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A study of some special rings by delta invariant

Yaser Khalatpour

Abstract. This paper is devoted to study the reqular, Gorenstein, generically Gorenstein and

non-regular Gorenstein local rings by means of delta invariant.

1. Introduction

Let R be a local ring. The delta invariant of a finite (i.e., finitely generated)
module was defined by M. Auslander ([1]). For a finite R-module M, denote M“™
the sum of all submodules ¢(L) of M, where L ranges over all maximal Cohen-
Macaulay R-modules with no non-zero free direct summands and ¢ ranges over
all R-linear homomorphisms from L to M. The ¢§ invariant of M, denoted by
dr (M), is defined to be pugr(M/M™), the minimal number of generators of the
the quotient module M /M™.

A short exact sequence 0 — Y — X —25 M —» 0 of R-modules is called
a Cohen-Macaulay approximation of M if X is a maximal Cohen-Macaulay R-
module and Y has finite injective dimension over R ([12, Definition 11.8]). A
Cohen-Macaulay approximation 0 — YV — X -2 M — 0 of M is called
minimal if each endomorphism 1 of X, with ¢ 0¥ = ¢, is an automorphism of
X ([12, Definition 11.11]. If R is a Cohen-Macaulay ring with canonical module
wpg, then a minimal Cohen-Macaulay approximation of M exists and is unique
up to isomorphism (see [12, Theorem 11.16], [1, Theorem 1.1]). If the sequence
0—Y — X 2 M — 0 is a minimal Cohen-Macaulay approximation of M,
then dr(M) determines the maximal rank of a free direct summand of X (see [12,
Exercise 11.47] and [12, Exercise 11.24]). For an integer n > 0 and an R-module
M, 6% (M) = dr(QU%(M)) is denoted as the higher delta invariant, where Q7 (M)
is the n th syzygy module of M in its minimal free resolution (paragraph just after
[2, Proposition 5.3]).

A commutative Noetherian ring R is called generically Gorenstein whenever
R, is Gorenstein for every minimal prime ideal p of R. It is well known that if
(R,m) is a Cohen-Macaulay local ring with canonical module then R is generically
Gorenstein if and only if the canonical module is isomorphic to an ideal of R (see
[5, Proposition 3.3.18]). In section 2, we use the delta invariant in order to study
rings to be generically Gorenstein, Gorenstein, or regular. Our first result is that
a complete local ring (R, m, k) is regular if and only if R is Gorenstein and a
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syzygy module of k has a cyclic direct summand R-module whose delta invariant
is equal to 1 and satisfies an extra condition (see Theorem 2.3). Our second result,
studies Cohen-Macaulay local rings with canonical modules which are Gorenstein
(see Theorem 2.4). Also, we study Cohen-Macaulay local rings with canonical
modules which are generically Gorenstein but not Gorenstein ( see Theorem 2.5)

Section 3 is devoted to presenting a generalization of [16, Theorem 2.3] (see
Corollary 3.2) and is devoted to study non-regular Gorenstein rings by means of
higher delta invariant (see Corollary 3.4).

Throughout, (R, m) is a commutative local Noetherian ring with maximal ideal
m and residue field ¥ = R/m, and all modules are finite (i.e. finitely generated).

2. Generically Gorenstein, regular and Gorenstein rings

We recall the basic properties of the delta invariant.

Proposition 2.1 ([12, Corollary 11.26] and [4, Lemma 1.2]). Let M and N be
finite modules over a Gorenstein local ring (R, m, k). Then the following statements
hold true:

(i) 0r(M ® N) =6r (M) + 0r (N);

(11) If there is a an R-epimorphism M — N, then 0p (M) > ér (N);
(iit) Sr(M) < u(M);
(iv) 6g (k) =1 if and only if R is regular;

(v) Sp(M) = p(M) when proj.dim (M) is finite.

