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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Perron-Frobenius, principal eigenvalue, Maximum
Principle: a personal itinerary

Italo Capuzzo Dolcetta

Dedicato ad Umberto con amicizia e gratitudine

Abstract. This paper dedicated to Umberto Mosco revisits a line of my research starting in

the early 70’s in the aim of identifying a path connecting different concepts which play a role in

elliptic pde’s, spectral theory and optimal control.

1. Optimal stopping of a finite state Markov chain

The starting point of my personal itinerary through the Perron-Frobenius theorem,
the notion of principal eigenvalue and its relations with the Maximum Principle for
elliptic equations goes back to the time of a collaboration with Massimo Lorenzani
and Fabio Spizzichino [17, 18] on the optimal stopping time problem for a Markov
chain with a finite number of possible states and an infinite horizon cost criterion.

Following the approaches of E.B. Dynkin [30] and of B.I. Grigelionis and A.N.
Sirjaev [33] that optimal control problem can be formulated as the one to determine
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a vector u ∈ Rn satisfying the following system of inequalities

u ≤ g , (P − I)u ≤ c , (u− g) · ((P − I)u− c) = 0 (1.1)

where P is the n × n transition matrix of the Markov chain, g e c represent,
respectively, stopping and transition costs while · denotes the usual scalar product
in Rn. Observe that by the change of variable x = u− g, (1.1) can be rewritten as

x ≤ 0 , Ax ≤ f , x · (Ax− f) = 0 , (1.2)

with A = P − I and f = c − Ag. In the early 70’s problems of the type (1.2),
known as linear complementarity problems, were the object of wide interest in
the domain of optimisation theory and operations research. In this context, my
tesi di laurea [15] advised by Umberto Mosco examined among other the relations
of complementarity problems with obstacle problems in the theory of variational
inequalities, see the seminal papers [38],[39] and also [20].
A comprehensive account on complementarity systems and their applications is
the book [25].

A result in [26] guarantees that the complementarity problem (1.2) has a unique
solution for any f if A is a Minkowski matrix, that is A is non singular and A−1

has nonnegative entries.
Coming back to (1.1), since P = (pij) is a stochastic matrix, that is

pij ≥ 0 ∀i, j ∈ (1, . . . , n) ,

n∑
j=1

pij = 1 ∀i ∈ (1, . . . , n) ,

the kernel of A = P−I contains at least the vector (1, . . . , 1). However, if P = (pij)
is irreducible, i.e. there is no subset I of (1, . . . , n) such that

I 6= ∅ , I 6= (1, . . . , n) such that pij = 0 ∀i ∈ I, ∀j ∈ (1, . . . , n) \ I ,

then as a consequence of the classical Perron-Frobenius theorem, see the next
section, there exists a vector m = (m1, . . . ,mn) such that

mi > 0 ∀i ∈ (1, . . . , n) and

n∑
i

mi = 1 such that P tm = m, (1.3)

where P t is the transpose of P .
Moreover, the vector m is an eigenvector of P t associated to the simple eigen-

value λPF = 1, the kernel of A = P − I is one dimensional and λPF , the Perron-
Frobenius eigenvalue, is the largest eigenvalue of P t. From the probabilistic point
of view, m is the stationary probability distribution of the Markov chain.

In this framework, the main result in [18] is the following:

Theorem 1.1. If problem (1.1) has a solution then necessarily

c ·m ≥ 0 (1.4)

If (1.4) holds with a strict inequality then (1.1) has a unique solution for any g.
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It is also possible to interpret the solution of problem (1.2) as the value of the
ergodic problem associated to the regularized α-discounted problem

u ≤ g , (P − I)u+ αu ≤ c , (u− g) · ((P − I)u+ αu− c) = 0 (1.5)

More precisely, if c ·m > 0 then the solutions uα of (1.5) with α > 0, converge as
α → 0+ to the unique solution of (1.1). This has also a dynamic interpretation
since the asymptotic behaviour of the Markov chain is given by the relations

lim
t→+∞

1

e · xt
xt = m , lim

t→+∞

xt+1
i

xti
= λPF

where e = (1 . . . 1), irregardless of the initial state x0, and xt is given recursively
by

xt+1 = Pxt , t = 0, 1, 2, . . .

