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E DELLE SUE APPLICAZIONI

A study of some special rings by delta invariant

Yaser Khalatpour

Abstract. This paper is devoted to study the regular, Gorenstein, generically Gorenstein and

non-regular Gorenstein local rings by means of delta invariant.

1. Introduction

Let R be a local ring. The delta invariant of a finite (i.e., finitely generated)
module was defined by M. Auslander ([1]). For a finite R-module M , denote M cm

the sum of all submodules φ(L) of M , where L ranges over all maximal Cohen-
Macaulay R-modules with no non-zero free direct summands and φ ranges over
all R-linear homomorphisms from L to M . The δ invariant of M , denoted by
δR (M), is defined to be µR(M/M cm), the minimal number of generators of the
the quotient module M/M cm.

A short exact sequence 0 −→ Y −→ X
ϕ−→ M −→ 0 of R-modules is called

a Cohen-Macaulay approximation of M if X is a maximal Cohen-Macaulay R-
module and Y has finite injective dimension over R ([12, Definition 11.8]). A

Cohen-Macaulay approximation 0 −→ Y −→ X
ϕ−→ M −→ 0 of M is called

minimal if each endomorphism ψ of X, with ϕ ◦ ψ = ϕ, is an automorphism of
X ([12, Definition 11.11]. If R is a Cohen-Macaulay ring with canonical module
ωR, then a minimal Cohen-Macaulay approximation of M exists and is unique
up to isomorphism (see [12, Theorem 11.16], [1, Theorem 1.1]). If the sequence

0 −→ Y −→ X
ϕ−→ M −→ 0 is a minimal Cohen-Macaulay approximation of M ,

then δR(M) determines the maximal rank of a free direct summand of X (see [12,
Exercise 11.47] and [12, Exercise 11.24]). For an integer n ≥ 0 and an R–module
M , δnR(M) := δR(ΩnR(M)) is denoted as the higher delta invariant, where ΩnR(M)
is the n th syzygy module of M in its minimal free resolution (paragraph just after
[2, Proposition 5.3]).

A commutative Noetherian ring R is called generically Gorenstein whenever
Rp is Gorenstein for every minimal prime ideal p of R. It is well known that if
(R,m) is a Cohen-Macaulay local ring with canonical module then R is generically
Gorenstein if and only if the canonical module is isomorphic to an ideal of R (see
[5, Proposition 3.3.18]). In section 2, we use the delta invariant in order to study
rings to be generically Gorenstein, Gorenstein, or regular. Our first result is that
a complete local ring (R,m, k) is regular if and only if R is Gorenstein and a
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syzygy module of k has a cyclic direct summand R-module whose delta invariant
is equal to 1 and satisfies an extra condition (see Theorem 2.3). Our second result,
studies Cohen-Macaulay local rings with canonical modules which are Gorenstein
(see Theorem 2.4). Also, we study Cohen-Macaulay local rings with canonical
modules which are generically Gorenstein but not Gorenstein ( see Theorem 2.5)

Section 3 is devoted to presenting a generalization of [16, Theorem 2.3] (see
Corollary 3.2) and is devoted to study non-regular Gorenstein rings by means of
higher delta invariant (see Corollary 3.4).

Throughout, (R,m) is a commutative local Noetherian ring with maximal ideal
m and residue field k = R/m, and all modules are finite (i.e. finitely generated).

2. Generically Gorenstein, regular and Gorenstein rings

We recall the basic properties of the delta invariant.

Proposition 2.1 ([12, Corollary 11.26] and [4, Lemma 1.2]). Let M and N be
finite modules over a Gorenstein local ring (R,m, k). Then the following statements
hold true:

(i) δR(M ⊕N) = δR (M) + δR (N);

(ii) If there is a an R-epimorphism M −→ N , then δR (M) ≥ δR (N);

(iii) δR(M) ≤ µ(M);

(iv) δR (k) = 1 if and only if R is regular;

(v) δR(M) = µ(M) when proj.dimR(M) is finite.

Assume that (R,m, k) is a local ring with residue field k. In [7, Corollary 1.3],
Dutta presents a characterization for R to be regular in terms of the admitting a
syzygy of k with a free direct summand. Later on, Takahashi, in [14, Theorem 4.3],
generalized the result in terms of the existence of a syzygy module of the residue
field having a semidualizing module as its direct summand. Also Ghosh, Gupta
and Puthenpurakal in [8, Theorem 3.7], have shown that the ring is regular if and
only if a syzygy module of k has a non-zero direct summand of finite injective
dimension.