Assume that (R, m, k) is a local ring with residue field k. In [7, Corollary 1.3],
Dutta presents a characterization for R to be regular in terms of the admitting a
syzygy of k with a free direct summand. Later on, Takahashi, in [14, Theorem 4.3],
generalized the result in terms of the existence of a syzygy module of the residue
field having a semidualizing module as its direct summand. Also Ghosh, Gupta
and Puthenpurakal in [8, Theorem 3.7], have shown that the ring is regular if and
only if a syzygy module of k£ has a non-zero direct summand of finite injective
dimension.

Now I investigate these notions by means of delta invariant. Denote by Q% (k)
the ith syzygy, in the minimal free resolution, of k.

Definition 2.2. An R-module X is said to satisfy the condition (x) whenever, for
any X -regular element a, X/aX is indecomposable as R/aR-module.

Theorem 2.3. Let (R, m, k) be a complete local ring of dimension d. The following
statements are equivalent:

(i) R is a regular ring;
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(i) R is a Gorenstein ring and Q% (k) has a cyclic R-module as its direct sum-
mand whose delta invariant is 1 and satisfies the property (x), for some
n > 0.

Proof. (i)=(ii). k = Q%(k) fulfills our statement by Proposition 2.1.

(ii)=-(i). Suppose that R is Gorenstein and, for an integer n > 0, Q}% (k) =
X @Y for some R-modules X and Y such that X =2 R/Ann (X) with dp(X) = 1.
The case n = 0 implies that R is regular. So we may assume that n > 1.

We proceed by induction on d. For the case d = 0, if m # 0 then Soc (R) # 0
and R/Soc (R) is maximal Cohen-Macaulay R-module with no free direct sum-
mand and so dg(R/Soc (R)) = 0. On the other hand, by [8, Lemma 2.1], Soc (R) C
Ann p(Q%(k)) = Anngr(X @ Y) C Ann g(X). Therefore the natural surjection
R/Soc(R) — R/Ann p(X) = X implies that 1 = 0p(X) < dr(R/Soc(R)) =0
which is absurd. Hence m = 0 and R = R/m is regular.

Now we suppose that d > 1 and the statement is settled for d — 1. As R is
Cohen-Macaulay, we choose an R-regular element y € m \ m?. Hence y is Q% (k)-
regular and X-regular. We set (—) = (=) ®g R/yR. Note that X is a principal
R-module and that, by [15, Corollary 2.5 and Proposition 2.1, 1 = Jr(X) <

07(X) < u(X) = 1. Note that, by [14, Proposition 5.2] , we have

O (k) = Q2 (k) © Q2 (k).

Therefore we have X Y = Q% (k) = Q%(k) & Q%fl(k). But X is indecomposable
R-module so, by Krull-Schmit uniqueness theorem (see [11, Theorem 21.35]), X is
direct summand of Q%fl(k) or %(k). Now our induction hypothesis implies that

R is regular and so is R. O

Over a Gorenstein local ring R, Proposition 2.1 (iii) states that the inequality
5r(M) < p(M).

In the following, we explore when equality holds true by means of Gorenstein
dimensions. A finite R-module M is said to be totally reflexive if the natural map
M — Homp(Hompg (M, R), R) is an isomorphism and

Ext% (M, R) = 0 = Ext’ (Homg (M, R), R)

for all # > 0. An R-module M is said to have Gorenstein dimension < n, write
G-dim r(M) < n, if there exists an exact sequence

0—G,— - —G —Gy— M —0,

of R modules such that each G; is totally reflexive. Write G-dim (M) = n if
there is no such sequence with shorter length. If there is no such finite length
exact sequence, we write G-dim (M) = cc.

Our result indicates the existence of a finite length R- module M such that
the equality dr(M) = p(M) holds true may put a strong condition on R. More
precisely:

In [14, Theorem 6.5], it is shown that the local ring (R, m, k) is Gorenstein if
and only if Q% (k) has a G-projective summand for some n, 0 <n < depthR+2 .
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Theorem 2.4. Let (R, m) be a local ring. The following statements are equivalent:
(i) R is a Gorenstein ring;

(ii) There exists an R—module M such that op(M) = p(M), m"M = 0, and
G-dim r(m"2M™) < oo for some integer n > 2.