2. The Perron-Frobenius theorem

For positive definite matrices all eigenvalues are positive while matrices M > 0,
meaning that all entries (mij) > 0 are strictly positive, may have some negative
eigenvalues but they admit nonetheless at least a positive eigenvalue, denoted
by λPF (M), which is real and larger than the modulus of the other eigenvalues.
Moreover, λPF (M) is associated to a 1-dimensional eigenspace generated by an
eigenvector with strictly positive components.
This is the classical Perron-Frobenius theorem, see for example [32],[4].

A non algebraic approach to the proof of this theorem is based on an opti-
mization principle described in the next result, providing a useful representation
formula for λPF (M) which, as we will see in the sequel, has a counterpart in the
infinite dimensional setting related to differential or integral operators.

Theorem 2.1. Let M > 0 and set

S−(M) = {λ ≥ 0 : ∃ 0 ≤ x ∈ Rn such that Mx ≥ λx}

Then the Perron-Frobenius eigenvalue λPF (M) is given by the solution of the
constrained optimization problem

λPF (M) = sup
λ∈S−(M)

λ (2.1)

and the max-min Collatz-Wielandt formula holds

λPF (M) = max
x∈Σ

min
i∈(1...n)

∑n
j=1mijxj

xi
(2.2)

where Σ is the simplex {x ≥ 0,
∑n
i=1 xi = 1}.
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For the proof of (2.2) one can see for example [46]. Let us sketch instead here
that of (2.1). It is not restrictive to take x ∈ Σ; it is immediate to check that
S−(M) is closed and bounded and that the sup in (2.1) is indeed a maximum.

Let λ∗ be an optimal value and x∗ an optimal point for (2.1), so that

λ∗ > 0, x∗ ≥ 0, x∗ 6= 0,Mx∗ ≥ λ∗x∗ (2.3)

Let us show first that
Mx∗ = λ∗x∗ (2.4)

Assume by contradiction that this is not the case so that (Mx∗)k − λ∗x∗k > 0
for some k and look at x̃ = (x∗1, . . . , x

∗
k + ε, . . . , x∗n) where ε > 0. Observe that

0 6= x̃ ≥ 0 and that for i 6= k

(Mx̃)i = (Mx∗)i +mikε > (Mx∗)i ≥ λ∗x∗i = λ∗x̃i

while
(Mx̃)k − λ∗x̃k = (Mx∗)k − λ∗x∗k − ε(λ∗ −mkk) > 0

for sufficiently small ε. This shows that for small ε > 0 we have Mx̃ > λ∗x̃,
meaning that Mx̃ ≥ λx̃ for some λ > λ∗, contradicting the definition of λ∗.
The vector x∗ is strictly positive: if x∗k = 0 for some k from (2.4) it follows that
(Mx∗)k = 0 contradicting the fact that Mx∗ > 0 which is a consequence of the
assumption M > 0 and relation (2.3).

It remains to show that λ∗ coincides indeed with λPF (M): take any other
eigenvalue- eigenvector pair (λ, z) for M and set z = (|z1|, . . . , |zn|) ≥ 0.
Since M > 0 it follows that Mz ≥ |Mz| ≥ |λ|z, implying |λ| ≤ λ∗ and λ∗ =
λPF (M).

Remark 2.2. Nonnegative matrices arise in many different situations including
in second-order centered finite difference approximations of elliptic boundary value
problems such as the Dirichlet problem

∆u = 0 in Ω , u = g on ∂Ω , (2.5)

see for example [37].
The discretized problem with mesh h is a system of linear algebraic equations

∆hU = G (2.6)

governed by a square matrix ∆h which is positive definite, and therefore invertible,
having off-diagonal entries less or equal than 0.
Such matrices are known in linear algebra as Minkowski matrices and their inverse
matrix have strictly positive entries, see [40]. Consequently, the Perron-Frobenius
eigenvalue of ∆−1

h is the reciprocal of the minimum eigenvalue of ∆h and the
following form of the Maximum Principle holds for solutions of (2.6)

G ≥ 0 implies U = ∆−1
h G ≥ 0 ,
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see [43] for several results concerning the validity of the Maximum Principle for
linear algebraic systems. A toy example of such matrices are

∆h =

 4 −1 0
−1 4 −1
0 −1 4

 , ∆−1
h =

1

56

 15 4 1
4 16 4
1 4 4


with Perron eigenvalue λPF (∆−1

h ) =
4 +
√

2

14
.

