj(wnk
) weakly converges to Tj(u) in W 1,p

0 (Ω),
(2.9)

from which we also deduce that∫
Ω

|DTj(u)|p ≤ C(j + 1), ∀j > 0, and u ≥ ψ a.e. in Ω.

Let now ϕ ∈ K(ψ), ϕ ∈ L∞(Ω), and choose v = wn − Ti[wn − ϕ] in the definition
of minimum

Jn(wn) ≤ Jn(v), v ∈ K(ψ).

Then we have∫
Ω

j(x,Dwn) ≤
∫

Ω

j(x,D{wn − Ti[wn − ϕ]}) +

∫
Ω

fn(x)Ti[wn − ϕ].

If we rewrite the above inequality as∫
Ω

j(x,D{ϕ+ Ti[wn − ϕ]}) ≤
∫

Ω

j(x,Dϕ) +

∫
Ω

fn(x)Ti[wn − ϕ],

using the weak lower semicontinuity in W 1,p
0 (Ω) of the left hand side (see [12]) and

the continuity of the right hand side, it is possible to pass to the limit, thanks to
(2.9) and the boundedness of ϕ which imply the weak convergence in W 1,p

0 (Ω) of
Ti[wn − ϕ] to Ti[u− ϕ] (up to a subsequence). Then we have∫

Ω

j(x,D{ϕ+ Ti[u− ϕ]}) ≤
∫

Ω

j(x,Dϕ) +

∫
Ω

f(x)Ti[u− ϕ],

that is u solves (2.4).
The uniqueness question can be treated exactly as in [13]. Assuming that u

and v are both solutions to (2.4) we use the test function ϕ = (Th(u) + Th(v))/2,
with h > max{2i, ‖ψ‖L∞}, to be sure that ϕ ≥ ψ a.e. in Ω. The further restriction
on h (in [13] h > 2i) has no effects in the proof since h is destined to go to +∞.
This ends the proof of the theorem.
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Remark 2.2. Note that the whole sequence {wn} is convergent thanks to the
uniqueness of T-minima.

Remark 2.3. Let us note that if p > 2 − 1
N then (p−1)N

N−1 > 1, thus the second
Marcinkiewicz estimate in (2.8) implies that the sequence {Dwn} is bounded in

the reflexive space W 1,q
0 (Ω), 1 < q < (p−1)N

N−1 . Then the convergence

wn weakly converges to u in W 1,q
0 (Ω),

can be included in (2.9). Moreover the T-minimum u is a Sobolev function be-
longing to W 1,q

0 (Ω).

2.1. The Q-assumption

In this subsection, for the sake of simplicity, we assume p = 2. In [1], the following
problem is studied. Assume that

f(x), a(x) ∈ L1(Ω), (2.10)

and that there exists Q > 0 such that, for a.e. x ∈ Ω,

|f(x)| ≤ Qa(x). (2.11)

Then there exists u minimum on the space W 1,p
0 (Ω) of the problem

u ∈W 1,2
0 (Ω) ∩ L∞(Ω), |u| ≤ Q :∫

Ω

j(x,Du) +
1

2

∫
Ω

a(x)u2 −
∫

Ω

f(x)u(x)

≤
∫

Ω

j(x,Dv) +
1

2

∫
Ω

a(x)v2 −
∫

Ω

f(x) v(x),

∀ v ∈W 1,2
0 (Ω) ∩ L∞(Ω).

.

We point out the strong regularizing effect of the assumption (2.11): despite the
L1 summability of f(x), the minimum u has finite energy and it is a bounded
function. Thus, even if f ∈ L1(Ω), the T-minimum framework is not needed.