Proof. Assume first that R is Gorenstein and that x is a maximal R-regular se-
quence. Thus there is a surjective homomorphism R/m! — R/xzR for some
integer ¢t > 1. As proj.dim (R/zR) < oo, Proposition 2.1 implies that

1= p(R/zR) = 6r(R/zR) < 0p(R/m') < p(R/m") = 1.

Therefore §r(R/m!) = 1 = u(R/mt). Now by setting n = ¢ + 1 > 2, the module
M := R/m! trivially justifies claim (ii).

For the converse, consider the natural exact sequence
M/MCHI

7m(M/Mcm) — 0.

0— (M™ +mM)/mM — M/mM —

Now the equality 0p(M) = (M) implies that M°™ C mM. As m"M = 0,
m" =2 MM is vector space. Our assumption G-dim z(m"~2M ™) < oo implies that
G-dim g(R/m) < co. Hence R is Gorenstein by [6, Theorem 1.4.9]. O

Here is our observation which shows how one may characterize a Cohen-
Macaulay local ring with canonical module to be generically Gorenstein by the
d-invariant.

Theorem 2.5. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0
with canonical module wr. Then the following statements are equivalent:

(a) The ring R is a generically Gorenstein ring but not Gorenstein;
(b) There exists an ideal I of R such that:

(1) or (R/I) =1,

(ii) bt g (1) = 1,

(iii) There exists a commutative diagram

R R/I 0

- |-

Homp(I,wr) — Extk(R/I,wr) —0

with isomorphism vertical maps.



A study of some special rings by delta invariant 167

Proof. (a)=(b). Assume that R is generically Gorenstein and that wgp Z R. As
wpr is an ideal of R, we consider the exact sequence

0—wp—>R-"SM-—0,

where M := R/wg. Let L be a maximal Cohen-Macaulay R-module with no
free direct summands, ¢ : L — M an R-homomorphism. Applying the functor
Homp (L, —) gives the long exact sequence

0 — Hompg(L,wr) — Homg(L, R) — Homp(L, M) — Exth(L,wg) .

As Exth(L,wg) = 0, there exists o € Hompg (L, R) such that 7o a = ¢. If there
exists € L such that ¢(z) ¢ mM then we have a(x) ¢ m, i.e. «(x) is a unit and
so « is an epimorphism which means L has a free direct summand which is not
the case. Hence ¢(L) € mM. Therefore M°™ C mM and we have

5r(M) = p(M/M™) = vdim o(M/(M™ +mM)) = p(M/mM) = p(M) = 1.

Moreover, we have Ext} (R/wg,wr) = R/wg since R/wg is Gorenstein ring of
dimension d — 1, and Hompg(wg,wr) = R, ht g (wg) = 1. Now that the statement
(iii) follows naturally.
(b)=(a). Asht(I)=1,1¢ U  p and so Homp(R/I,wr) = 0. Hence,
peAss (R)
naturally, we obtain the exact sequence
0 — Hompg(R,wr) — Homp(I,wr) — Extg(R/I,wr) — 0.

One has the following commutative diagram

0 I R R/I 0

0 —— Hompg(R,wr) —— Homp(I,wr) —— Ext}%(R/I,wR) —0.

Therefore we obtain, I = wgr which means R is generically Gorenstein.

To see the final claim, assume contrarily that R is Gorenstein. Hence wg & R
and Homp(R,wr) = Homp(I,wgr). Now, the commutative diagram (iii) implies
that R/I =0 so dg(R/I) = 0 which is a contradiction. O

The notion of linkage of ideals in commutative algebra is invented by Peskine
and Szpiro [13]. Two ideals I and J in a Cohen-Macaulay local ring R are said to
be linked if there is a regular sequence ¢ in their intersection such that I = (a) :g J
and J = (a) :g I. They have shown that the Cohen-Macaulay-ness property is
preserved under linkage over Gorenstein local rings and provided a counterexample
to show that the above result is no longer true if the base ring is Cohen-Macaulay
but not Gorenstein. In the following, we investigate the situation over a Cohen-
Macaulay local ring with canonical module and generalize the result of Peskine
and Szpiro [13].
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Theorem 2.6. Let (R,m) be a Cohen-Macaulay local ring of dimension d with
canonical module wr. Suppose that I and J are two ideals of R such that

0:p I =Jwr, 0:yJ=Iwg, G-dimpg/;(wr/Iwr) < oo

and also G-dim g/ ;(wr/Jwr) < 0o (e.g. R is Gorenstein), then R/I is Cohen-
Macaulay R-module if and only if R/J is Cohen-Macaulay R-module.