3. Optimal stopping of reflected diffusions

An infinite dimensional version of the complementarity problem discussed in Sec-
tion 2 is the oblique derivative problem with obstacle: determine a function
u : Ω→ R, Ω bounded open subset of Rn, satisfying the sistem

u ≤ 0 , Au ≤ f , u(Au− f) = 0 in Ω (3.1)

and the oblique derivative condition

Bu =

n∑
i=1

bi(x)
∂u

∂xi
= 0 on ∂Ω . (3.2)

The operator A in system (3.1) is a second-order uniformly elliptic operator of the
form

A = −
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

ai(x)
∂

∂xi
(3.3)

so that (3.1),(3.2) are the optimality conditions for the optimal stopping problem
of the Markov process whose infinitesimal generator is A with reflection conditions
on the boundary of Ω. In particular, if b is the normal vector to ∂Ω, the boundary
condition in (3.2) is the Neumann one.

A classical result, see for example [5], states that the boundary value problem

A∗m = 0 (x ∈ Ω) , B∗m = 0 (x ∈ ∂Ω) (3.4)

where A∗ and B∗ are the adjoints of A and B, has a unique solution m with

m > 0 and
1

|Ω|

∫
Ω

mdx = 1 .

The function m is the analogue of the Perron-Frobenius eigenvector associated to
the eigenvalue 0 of A∗ which, at least formally, plays the same role as the matrix
(P − I)t. The following result, formally very close to the one in Section 2, is taken
from the work [16] in collaboration with Maria Giovanna Garroni:

Theorem 3.1. Assume f ∈ Lp and that the coefficients of A are Lipschitz con-
tinuous. If

∫
Ω
fmdx > 0 then (3.1), (3.2) has a unique solution u ∈W 2,p(Ω).
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In [16] it is also proved that, under assumption
∫

Ω
fmdx > 0, then u is the

weak limit as α→ 0+ in W 2,p(Ω) of the solutions uα of the discounted problems

uα ≤ 0 , Auα + αuα ≤ f , uα(Auα + αuα − f) = 0

In the case
∫

Ω
fmdx < 0 or

∫
Ω
fmdx = 0 different limiting behaviours occur, see

[16]. A key tool in obtaining the a priori estimates needed in the proof is the
general form of the Lewy-Stampacchia inequality, see [34].

The pde approach to ergodic problems in optimal control received considerable
attention in recent years and different nonlinear models and boundary conditions
have been treated by similar Fredholm alternative ideas. A relevant model is the
Dirichlet problem

−∆u+ |∇u|2 = 1 in Ω , u = 0 on ∂Ω (3.5)

occurring in optimal exit time problems.
The standard Hopf-Cole transformation linearizes the above problem and it

can be proved that (3.5) has a solution if and only if λ1(−∆ + 1,Ω), the principal
eigenvalue of the associated linear Dirichlet problem in Ω, is strictly positive.

The discounted problem

−∆uα + |∇uα|2 + αuα = 1 in Ω , uα = 0 on ∂Ω (3.6)

has a solution for every α > 0. When (3.5) has a solution then uα → u in H1
0

as α → 0+. On the other hand, when (3.5) has no solution then αuα converges
locally uniformly to a constant c0 characterized as the unique number such that
the differential problem with explosive boundary conditions

−∆v + |∇v|2 + c0 = 1 in Ω , v = +∞ on ∂Ω (3.7)

has a solution. It turns out also that (3.5) has a unique solution if and only if
c0 > 0 while (3.5) has no solution if c0 ≤ 0. Moreover, it is relevant to point
out that c0 coincides with λ1(−∆ + 1,Ω) and also, especially in view of the next
section, that the representation formula

c0 = sup{c ∈ R : ∃ψ such that −∆ψ + |∇ψ|2 + c ≤ 1 in the viscosity sense}

holds. We refer to the nice paper [41] which clarifies the relations between principal
eigenvalue, maximum principle and ergodic constant in Bellman type nonlinear
pde’s in the framework of more general, genuinely nonlinear, growth behaviour in
the gradient term |∇u|q with 1 < q ≤ 2.