Here we adapt the approach of [1] for the minimization on

K(ψ) = {v ∈W 1,2
0 (Ω) : v ≥ ψ}

if
ψ ∈W 1,2

0 (Ω) ∩ L∞(Ω). (2.12)

Theorem 2.4. Assume (1.2), (1.3), (2.10), (2.11), (2.12). Then there exists a
unique minimum u of

ψ ≤ u ∈W 1,2
0 (Ω), :∫

Ω

j(x,Du) +
1

2

∫
Ω

a(x)u2 −
∫

Ω

f(x)u(x)

≤
∫

Ω

j(x,Dv) +
1

2

∫
Ω

a(x)v2 −
∫

Ω

f(x) v(x),

∀ v ∈ K(ψ) ∩ L∞(Ω).

(2.13)
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Moreover the following estimate holds

|u| ≤ max{Q, ‖ψ‖L∞(Ω)}.

Proof. Define

In(v) =

∫
Ω

j(x,Dv) +
1

2

∫
Ω

an(x)v2 −
∫

Ω

fn(x) v(x),

where

fn(x) =
f(x)

1 + 1
n |f(x)|

, an(x) =
a(x)

1 + 1
na(x)

,

in order that there exists the minimum un of In on the set

{v ∈W 1,2
0 (Ω) ∩ L∞(Ω) : v ≥ ψ a.e. in Ω}.

Let Q0 ≥ max{Q, ‖ψ‖
L∞(Ω)

}. The minimality inequality In(un) ≤ In(TQ0(un)),

i.e., ∫
Ω

j(x,Dun) +
1

2

∫
Ω

an(x)|un|2 −
∫

Ω

fn un

≤
∫

Ω

j(x,DTQ0(un)) +
1

2

∫
Ω

an(x)|TQ0(un)|2 −
∫

Ω

fn TQ0(un)

implies, dropping a positive term, that

1

2

∫
Ω

an(x)
[
|un|2 − |TQ0(un)|2

]
≤
∫

Ω

fnGQ0(un) ≤
∫

Ω

|fn||GQ0(un)|,

and by (2.11)

1

2

∫
Ω

an(x)
[
|un|2 − |TQ0

(un)|2
]
≤
∫

Ω

Q0 an(x) |GQ0
(un)|.

Manipulating the previous inequality we get

1

2

∫
{|un|>Q0}

an(x)(|un| −Q0)2 ≤ 0,

which implies |un| ≤ Q0.
Then the use of ψ as a test function gives, dropping a positive term,

α

∫
Ω

|Dun|2 ≤ 2Q0

∫
Ω

|f |+ β‖ψ‖2
W 1,2

0 (Ω)
+Q0

∫
Ω

a . (2.14)

Thus the sequence {un} is bounded in W 1,2
0 (Ω) and then there exist a function

u ∈ W 1,2
0 (Ω) and a subsequence, still denoted {un}, such that un converges to u

weakly in W 1,2
0 (Ω) and a.e. to u and |u| ≤ Q0. To conclude the proof, we use that

un minimizes In, i.e.,∫
Ω

j(x,Dun) +
1

2

∫
Ω

an(x)|un|2 −
∫

Ω

fn un ≤ In(ϕ),



230 L. Boccardo and C. Leone

for every ψ ≤ ϕ ∈W 1,2
0 (Ω)∩L∞(Ω). Observe that we can pass to the limit in the

first term (by weak lower semicontinuity in W 1,2
0 (Ω)), in the second term (by Fatou

Lemma) and in the third term (by Lebesgue Theorem, since |fn un| ≤ Q|f |). Thus
we proved the existence of a solution of the problem (2.13). The strict convexity
of j leads to easily treat the uniqueness question using in (2.13), satisfied by u and

ũ, both solutions, the test function v =
u+ ũ

2
and adding the two expressions.

3. T-minima on convex sets Mosco converging

The investigations of the properties of obstacle problems when the obstacle varies
relies on a notion of convergence for sequences of convex sets introduced by U.
Mosco in [15, 14].

There are many papers devoted to the Mosco-convergence; here we recall only
[3, 2, 11, 10] and the references therein; in particular, in [10] there a large list of
cases of Mosco-convergence of convex of obstacle type.