Proof. Assume that R/I is Cohen-Macaulay. Set t := grade (I, R) so that t =
ht p(I) = dim R — dimR/I. If ¢ > 0 then there exists an R-regular element
x in I. As wpg is maximal Cohen-Macaulay, x is also wg-regular which implies
that Jwr = (0 :w, I) = 0. Hence J = 0 which is absurd. So assume that
t = 0 which implies that R/I is maximal Cohen-Macaulay R-module so that
Ext%(R/I,wgr) = 0 for all i > 1. Apply the functor Hompg(—,wr) on a minimal
free resolution

to t1
v — R —®R — R —R/I —0

of R/I, to obtain the induced exact sequence

t1 to
0—>OJR/JOJR—>@WR—>@WR—>~”.

Splitting into the short exact sequences

t1
0 — wR/JwR — Gwr — C; — 0

t
0 — C1 H@%WR—)CE-)O

t
0 — Cy —>E§UJR—>C3_>0

where C; = Im f;y; for i > 1, we obtain depth gp(wr/Jwr) = d. Note that
G-dim g/ j(wr/Jwr) < oo, implies that d = depth g/ ;(wr/Jwr) < depth g/ ;(R/J).
Thus R/J is also a maximal Cohen-Macaulay R-module. O

To see some applications of Theorem 2.6, we refer to the nth d-invariant of an
R-module M as in the paragraph just after [2, Proposition 5.3].

Corollary 2.7. Let (R,m) be a Cohen-Macaulay local ring of dimension d with
canonical module wr. Let I and J be ideals of R.

(a) If 0 =, I = Jwgr and R/I is a maximal Cohen-Macaulay R-module, then
8% (Jwr) =0 for alli > 1.

(b) If 0 iy, I = Jwg, 0 i, J = Iwgr, R/I is a mazimal Cohen-Macaulay
R-module, and G-dim g, ;(wgr/Jwr) < 0o, then 6% (Iwgr) =0 for all i > 1.
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Proof. (a). A similar argument as in the proof of Theorem 2.6, implies that
depth gr(wr/Jwr) = d and wr/Jwg is maximal Cohen-Macaulay. By the para-
graph just after [2, Proposition 5.3], we get 6% (Jwr) = 0 for all i > 1.

(b). By Theorem 2.6, R/J is maximal Cohen-Macaulay R-module so, by part
(a), 6% (Iwr) = 0 for all i > 1. O

3. Gorenstein non-regular rings

For an ideal I of a ring R, we set G := gr;(R) as the associated graded ring of R
with respect to I.

Lemma 3.1. Assume that (R, m) is a local ring and that I is an m-primary ideal
of R such that I'/T**! is a free R/I-module for all i > 0. Suppose that x € I \ I?
such that * := x+I? is a G-reqular element in G. Set R = R/xR. Then, for any
n >0, we have Qf(I™) @r R= QLA™ /I™) @ QL™ /2™ ) for all m > 1.
Proof. As z* is a G-regular element in G, the map I™~'/I™ 25 [m/[m+1 g
injective for all m > 1, to prove this claim, suppose that t + I"™ € I"™~1/I"™ such
that xt € I™*L. Therefore (z + I?)(t + I™) = at + [T = 0g. As z* is a G
regular element in G, then ¢ € I™. Let m > 1. We prove the claim by induction
on n. I claim that I™/xI™ = [™~1/[™ @ [™ /xI™~ 1 to prove this claim, consider
the following commutative diagram

0 —— I/ 2 [ s [ [ > ()

l i

0 Im—l/]m - Im/[m—i—l Im/(xlm—l + Im+1) 0

As I is am primary ideal of R, we get dim (R/I) = dim (R/v/T) = dim (R/m) = 0.
Therefore the injective map I™~1/I™ 25 1™ /I +1 splits. Therefore the first row
of the above diagram splits. Thus

Q%(Im) @rR =I"®rR
& [m [p]™
o~ ]m—l/[m o) Im/xlm—l
= QO (Im=1/1m) @ QL (1™ fz ™)

which proves the claim for n = 0.