4. Elliptic operators: principal eigenvalue and Maximum Prin-
ciple

This section reviews some results concerning the relations between the principal
eigenvalue, or some generalized notion of it, and the validity of the weak Maximum
Principle

(MP) F (x, u,Du,D2u) ≥ 0 in Ω, u ≤ 0 on ∂Ω implies u ≤ 0 in Ω .
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Here u ∈ USC(Ω), the set of real-valued upper semicontinuous functions on Ω, F
is a degenerate elliptic fully nonlinear mapping from Ω×R×Rn ×Sn into R and
Sn is the space of n× n symmetric matrices.

In what follows Ω ⊂ Rn will be a general bounded domain with possibly
irregular boundary and the differential inequality will be understood to hold in
the viscosity sense, see [27].

I will review first the case when F is a linear uniformly elliptic operator in
non-divergence form following the treatment in [7], in a second subsection I will
report on a characterization result in [6] concerning degenerate fully nonlinear
elliptic operators, a third one is dedicated to a very recent result in collaboration
with Antonio Vitolo [23] for the case of cooperative systems.

4.1. Positivity of the principal eigenvalue and (MP): the uniformly el-
liptic case

Let us consider the linear operator

L[u] = Tr(A(x)D2u) + b(x) ·Du+ c(x)u, α I ≤ A(x) ≤ β I (4.1)

with, say, continuous and bounded coefficients A, b, c, 0 < α < β. Note that in
this section the sign convention adopted on the principal part of the operator is
the opposite one with respect to Section 3, see (3.3).

Several sufficient conditions of different nature are known, see [42], for the
validity of weak Maximum Principle in a bounded domain Ω, e.g.

• (i) c(x) ≤ 0,

• (ii) exists ψ > 0 in Ω such that L[ψ] ≤ 0,

• (ii) Ω is narrow (i.e. contained in a suitably small strip).

Simple examples show however that none of these conditions is however necessary
for the validity of the weak Maximum Principle.

What about sufficient and also necessary conditions for the validity of the
Maximum Principle?

An important characterisation result due to Berestycki, Nirenberg and Varad-
han [7] asserts that (MP) holds for L in a bounded domain Ω if and only if the
number λ1 defined by

λ1 := sup {λ ∈ R : ∃ψ > 0 in Ω such that L[ψ] + λψ ≤ 0 in Ω} (4.2)

is strictly positive. In the definition of λ1, ψ ∈ W 2,p
loc (Ω). Notably, this very nice

numerical criterion was proved to hold under mild conditions on the coefficients
and applies to a large class of domains with rough boundary ∂Ω. In the above
mentioned result the matrix A(x) is required to be uniformly positive definite but
not necessarily symmetric. Note that even for symmetric A the operator L is not
in general self-adjoint due to the presence of the drift term b.

Nonetheless, in [7] it is proved that the number λ1 shares some of the properties
of the classical principal eigenvalue for −L with Dirichlet conditions namely:
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• there exists a principal eigenfunction w1>0 in Ω such that L[w1] +λ1w1 = 0
in Ω, w1 = 0 on ∂Ω,

• w1 is simple,

• Reλ ≥ λ1 for any other eigenvalue λ of L.

The Berestycki-Nirenberg-Varadhan definition above can be expressed by the equiv-
alent pointwise min-max formula

λ1 = − inf
ψ(x)>0

sup
x∈Ω

Lψ(x)

ψ(x)
(4.3)

where ψ ∈W 2,p
loc (Ω). The same formula, under more restrictive conditions (smooth

boundary, continuous coefficients), have been considered before in [29], see also
[47]. A much older reference is [3] where the same min-max formula is proposed
in the particular case L = ∆.