Now I investigate these notions by means of delta invariant. Denote by ΩiR(k)
the ith syzygy, in the minimal free resolution, of k.

Definition 2.2. An R-module X is said to satisfy the condition (∗) whenever, for
any X-regular element a, X/aX is indecomposable as R/aR-module.

Theorem 2.3. Let (R,m, k) be a complete local ring of dimension d. The following
statements are equivalent:

(i) R is a regular ring;
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(ii) R is a Gorenstein ring and ΩnR(k) has a cyclic R-module as its direct sum-
mand whose delta invariant is 1 and satisfies the property (∗), for some
n ≥ 0.

Proof. (i)⇒(ii). k = Ω0
R(k) fulfills our statement by Proposition 2.1.

(ii)⇒(i). Suppose that R is Gorenstein and, for an integer n ≥ 0, ΩnR(k) ∼=
X⊕Y for some R-modules X and Y such that X ∼= R/AnnR(X) with δR(X) = 1.
The case n = 0 implies that R is regular. So we may assume that n ≥ 1.

We proceed by induction on d. For the case d = 0, if m 6= 0 then Soc (R) 6= 0
and R/Soc (R) is maximal Cohen-Macaulay R-module with no free direct sum-
mand and so δR(R/Soc (R)) = 0. On the other hand, by [8, Lemma 2.1], Soc (R) ⊆
AnnR(ΩnR(k)) = AnnR(X ⊕ Y ) ⊆ AnnR(X). Therefore the natural surjection
R/Soc (R) −→ R/AnnR(X) ∼= X implies that 1 = δR(X) ≤ δR(R/Soc (R)) = 0
which is absurd. Hence m = 0 and R = R/m is regular.

Now we suppose that d ≥ 1 and the statement is settled for d − 1. As R is
Cohen-Macaulay, we choose an R-regular element y ∈ m \ m2. Hence y is ΩnR(k)-

regular and X-regular. We set (−) = (−) ⊗R R/yR. Note that X is a principal
R-module and that, by [15, Corollary 2.5] and Proposition 2.1, 1 = δR(X) ≤
δR(X) ≤ µ(X) = 1. Note that, by [14, Proposition 5.2] , we have

ΩnR(k) ∼= Ωn
R

(k)⊕ Ωn−1

R
(k).

Therefore we have X ⊕Y ∼= ΩnR(k) ∼= Ωn
R

(k)⊕Ωn−1

R
(k). But X is indecomposable

R-module so, by Krull-Schmit uniqueness theorem (see [11, Theorem 21.35]), X is
direct summand of Ωn−1

R
(k) or Ωn

R
(k). Now our induction hypothesis implies that

R is regular and so is R.

Over a Gorenstein local ring R, Proposition 2.1 (iii) states that the inequality
δR(M) ≤ µ(M).

In the following, we explore when equality holds true by means of Gorenstein
dimensions. A finite R-module M is said to be totally reflexive if the natural map
M −→ HomR(HomR(M,R), R) is an isomorphism and

ExtiR(M,R) = 0 = ExtiR(HomR(M,R), R)

for all i > 0. An R-module M is said to have Gorenstein dimension ≤ n, write
G-dimR(M) ≤ n, if there exists an exact sequence

0 −→ Gn −→ · · · −→ G1 −→ G0 −→M −→ 0 ,

of R modules such that each Gi is totally reflexive. Write G-dimR(M) = n if
there is no such sequence with shorter length. If there is no such finite length
exact sequence, we write G-dimR(M) =∞.

Our result indicates the existence of a finite length R- module M such that
the equality δR(M) = µ(M) holds true may put a strong condition on R. More
precisely:

In [14, Theorem 6.5], it is shown that the local ring (R,m, k) is Gorenstein if
and only if ΩnR(k) has a G-projective summand for some n, 0 ≤ n ≤ depthR+ 2 .
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Theorem 2.4. Let (R,m) be a local ring. The following statements are equivalent:

(i) R is a Gorenstein ring;

(ii) There exists an R–module M such that δR(M) = µ(M), mnM = 0, and
G-dimR(mn−2M cm) <∞ for some integer n ≥ 2.