Now we assume that n > 0 and the claim is settled for integers less than n.
z is a regular element on both R and QI '(I"™) (since for all m > 1 the map
=t/ 2 /1 s injective).

Therefore a minimal free cover 0 —s Q% (I™) — F — Q% 1(I™) — 0 of
Q1 (I™) gives a minimal cover

0— QI™@pR— FepR— QF 'I™)@r R—0
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of Q%' (I™) ®p R over R. Hence we get Q%(I™) @p R = Q}%(Q’;{l(lm) ®r R).
By the induction hypothesis we have

Op(I™er R = QLOQL ' (I™) ®r R)
QL tamt rmy e QI faIm )
QLI @ QL™ fxI™ ).

1%

o~

O

Tt is shown by Yoshino [16, Theorem 2.3] that, in a complete non-regular Goren-
stein local ring (R, m) with depth (grm(R)) > d — 1, one has 0% (R/m™) = 0 for all
positive integers n and m, where gry, (R) denote the associated graded ring of R
with respect to m. Now by following theorem which is a generalization of [16, The-
orem 2.3], we approach our result (Corollary 3.4). Set depth (G) = grade (G, G)
where G4 is the ideal which is generated by all elements with positive degree in

G.

Theorem 3.2. Suppose that (R,m) is a Gorenstein local ring of dimension d with
infinite residue field R/m. Assume that I is an m-primary ideal of R such that:

(i) For anyi >0, I'/T**1 is free R/I-module, and

(ii) for any R-regular sequence X = x1, -+ ,xs in I with
zi+(x1, - xio1) € (I (xq, - wi1))\ (T (21, ,2i-1))%, 1<i<s,
we have 6, p (R/1) =0 for alln > 0.

Then 0% (R/I™) = 0 for all integers n > d + 1 — depthG and all m > 1. In
particular, if depthG =d — 1, then d%(R/I™) =0 for alln > 2 and all m > 1.

Proof. Let m > 1 and t = depth (G). If d = 0 the result is trivial by [3, Corollary
1.2.5]. We assume that d >0 andn >d+1—+t.

If t =0 then n > d + 1 and the result is clear (since Q%(R/I™) is a maximal
Cohen-Macaulay module by [5, Exercises 2.1.26] and Q%(R/I™) has a no free
direct summand by [3, Corollary 1.2.5]). Now assume that d > 0 and ¢t > 0. As
R/m is infinite implies that I has a superficial element = € I\ I? ([10, Proposition
8.5.7]), and we get 2* := x + I? is a G-regular element on G by [9, Lemma 2.1].
Then the map 1™~ /I™ 25 ™ /T+1 is injective. Set R = R/xR and I = I /xR
and let n > d —t+ 1. By Lemma 3.1 we have

Qré—l(Im) ®r R ~ QnR—l(Imfl/Im) @ Q%—l(Im/x‘[mfl).
On the other hand, z is er{l(lm)-regular; therefore by [15, Corollary 2.5] we have

Sr(Qy (1) < Sp(Q (I™) © R).
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Therefore

Op(R/I™) = RQ )

1(Im) ®r R)

Sty e QNI aIm ) (3.1)
RQUEIMTHI™) + Sp(QUE I /xI™ )
LIy (I eI Y.

T

The injective map I"™~'/I"™ — I"™/I™*! implies, by induction on m, that
™t =gRNI™ so we get ()™ =I™/(xRNI™) = I™/xI™; therefore

SH(R/I™) <% HI™fad ™) 4 5 A Im)
=6 (™) + ot Iy

Note that, by assumption, [™~1 /™ = éR/I for some non-negative integer a, and
hence, 0% (I™~1/I™) = a.6} ' (R/I) = a.0 = 0.