Remark 4.1. Definition (4.2) is clearly reminiscent of that of Perron-Frobenius
eigenvalue of a positive matrix, see Section 2, formulas (2.1) and (2.2).
This is formally justified by the observation that for the solution operator L−1 of
the Dirichlet problem (2.5) the sign propagation property

L−1g ≥ 0 in Ω if g ≥ 0 on ∂Ω

holds and the obvious fact that the maximum eigenvalue of a matrix is the mini-
mum one for its inverse.

The existence of a positive eigenfunction associated to λ1 in the Berestycki,
Nirenberg and Varadhan setting follows from the Krein-Rutman theorem thanks to
compactness estimates guaranteed by the uniform ellipticity of L and the bound-
edness of Ω. This existence argument, which is delicate in the infinite dimensional
setting, is straightforward in finite dimensions, see the proof of Theorem 2.1.

Recent related research motivated by control and game theory is reported in
[2]. In particular, some interesting infinite dimensional versions of the Collatz-
Wielandt formulas have been proposed there.

Remark 4.2. For the self-adjoint operator Lu(x) = div(A(x)Du)+c(x)u the prin-
cipal eigenvalue λ1 = λ1(L,Ω) is given by the classical Rayleigh-Ritz variational
formula

λ1 := min
ψ∈H1

0 (Ω),||ψ||L2(Ω)=1

∫
Ω

(
A(x)Dψ ·Dψ + c(x)ψ2

)
dx

For linear operators in divergence form there is a vast literature on computa-
tional methods for the principal eigenvalue. On the other hand, for general non-
divergence type elliptic operators such as in in (4.1) the Rayleigh-Ritz variational
formula is not available anymore.
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In [9] we developed a finite difference scheme for the computation of the princi-
pal eigenvalue and the principal eigenfunction of fully nonlinear uniformly elliptic
operators based on the min-max formula (4.3) which can be seen as a pointwise
alternative to the Rayleigh-Ritz integral formula. The approximation results in
[9] seem to be new even in the linear case.

4.2. Positivity of a generalized principal eigenvalue and (MP): the de-
generate elliptic case

A numerical criterion similar to the one in [7] may hold in the case L is degenerate
elliptic, meaning by this that the matrix A(x) is just positive semidefinite?

It is well-known that in this setting the Dirichlet problem is not well-posed in
general. Let us mention in this respect the role played by the following condition:
a boundary point ξ ∈ ∂Ω satisfies the Fichera condition, see [31], if either

A(ξ)Dd(ξ) ·Dd(ξ) > 0

or
A(ξ)Dd(ξ) ·Dd(ξ) = 0 and Tr(A(ξ)D2d(ξ)) + b(ξ) ·Dd(ξ) < 0 ,

where d is the signed distance function from ∂Ω, positive outside Ω.
Also, a principal eigenvalue and an associated eigenfunction may not exist

in the degenerate elliptic case due to the lack of suitable a priori estimates, see
however [44] for some positive results in this direction.

In this spirit, a similar numerical criterion for the validity of the weak Max-
imum Principle has been established in [6]. In order to deal with degeneracies a
new index was introduced there by setting, for L as in (4.1),

µ1(L,Ω) = sup {λ ∈ R : ∃Ω′ ⊃ Ω and ψ ∈ C(Ω′), ψ > 0 : L[ψ] + λψ ≤ 0 in Ω′}.

This rather implicit definition of the index µ1(L,Ω), requiring L to be defined on
a larger domain, is motivated in particular by possible degeneracies of coefficients
occurring on ∂Ω. Observe, however, that using the monotonicity with respect to
set inclusion of λ1 as defined in (4.2) it is possible to show that

µ1(L,Ω) = sup
Ω′⊃Ω

λ1(L,Ω′). (4.4)

The main result in [6] is as follows:

Theorem 4.3. Let

L[u] = Tr(A(x)D2u) + b(x) ·Du+ c(x)u

with continuous coefficients A(x), b(x), c(x) for x in a bounded domain Ω. Assume
the monotonicity conditions

A(x)ξ · ξ ≥ 0 for all ξ ∈ Rn (degenerate ellipticity)
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and
(b(x)− b(y)) · (x− y) ≥ −c|x− y|2 for some c > 0

and, moreover,
x→

√
A(x) is Lipschitz continuous .