Proof. Assume first that R is Gorenstein and that x is a maximal R–regular se-
quence. Thus there is a surjective homomorphism R/mt −→ R/xR for some
integer t ≥ 1. As proj.dim (R/xR) <∞, Proposition 2.1 implies that

1 = µ(R/xR) = δR(R/xR) ≤ δR(R/mt) ≤ µ(R/mt) = 1.

Therefore δR(R/mt) = 1 = µ(R/mt). Now by setting n = t + 1 ≥ 2, the module
M := R/mt trivially justifies claim (ii).

For the converse, consider the natural exact sequence

0 −→ (M cm + mM)/mM −→M/mM −→ M/M cm

m(M/M cm)
−→ 0 .

Now the equality δR(M) = µ(M) implies that M cm ⊆ mM . As mnM = 0,
mn−2M cm is vector space. Our assumption G-dimR(mn−2Mcm) <∞ implies that
G-dimR(R/m) <∞. Hence R is Gorenstein by [6, Theorem 1.4.9].

Here is our observation which shows how one may characterize a Cohen-
Macaulay local ring with canonical module to be generically Gorenstein by the
δ-invariant.

Theorem 2.5. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0
with canonical module ωR. Then the following statements are equivalent:

(a) The ring R is a generically Gorenstein ring but not Gorenstein;

(b) There exists an ideal I of R such that:

(i) δR (R/I) = 1,

(ii) htR (I) = 1,

(iii) There exists a commutative diagram

R //

∼=
��

R/I //

∼=
��

0

HomR(I, ωR) // Ext1
R(R/I, ωR) // 0

with isomorphism vertical maps.
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Proof. (a)⇒(b). Assume that R is generically Gorenstein and that ωR � R. As
ωR is an ideal of R, we consider the exact sequence

0 −→ ωR −→ R
π−→M −→ 0 ,

where M := R/ωR. Let L be a maximal Cohen-Macaulay R-module with no
free direct summands, φ : L −→ M an R-homomorphism. Applying the functor
HomR(L,−) gives the long exact sequence

0 −→ HomR(L, ωR) −→ HomR(L,R) −→ HomR(L,M) −→ Ext1
R(L, ωR) .

As Ext1
R(L, ωR) = 0, there exists α ∈ HomR(L,R) such that π ◦ α = φ. If there

exists x ∈ L such that φ(x) /∈ mM then we have α(x) /∈ m, i.e. α(x) is a unit and
so α is an epimorphism which means L has a free direct summand which is not
the case. Hence φ(L) ⊆ mM . Therefore M cm ⊆ mM and we have

δR(M) = µ(M/M cm) = vdim k(M/(M cm + mM)) = µ(M/mM) = µ(M) = 1.

Moreover, we have Ext1
R (R/ωR, ωR) ∼= R/ωR since R/ωR is Gorenstein ring of

dimension d− 1, and HomR(ωR, ωR) ∼= R, htR (ωR) = 1. Now that the statement
(iii) follows naturally.

(b)⇒(a). As ht (I) = 1, I * ∪
p∈Ass (R)

p and so HomR(R/I, ωR) = 0. Hence,

naturally, we obtain the exact sequence

0 −→ HomR(R,ωR) −→ HomR(I, ωR) −→ Ext1
R(R/I, ωR) −→ 0 .

One has the following commutative diagram

0 // I // R //

∼=
��

R/I //

∼=
��

0

0 // HomR(R,ωR) // HomR(I, ωR) // Ext1
R(R/I, ωR) // 0.

Therefore we obtain, I ∼= ωR which means R is generically Gorenstein.
To see the final claim, assume contrarily that R is Gorenstein. Hence ωR ∼= R

and HomR(R,ωR) ∼= HomR(I, ωR). Now, the commutative diagram (iii) implies
that R/I = 0 so δR(R/I) = 0 which is a contradiction.