If d = 1 then dim (R) = 0 s0 6~ L(nm) = Sp(VE L(nm)) = §L(R/(I)™) =0
hence the result is clear.

Suppose that d > 2. Asn>d—t+1=(d—1)— (t—1)+1, when t = 1, we
have n > (d — 1) + 1 hence §%(R/(I)™) = 0 , therefore 63 (R/I™) = 0.

Set G = grp(I). If t > 2 then depth (G) = depth (G/z*G) =t —1 > 0. As
R/m = R/m is infinite and dim (R) > 0 and depth (G) > 0, by [9, Lemma 2.1],
there exists j = y + R € I\ I? such that §* is G-regular. Therefore the map
=t/ Ly [/t s injective. On the other hand, we have (I)™/(I)™+! =
I /(™1 + 1™+ and I™/(xI™~ ! + I™*1) is a direct summand of 1™ /™!,
Therefore (I)™/(I)™*! is a free R/I-module for any i > 1. Set R = R/jR
and I = I/yI. Then by the same argument as above we have SL(R/I™) <
5 (R/(E™) + 62V (@R/T).

By our assumption 5%71(691%/[)) = 512/(105 v) (®R/I)) = 0. When d = 2,
dim (R) = 0 and so Jg(f{/(f)m) = 0 and the result is clear. Suppose that d > 3.
Asn>d—t+1=(d—2)—(t—2)+1,if t =2 then 5}%(]?/(15)’") = 0, therefore
(3.1) implies that

OR(R/I™) < SR(R/(I)™) + 05 (&R/D))
< SL(R/(I)™) + 6L, (BR/T) + 85 L (BR/T)
0

For the case t > 3, we proceed by the same argument as above to find
SR(R/I™) = 0. O

Remark 3.3. Let (R, m) be a local ring. The ring R is regular if and only if R is
Gorenstein and (M) > 0 for all non-zero finitely generated R-module M.
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Proof. Suppose that R is regular. Assume contrarily that there exists a non-zero
R-module M such that dz(M) = 0. By definition of delta, there exists a surjective
homomorphism X — M such that X is maximal Cohen-Macaulay R-module with
no free direct summand. On the other hand, as R is regular, proj.dim z(X) =0
and so X is free a R-module which is not the case.

Conversely, by assumption and Proposition 2.1, 1 < dg(R/m) < u(R/m) = 1.
Hence, by Proposition 2.1, R is regular. O

Corollary 3.4. Suppose that (R,m) is a Gorenstein local ring of dimension d
such that R/m is infinite. Consider the following statements:
(a) R is not regular;
(b) There exists an m-primary ideal I of R such that
(i) I/ is free R/I-module for any i >0, and
(ii) for any R-regular sequence x = x1, -+ ,xs in I such that
xi+(x17 T 71'1'71) € (I/(xlv e al'ifl))\(-[/(xla to ,$7;,1))2, 1 < 1 < S,
one has 0% . (R/I) =0 for all n > 0;
(c) There exists a non-zero ideal I of R such that
O0L(R/I™) =0 for all integers n > d — depth(G) + 1 and m > 1.
Then the implications (a)=(b) and (b)=(c) hold true. If depth(G) > depth r(R/I),
the statements (a), (b), and (c) are equivalent.

Proof. (a)=(b). We show that I = m works. Assume that x = z1, -+,
is R-regular sequence in m such that x;y € m \ m? and z; + (z1,--- ,2;_1) €
(m/(zy,- -y @im1)) \ (m/(z1, -+ 2i-1)). Set

R:R/(xla 7xs—1)Ra ﬁl:‘n/(xla 7xs—l)R

and T, = 25 + (71, -+ ,25_1). As R/Z,R is not regular so by [2, Proposition 5.7
we have, for all n > 0,

0% (wy e wyr (BIM) = 00g, -y (R/m

(b)=(c). Apply Theorem 3.2.