Then,
(MP) L[u](x) ≥ 0 in Ω, u ≤ 0 on ∂Ω implies u ≤ 0 in Ω

holds for all upper semicontinuous functions u satisfying the above differential
inequality in the viscosity sense if and only if

µ1(L,Ω) > 0 . (4.5)

Remark 4.4. Consider for simplicity the case where L[u] = Tr(AD2u) and let
Ω ⊂ BR be contained in BR, the ball of radius R centered at the origin. The

function ψ(x) = R2

2 −
|x|2

2 is strictly positive in BR and D2ψ = −I.
If A is positive semidefinite with moreover Tr(A) > 0, we deduce that

Tr(AD2ψ) + λψ = −Tr(A) +
λ

2

(
R2 − |x|2

)
≤ 0 in BR

provided that λ ≤ 2Tr(A)/R2 for all i = 1 . . . N . Therefore,

µ1(L,Ω) ≥ 2

R2
Tr(A) > 0 .

Since A is positive semidefinite, the extra assumption Tr(A) > 0 amounts to the
requirement that the linear operator L is strictly elliptic at least in one coordinate
direction. See [21, 22] for a completely different proof of the validity of the weak
Maximum Principle in this setting.

Actually, the above result is proved in [6] for a quite general class of positively
homogeneous fully nonlinear operators F which are just degenerate elliptic in the
sense that the weak monotonicity condition

F (x, r, p,X + Y ) ≥ F (x, r, p,X)

holds true for any non-negative definite matrix Y ∈ Sn, thus generalizing previous
results for uniformly elliptic operators in [10]. Theorem 4.3 applies to some Hessian
operators such as the uniformly elliptic Pucci maximal operator

Pγ,Γ(D2u) := Γ Σi∈I+ηi(D
2u) + γ Σi∈I−ηi(D

2u)

(here, 0 < γ < Γ and I+, I− correspond, respectively, to positive and negative
eigenvalues of D2u) and the degenerate elliptic Harvey-Lawson Hessian operators

Hk(D2u) = ηn−k+1(D2u) + · · ·+ ηn(D2u),

k an integer between 1 and n. Here η1(D2u) ≤ η2(D2u) ≤ · · · ≤ ηN (D2u) are
the ordered eigenvalues of the matrix D2u, see also [12] for recent results in this
direction.
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4.3. The (MP) for cooperative systems

In the very recent paper [23] in collaboration with A.Vitolo we consider systems
of elliptic partial differential inequalities of the form

L[u] + C(x)u ≥ 0 . (4.6)

Here u = (u1 . . . uN ) is a vector-valued function u : Rn → RN , which is intended
either as a row or as a column on the occasion. Furthermore, C(x) = (cij(x)) is a
N × N matrix-valued function and L = (L1, . . . , LN ) is a matrix linear operator
acting on u of the form

Li[u] = Tr(Ai(x)D2u) + bi(x) ·Du+ ci(x)u, i = 1 . . . N. (4.7)

The vector differential inequality (4.6) is meant to hold componentwise

Li[u] +

N∑
j=1

cij(x)uj ≥ 0, i = 1 . . . N (4.8)

in the viscosity sense.
In a number of papers, see for example [45, 13, 1] for linear Fi and [14] for fully

nonlinear operators, the validity of the weak Maximum Principle, namely the sign
propagation property:

ui ≤ 0 on ∂Ω for all i = 1 . . . N implies ui ≤ 0 in Ω for all i = 1 . . . N, (4.9)

where Ω is a bounded domain of Rn, has been established through different ap-
proaches. The results obtained in those papers require uniform ellipticity of the
operators Fi and the crucial assumption that C(x) = (cij(x))i,j=1...N is a cooper-
ative matrix. By this we mean that the following conditions hold:

cij(x) ≥ 0 ∀ i 6= j,

N∑
j=1

cij(x) ≤ 0, i = 1 . . . N (4.10)

Observe that cooperativity implies cii(x) ≤ −
∑
j 6=i cij(x) ≤ 0 for i = 1 . . . N , in

agreement with what is well-known in relation with the weak Maximum Principle
in the diagonal case cij ≡ 0 for i 6= j, see [8] for further properties of such matrices.