Definition 3.1. Let {Kn} be a sequence of subsets of a Banach space X. The
strong lower limit

s− lim inf
n→+∞

Kn

of the sequence {Kn} is the set of all v ∈ X such that there exists a sequence
vn ∈ Kn, for n large, converging to v strongly in X. The weak upper limit

w − lim sup
n→+∞

Kn

of the sequence {Kn} is the set of all v ∈ X such that there exists a sequence {vk}
converging to v weakly in X and a sequence of integers nk converging to +∞, such
that vk ∈ Knk

. The sequence {Kn} converges to the set K in the sense of Mosco,

shortly Kn
M−→ K, if

s− lim inf
n→+∞

Kn = w − lim sup
n→+∞

Kn = K.

Let ψ0, ψn ∈W 1,p
0 (Ω) ∩ L∞(Ω) be such that

‖ψn‖L∞(Ω), ‖ψ0‖L∞(Ω) ≤ M̃, (3.1)

and let us consider the two T-minimum problems for f ∈ L1(Ω):

Ti(un) ∈W 1,p
0 (Ω), ∀i > 0, un ≥ ψn a.e. in Ω,

∫
Ω

j(x,D{ϕ+ Ti[un − ϕ]})−
∫

Ω

f(x)Ti[un − ϕ] ≤
∫

Ω

j(x,Dϕ),

∀ ϕ ∈ K(ψn) ∩ L∞(Ω), ∀ i > 0,

(3.2)
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Ti(u0) ∈W 1,p
0 (Ω), ∀i > 0, u0 ≥ ψ0 a.e. in Ω,

∫
Ω

j(x,D{ϕ+ Ti[u0 − ϕ]})−
∫

Ω

f(x)Ti[u0 − ϕ] ≤
∫

Ω

j(x,Dϕ),

∀ ϕ ∈ K(ψ0) ∩ L∞(Ω), ∀ i > 0,

(3.3)

whose existence comes from the previous Section.
We will prove the following result.

Theorem 3.2. Let us assume (1.2), (1.3), (2.1) and (3.1), with K(ψn) converging
to K(ψ0) in the sense of Mosco. Then, for every j > 0, Tj(un) converges to Tj(u0)

weakly in W 1,p
0 (Ω). Moreover

lim
n→+∞

∫
Ω

j(x,DTj(un)) =

∫
Ω

j(x,DTj(u0)), ∀j ≥ M̃. (3.4)

Proof. To simplify the exposition, it is convenient to divide the proof into various
steps.

Step 1 - We will prove that, for every j > 0, Tj(un) converges weakly in

W 1,p
0 (Ω) (up to a subsequence not relabeled).

Let v0 ∈ K(ψ0) ∩ L∞(Ω); by the definition of Mosco-convergence, there exist
ṽn ∈ K(ψn) strongly convergent to v0 in W 1,p

0 (Ω). Let M∗ = max{M̃, ‖v‖L∞(Ω)}
and vn = TM∗(ṽn). Then vn ∈ K(ψn), the sequence {vn} is bounded in L∞(Ω)
and it is strongly convergent to v0 in W 1,p

0 (Ω).
Let us insert the function ϕ = vn in (3.2); we get∫
{|un−vn|≤i}

j(x,Dun) ≤
∫
{|un−vn|≤i}

j(x,Dvn) +

∫
Ω

fTi[un − vn] (3.5)

Arguing as in the proof of Theorem 2.1 (see (2.5)), we deduce the analogous of
(2.7) for un (recall that the sequence {vn} is bounded in W 1,p

0 (Ω) ∩ L∞(Ω)):∫
Ω

|DTj(un)|p ≤ C(j + 1), (3.6)

for every j > 0. As before, this implies that, up to a subsequence not relabeled,
un converges a.e. in Ω to a measurable function u∗ and Tj(un) converges weakly

in W 1,p
0 (Ω) to Tj(u

∗) for every j > 0.
Step 2 - We will prove that u∗ ≥ ψ0 a.e. in Ω.
We first recall that in [11] the author proved that if K(ψn) converges to K(ψ0)

in the sense of Mosco, then also K(Tj(ψn)) converges to K(Tj(ψ0)) in the sense of

Mosco, for every j > 0. By the weak convergence in W 1,p
0 (Ω) of Tj(un) to Tj(u

∗)
we deduce that Tj(u

∗) ≥ Tj(ψ0) a.e. in Ω, for every j > 0, so that u∗ ≥ ψ0 a.e. in
Ω.