The notion of linkage of ideals in commutative algebra is invented by Peskine
and Szpiro [13]. Two ideals I and J in a Cohen-Macaulay local ring R are said to
be linked if there is a regular sequence a in their intersection such that I = (a) :R J
and J = (a) :R I. They have shown that the Cohen-Macaulay-ness property is
preserved under linkage over Gorenstein local rings and provided a counterexample
to show that the above result is no longer true if the base ring is Cohen-Macaulay
but not Gorenstein. In the following, we investigate the situation over a Cohen-
Macaulay local ring with canonical module and generalize the result of Peskine
and Szpiro [13].
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Theorem 2.6. Let (R,m) be a Cohen-Macaulay local ring of dimension d with
canonical module ωR. Suppose that I and J are two ideals of R such that

0 :ωR
I = JωR, 0 :ωR

J = IωR, G-dimR/I(ωR/IωR) <∞

and also G-dimR/J(ωR/JωR) < ∞ (e.g. R is Gorenstein), then R/I is Cohen-
Macaulay R-module if and only if R/J is Cohen-Macaulay R-module.

Proof. Assume that R/I is Cohen-Macaulay. Set t := grade (I,R) so that t =
htR(I) = dimR − dimR/I. If t > 0 then there exists an R-regular element
x in I. As ωR is maximal Cohen-Macaulay, x is also ωR-regular which implies
that JωR = (0 :ωR

I) = 0. Hence J = 0 which is absurd. So assume that
t = 0 which implies that R/I is maximal Cohen-Macaulay R–module so that
ExtiR(R/I, ωR) = 0 for all i ≥ 1. Apply the functor HomR(−, ωR) on a minimal
free resolution

· · · −→
t2
⊕R −→

t1
⊕R −→ R −→ R/I −→ 0

of R/I, to obtain the induced exact sequence

0 −→ ωR/JωR −→
t1
⊕ωR −→

t2
⊕ωR −→ · · · .

Splitting into the short exact sequences

0 −→ ωR/JωR −→
t1
⊕ωR −→ C1 −→ 0

0 −→ C1 −→
t2
⊕ωR −→ C2 −→ 0

0 −→ C2 −→
t3
⊕ωR −→ C3 −→ 0

...

where Ci = Im fi+1 for i ≥ 1, we obtain depthR(ωR/JωR) = d. Note that
G-dimR/J(ωR/JωR) <∞, implies that d = depthR/J(ωR/JωR) ≤ depthR/J(R/J).
Thus R/J is also a maximal Cohen-Macaulay R-module.

To see some applications of Theorem 2.6, we refer to the nth δ-invariant of an
R–module M as in the paragraph just after [2, Proposition 5.3].

Corollary 2.7. Let (R,m) be a Cohen-Macaulay local ring of dimension d with
canonical module ωR. Let I and J be ideals of R.

(a) If 0 :ωR
I = JωR and R/I is a maximal Cohen-Macaulay R-module, then

δiR(JωR) = 0 for all i ≥ 1.

(b) If 0 :ωR
I = JωR, 0 :ωR

J = IωR, R/I is a maximal Cohen-Macaulay
R-module, and G-dimR/J(ωR/JωR) <∞, then δiR(IωR) = 0 for all i ≥ 1.



A study of some special rings by delta invariant 169

Proof. (a). A similar argument as in the proof of Theorem 2.6, implies that
depthR(ωR/JωR) = d and ωR/JωR is maximal Cohen-Macaulay. By the para-
graph just after [2, Proposition 5.3], we get δiR(JωR) = 0 for all i ≥ 1.

(b). By Theorem 2.6, R/J is maximal Cohen-Macaulay R-module so, by part
(a), δiR(IωR) = 0 for all i ≥ 1.

3. Gorenstein non-regular rings

For an ideal I of a ring R, we set G := grI(R) as the associated graded ring of R
with respect to I.

Lemma 3.1. Assume that (R,m) is a local ring and that I is an m-primary ideal
of R such that Ii/Ii+1 is a free R/I-module for all i ≥ 0. Suppose that x ∈ I \ I2

such that x∗ := x+I2 is a G-regular element in G. Set R̄ = R/xR. Then, for any
n ≥ 0, we have ΩnR(Im)⊗R R̄ ∼= Ωn

R̄
(Im−1/Im)⊕ Ωn

R̄
(Im/xIm−1) for all m ≥ 1.

Proof. As x∗ is a G-regular element in G, the map Im−1/Im
x·−→ Im/Im+1 is

injective for all m ≥ 1, to prove this claim, suppose that t+ Im ∈ Im−1/Im such
that xt ∈ Im+1. Therefore (x + I2)(t + Im) = xt + Im+1 = 0G. As x∗ is a G
regular element in G, then t ∈ Im. Let m ≥ 1. We prove the claim by induction
on n. I claim that Im/xIm ∼= Im−1/Im⊕ Im/xIm−1, to prove this claim, consider
the following commutative diagram

0 // Im−1/Im
x· // Im/xIm //

��

Im/xIm−1 //

��

0

0 // Im−1/Im
x· // Im/Im+1 // Im/(xIm−1 + Im+1) // 0

.