In [23] we obtained extensions of the results from the above mentioned papers
to the case where the Li are degenerate elliptic (actually, even fully nonlinear)
through a reduction to the scalar case adapting an idea in [14] in combination
with the main result in [6], reported here in Subsection 4.2, for degenerate elliptic
operators.

Actually, we consider the the extremal scalar nonlinear operator

F (x, t, ξ,X) = L1(x, t, ξ,X) ∨ · · · ∨ LN (x, t, ξ,X) ≡ max
i=1...N

Li(x, t, ξ,X) (4.11)

Here and below we use the notation s ∨ t = max (s, t). Note that F is a standard
Bellman operator occurring in the Dynamic Programming approach to optimal
control of possibly degenerate diffusions.

Our main result in this setting is as follows:
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Theorem 4.5. Suppose that the coefficients of the operator L and the entries of
the cooperative matrix C are continuous functions of x ∈ Ω, a bounded domain of
Rn. Then the validity of the sign propagation property

w ≤ 0 on ∂Ω ⇒ w ≤ 0 in Ω

for all viscosity solutions w ∈ C(Ω;R) of the scalar nonlinear inequality F [w] ≥ 0
implies that the same property (4.9) holds for all viscosity solutions u ∈ C(Ω;RN )
of the linear system L[u] + C(x)u ≥ 0 in Ω.

The proof relies on cooperativity of C and lattice properties of viscosity solu-
tions: a first step is to observe fact that if u = (u1 . . . uN ) is a viscosity solution
of (4.6) then

Li(x, u
+
i , Du

+
i , D

2u+
i ) ≥ −

N∑
j=1

cij(x)u+
j (x) (4.12)

where u+
i = ui ∨ 0. Next, some viscosity calculus allows to show that the vector

function u∗ = u+
1 ∨· · ·∨u

+
N satisfies the inequality F [u∗] ≥ 0 in the viscosity sense

as well as the boundary condition u∗ ≤ 0 on ∂Ω.
Now we let into the picture the numerical index associated to the nonlinear

positively homogeneous of degree 1 degenerate elliptic operator F as defined in
(4.11)

µ1(F,Ω) = sup{λ ∈ R : ∃Ω′ ⊃ Ω and ψ ∈ C(Ω′), ψ > 0 : F [ψ] + λψ ≤ 0 in Ω′}

introduced in [6] which has been already considered in Subsection 4.2.
At this point is not difficult to conclude, taking into account the above obser-

vations and the main result Theorem 1.3 in [6] that if µ1(F,Ω) > 0 then the weak
Maximum Principle holds for solution of (4.6).

Example 4.6. Consider linear operators as in (4.7) with positive semidefinite
matrices Ai with, just for simplicity, constant entries and zero lower order terms.
Let Ω be contained in BR, the ball of radius R centered at the origin. The function

ψ(x) = R2

2 −
|x|2

2 is strictly positive in BR and D2ψ = −I. Then

Tr(AiD2ψ) + λψ = −Tr(Ai) +
λ

2

(
R2 − |x|2

)
≤ 0 in BR,

provided that λ ≤ 2Tr(Ai)/R2 for all i = 1 . . . N . From this is not difficult to
derive the inequality

µ1(F,Ω) ≥ 2

R2
Tr(A1) ∧ · · · ∧ Tr(An).

If Tr(Ai) > 0 for each i = 1 . . . N , then µ1(F,Ω) > 0 so that the weak Maxi-
mum Principle hold for the cooperative system (4.6). Since the Ai are positive
semidefinite matrices, the extra assumption Tr(Ai) > 0 amounts, as already no-
ticed before, to the requirement that each linear operator is strictly elliptic at
least in one coordinate direction, as for instance the directional elliptic operators
considered in the scalar case in [21, 22].
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I refer the reader to [23] for a general version of Theorem 4.5 including a large
class of nonlinear degenerate elliptic systems as well for the discussion of more
sophisticated examples.
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