Step 3 - We will prove that u∗ = u0.
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We rewrite (3.5) as

∫
Ω

j(x,D{vn + Ti[un − vn]}) ≤
∫

Ω

j(x,Dvn) +

∫
Ω

f(x)Ti[un − vn]. (3.7)

Using the lower semicontinuity of the left hand side with respect to the weak
convergence in W 1,p

0 (Ω) (see [12]) and the continuity of the right hand side we can
pass to the limit, proving that u∗ is a solution of the T-minimum problem (3.3).

The uniqueness result about T-minima implies that u∗ = u0 and that it is the
whole sequence {Tj(un)} which converges to Tj(u0) weakly in W 1,p

0 (Ω), for every
j > 0.

Step 4 - We will prove (3.4).

Let j ≥ M̃ , then Tj(u0) ∈ K(ψ0) ∩ L∞(Ω). By the definition of Mosco-
convergence, there exists a sequence Φn ∈ K(ψn) strongly convergent to Tj(u0) in

W 1,p
0 (Ω) and, as in Step 1, we can assume that Φn is equi-bounded (by j in this

case).

For h > j let us insert in (3.2) the test function vn = Th(un) − Tj(un) + Φn ∈
K(ψn) ∩ L∞(Ω):

∫
Ω

j(x,D{vn + Ti[un − vn]}) ≤
∫

Ω

j(x,Dvn) +

∫
Ω

fTi[un − vn].

We split the first integral in the right hand side where |un| ≤ j, j < |un| ≤ h and
|un| > h obtaining

∫
Ω

j(x,Dvn) =

∫
{|un|≤j}

j(x,DΦn) +

∫
{j<|un|≤h}

j(x,D(un + Φn))

+

∫
{|un|>h}

j(x,DΦn).

Analogously, choosing i ≥ 2j, the integral in the left hand side becomes

∫
Ω

j(x,D{vn + Ti[un − vn]}) =

∫
{|un|≤j}

j(x,Dun) +

∫
{j<|un|≤h}

j(x,Dun)

+

∫
{|un|>h}

j(x,D{Φn + Ti[un − Th(un) + Tj(un)− Φn]}).
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To sum up∫
Ω

j(x,DTj(un)) +

∫
{j<|un|≤h}

j(x,Dun)

+

∫
{|un|>h}

j(x,D{Φn + Ti[un − Th(un) + Tj(un)− Φn]})

≤
∫
{|un|≤j}

j(x,DΦn) +

∫
{j<|un|≤h}

j(x,D(un + Φn))

+

∫
{|un|>h}

j(x,DΦn)

+

∫
Ω

fTi[un − Th(un) + Tj(un)− Φn].

Since the third integral in the left hand side is non-negative the previous estimate
can be written as∫

Ω

j(x,DTj(un)) +

∫
{j<|un|≤h}

j(x,Dun)

≤
∫
{|un|≤j}

j(x,DΦn) +

∫
{j<|un|≤h}

j(x,D(un + Φn))

+

∫
{|un|>h}

j(x,DΦn)

+

∫
Ω

fTi[un − Th(un) + Tj(un)− Φn].