(¢)=(a). We assume that R is a regular ring. By our assumption we get
O%(R/I) = 0 for all integers n > d — depth (G) + 1. Therefore dr(Q%(R/I)) =0
for all integers n > d — depth (G) + 1 and by Remark 3.3 we have Q%(R/I)) =0
for all integers n > d — depth (G) + 1. Then proj.dim g(R/I) < d — depth (G).
On the other hand Auslander-Buchsbaum formula implies that d—depth g(R/I) =
proj.dim g(R/I) < d—depth (G) which contradicts that depth (G) > depth g(R/I).

O
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Lemma 3.5. Assume that (R,m) is a 1-dimensional Gorenstein local ring and
that I is an m-primary ideal of R such that ugr(I) > 2. Then Sr(I"/I"T1) = 0
and OB (R/I™) = 0 for all positive integers n and m.

Proof. The assumption dim (R/I) = 0 and the exact sequence
0—I—R—R/IT—0

imply that I is maximal Cohen-Macaulay as an R—module. As ugr(I) > 2, I hasno
free direct summand and so dr(I) = 0. For a finite R-module M, the natural epi-

morphism #RéaM)I — IM, by Proposition 2.1, implies that 0z (IM) < 5R(é1) =0
which gives 6gr(IM) = 0. Let n and m be positive integers. As QF(R/I™) is a
maximal Cohen-Macaulay R-module for all m > 1, we have 0} (R/I"™) = 0 for all
m > 1 (see the paragraph just after [2, Proposition 5.3]). For the case m = 1 we
have 0L (R/I™) = 6r(QL(R/I™)) = 6r(I") = dp(II") = 0. O

For an R-regular element z in m, we set (—) = (—) ® g R/xR. Recall from the
first paragraph of Section 5 of [2] that an R-module M is called weakly liftable on
Rif M is a direct summand of N for some R-module N. The following result will
be used in characterizing a ring to be non-regular Gorenstein of dimensions 2.

Proposition 3.6. Assume that (R, m) is a 2-dimensional Gorenstein local ring.
Then the following statements are equivalent:

(a) R is not regular;

(b) There exists an m-primary ideal I of R such that

(1) pr(I) =3,
(ii) I1/I? is a free R/I-module,
(iii) There exists R-reqular element x € I\ I? such that the natural map
R/I =5 I/1? is injective and g .p (R/I) = 0;

(c) There exists a non-zero ideal I of R such that §%(R/I) = 0 for all positive
integers n > 1.

Proof. (a)=>(b). We set I = m. Choose an R-regular element x € m \ m?. Hence
the map R/m — m/m?, with a + m ~» az + m?, is injective. As R/zR is not
regular, /g (R/m) = 6g/pr (R/xR)/(m/xR)) = 0 by [2, Proposition 5.7] and
also it is clear m/m? is a free R/m module.

(b)=>(c). Set R = R/xR and assume that n > 1. As dim (R) = 1 and pg(I) >
2, by Lemma 3.5 and assumptioni(ig), we have 0g(Q%(R/I)) = 65(QE(R/1)) =0
and 05(QH(R/I)) = 05(Q% 1 (R/I)) = 0. On the other hand, dim R/I = 0 and
the exact sequence

0— R/I —I/I*? — I/(xR+1*) —0

imply that proj.dim g,;(I/(zR + I?)) = 0 by Auslander-Buchsbaum formula.
Therefore, the commutative diagram
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0 — R/IT = Ijal — I/zR — 0
[ 1 1
0 — R/ % I1)I? — I/@R+I?) — 0

with exact rows implies that the upper row splits. Hence R/I, as R-module, is
weakly liftable on R.

Thus, by [14, Proposition 5.2], we obtain Q7 (R/I) = Q%(R/I) ® Q%fl(R/I).
Therefore

Sf(R/T) = 0r(QR(R/I)) < 0R(QUR(R/1))
= Sg(Q(R/D) + 65(Q ' (R/T))
=0+0
= 0.

(¢)=(a). By assumption éz(I) = 0, therefore R is not regular. O
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