As I is a m primary ideal of R, we get dim (R/I) = dim (R/
√
I) = dim (R/m) = 0.

Therefore the injective map Im−1/Im
x.−→ Im/Im+1 splits. Therefore the first row

of the above diagram splits. Thus

Ω0
R(Im)⊗R R̄ = Im ⊗R R̄

∼= Im/xIm

∼= Im−1/Im ⊕ Im/xIm−1

= Ω0
R̄

(Im−1/Im)⊕ Ω0
R̄

(Im/xIm−1) ,

which proves the claim for n = 0.
Now we assume that n > 0 and the claim is settled for integers less than n.

x is a regular element on both R and Ωn−1
R (Im) (since for all m ≥ 1 the map

Im−1/Im
x·−→ Im/Im+1 is injective).

Therefore a minimal free cover 0 −→ ΩnR(Im) −→ F −→ Ωn−1
R (Im) −→ 0 of

Ωn−1
R (Im) gives a minimal cover

0 −→ ΩnR(Im)⊗R R̄ −→ F ⊗R R̄ −→ Ωn−1
R (Im)⊗R R̄ −→ 0
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of Ωn−1
R (Im) ⊗R R̄ over R̄. Hence we get ΩnR(Im) ⊗R R̄ ∼= Ω1

R̄
(Ωn−1

R (Im) ⊗R R̄).
By the induction hypothesis we have

ΩnR(Im)⊗R R̄ ∼= Ω1
R̄

(Ωn−1
R (Im)⊗R R̄)

∼= Ω1
R̄

(Ωn−1
R̄

(Im−1/Im)⊕ Ωn−1
R̄

(Im/xIm−1))

∼= Ωn
R̄

(Im−1/Im)⊕ Ωn
R̄

(Im/xIm−1).

It is shown by Yoshino [16, Theorem 2.3] that, in a complete non-regular Goren-
stein local ring (R,m) with depth (grm(R)) ≥ d− 1, one has δnR(R/mm) = 0 for all
positive integers n and m, where grm(R) denote the associated graded ring of R
with respect to m. Now by following theorem which is a generalization of [16, The-
orem 2.3], we approach our result (Corollary 3.4). Set depth (G) = grade (G+, G)
where G+ is the ideal which is generated by all elements with positive degree in
G.

Theorem 3.2. Suppose that (R,m) is a Gorenstein local ring of dimension d with
infinite residue field R/m. Assume that I is an m-primary ideal of R such that:

(i) For any i ≥ 0, Ii/Ii+1 is free R/I-module, and

(ii) for any R-regular sequence x = x1, · · · , xs in I with

xi + (x1, · · · , xi−1) ∈ (I/(x1, · · · , xi−1)) \ (I/(x1, · · · , xi−1))2, 1 ≤ i ≤ s,

we have δnR/xR (R/I) = 0 for all n ≥ 0.

Then δnR(R/Im) = 0 for all integers n ≥ d + 1 − depthG and all m ≥ 1. In
particular, if depthG = d− 1, then δnR(R/Im) = 0 for all n ≥ 2 and all m ≥ 1.

Proof. Let m ≥ 1 and t = depth (G). If d = 0 the result is trivial by [3, Corollary
1.2.5]. We assume that d > 0 and n ≥ d+ 1− t.

If t = 0 then n ≥ d + 1 and the result is clear (since ΩnR(R/Im) is a maximal
Cohen-Macaulay module by [5, Exercises 2.1.26] and ΩnR(R/Im) has a no free
direct summand by [3, Corollary 1.2.5]). Now assume that d > 0 and t > 0. As
R/m is infinite implies that I has a superficial element x ∈ I \ I2 ([10, Proposition
8.5.7]), and we get x∗ := x + I2 is a G-regular element on G by [9, Lemma 2.1].

Then the map Im−1/Im
x·−→ Im/Im+1 is injective. Set R̄ = R/xR and Ī = I/xR

and let n ≥ d− t+ 1. By Lemma 3.1 we have

Ωn−1
R (Im)⊗R R̄ ∼= Ωn−1

R̄
(Im−1/Im)⊕ Ωn−1

R̄
(Im/xIm−1).