(3.8)

Now we bring together the second terms of the left and of the right hand side,
respectively, writing∫

{j<|un|≤h}
[j(x,D(un + Φn))− j(x,Dun)];

we apply the following inequality

|j(x, ξ)− j(x, η)| ≤ C(1 + |ξ|p−1 + |η|p−1)|ξ − η|,

which comes by the convexity of j(x, ·) and by (1.3). Thus we have∣∣∣∣∣
∫
{j<|un|≤h}

[j(x,D(un + Φn))− j(x,Dun)]

∣∣∣∣∣
≤ C

∫
{j<|un|≤h}

(1 + |Dun|p−1 + |DΦn|p−1)|DΦn|

≤ C(1 + ‖Th(un)‖
p
p′

W 1,p
0 (Ω)

+ ‖Φn‖
p
p′

W 1,p
0 (Ω)

)

(∫
{|un|>j}

|DΦn|p
) 1

p

≤ C(h+ 1)
1
p′

(∫
{|un|>j}

|DΦn|p
) 1

p

,
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where we also used the Hölder inequality and (3.6). Let us note that when n tends
to infinity, the last term goes to 0 since DΦn strongly converges to DTj(u0) in
Lp(Ω) and un converges to u0 a.e. in Ω, from which |DΦn|pχ{|un|>j} converges to
0 strongly in L1(Ω). The convergences

lim
n→∞

∫
{|un|>h}

j(x,DΦn) = 0

and

lim
n→∞

∫
{|un|≤j}

j(x,DΦn) =

∫
Ω

j(x,DTj(u0))

have an analogous justification, while for the first term in the left hand side of
(3.8) we use the weak lower semicontinuity in W 1,p

0 (Ω), so that∫
Ω

j(x,DTj(u0)) ≤ lim inf
n→+∞

∫
Ω

j(x,DTj(un)) ≤ lim sup
n→+∞

∫
Ω

j(x,DTj(un))

≤
∫

Ω

j(x,DTj(u0)) +

∫
Ω

fTi(u0 − Th(u0)).

Finally, passing to the limit as h goes to infinity we get the result.

3.1. Convergence with the Q-condition

In this subsection, for the sake of simplicity, we assume p = 2. Under the assump-
tions (1.2), (2.10), (2.11), (2.12), (3.1), we consider minimization problems for the
functional

I(v) =

∫
Ω

j(x,Dv) +
1

2

∫
Ω

a(x)v2 −
∫

Ω

f(x) v(x),

on K(ψn) and on K(ψ0): un is the minimum on K(ψn) and u0 is the minimum

on K(ψ0) (their existence comes from Subsection 2.1). If K(ψn)
M−→ K(ψ0), then,

by (2.14), the sequence {un} ∈ L∞(Ω) is equi-bounded in W 1,2
0 (Ω). Thus (up to

a subsequence not relabeled) the sequence {un} converges weakly in W 1,2
0 (Ω) to

some u∗ and by the definition of Mosco-convergence we easily get that u∗ ∈ K(ψ0).
Let v0 ∈ K(ψ0); in the first step of the proof of the Theorem 3.2, we proved

the existence of vn ∈ K(ψn), with {vn} a bounded sequence in L∞(Ω) strongly
convergent to v0 in W 1,2

0 (Ω). Then it is easy to pass to the limit (weak lower
semicontinuity on the left hand side, continuity on the right hand side) in inequality

I(un) ≤ I(vn)

and to deduce that u∗ is a minimum of the integral functional I on K(ψ0). Finally
the uniqueness gives u∗ = u0.

Now we can prove the strong W 1,2
0 (Ω)-convergence of the sequence {un}. We

consider a sequence wn ∈ K(ψn), with {wn} equi-bounded in L∞(Ω) and strongly
convergent to u0 in W 1,2

0 (Ω). The minimality of un

I(un) ≤ I(wn)
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and the property of I give the convergence∫
Ω

j(x,Dun)→
∫

Ω

j(x,Du0).

This convergence is the convergence (12) of [10], which implies (the proof is not
short) the convergence (20) of [10], that is the strong convergence of the sequence
{un} to u0 in W 1,2

0 (Ω). Thus we proved the following result.

Theorem 3.3. Let us assume (1.2), (1.3), (2.10), (2.11), (3.1) and let un be
the minimum of I on K(ψn) and let u0 be the minimum of I on K(ψ0), with

K(ψn)
M−→ K(ψ0). Then the sequence {un} strongly converges to u0 in W 1,2

0 (Ω).
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