On the other hand, x is Ωn−1
R (Im)-regular; therefore by [15, Corollary 2.5] we have

δR(Ωn−1
R (Im) ≤ δR̄(Ωn−1

R (Im)⊗R R̄).
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Therefore

δnR(R/Im) = δR(Ωn−1
R (Im)

≤ δR̄(Ωn−1
R (Im)⊗R R̄)

= δR̄(Ωn−1
R̄

(Im−1/Im)⊕ Ωn−1
R̄

(Im/xIm−1))

= δR̄(Ωn−1
R̄

(Im−1/Im)) + δR̄(Ωn−1
R̄

(Im/xIm−1))

= δn−1
R̄

(Im−1/Im) + δn−1
R̄

(Im/xIm−1).

(3.1)

The injective map Im−1/Im
x·−→ Im/Im+1 implies, by induction on m, that

xIm−1 = xR ∩ Im so we get (Ī)m = Im/(xR ∩ Im) = Im/xIm−1; therefore

δnR(R/Im) ≤ δn−1
R̄

(Im/xIm−1) + δn−1
R̄

(Im−1/Im)

= δn−1
R̄

((Ī)m) + δn−1
R̄

(Im−1/Im) .

Note that, by assumption, Im−1/Im ∼=
a
⊕R/I for some non-negative integer a, and

hence, δn−1
R̄

(Im−1/Im) = a.δn−1
R̄

(R/I) = a.0 = 0.

If d = 1 then dim (R̄) = 0 so δn−1
R̄

((Ī)m) = δR̄(Ωn−1
R̄

((Ī)m)) = δn
R̄

(R̄/(Ī)m) = 0
hence the result is clear.

Suppose that d ≥ 2. As n ≥ d− t+ 1 = (d− 1)− (t− 1) + 1, when t = 1, we
have n ≥ (d− 1) + 1 hence δn

R̄
(R̄/(Ī)m) = 0 , therefore δnR(R/Im) = 0.

Set Ḡ = grR̄(Ī). If t ≥ 2 then depth (Ḡ) = depth (G/x∗G) = t − 1 > 0. As
R̄/m̄ ∼= R/m is infinite and dim (R̄) > 0 and depth (Ḡ) > 0, by [9, Lemma 2.1],
there exists ȳ = y + xR ∈ Ī \ Ī2 such that ȳ∗ is Ḡ-regular. Therefore the map

Īm−1/Īm
ȳ−→ Īm/Īm+1 is injective. On the other hand, we have (Ī)m/(Ī)m+1 ∼=

Im/(xIm−1 + Im+1) and Im/(xIm−1 + Im+1) is a direct summand of Im/Im+1.

Therefore (Ī)m/(Ī)m+1 is a free R̄/Ī-module for any i ≥ 1. Set ¯̄R = R̄/ȳR̄

and ¯̄I = Ī/ȳĪ. Then by the same argument as above we have δn
R̄

(R̄/Īm) ≤
δn¯̄R( ¯̄R/( ¯̄I)m) + δn−1

¯̄R
(⊕R/I).

By our assumption δn−1
¯̄R

(⊕R/I)) = δn−1
R/(x,y)(⊕R/I)) = 0. When d = 2,

dim ( ¯̄R) = 0 and so δn¯̄R( ¯̄R/( ¯̄I)m) = 0 and the result is clear. Suppose that d ≥ 3.

As n ≥ d− t+ 1 = (d− 2)− (t− 2) + 1, if t = 2 then δn¯̄R( ¯̄R/( ¯̄I)m) = 0, therefore

(3.1) implies that

δnR(R/Im) ≤ δn
R̄

(R̄/(Ī)m) + δn−1
R̄

(⊕R/I))

≤ δn¯̄R( ¯̄R/( ¯̄I)m) + δn−1
R/(x,y)(⊕R/I) + δn−1

R/xR(⊕R/I)

= 0.

For the case t ≥ 3, we proceed by the same argument as above to find
δnR(R/Im) = 0.

Remark 3.3. Let (R,m) be a local ring. The ring R is regular if and only if R is
Gorenstein and δR(M) > 0 for all non-zero finitely generated R-module M .
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Proof. Suppose that R is regular. Assume contrarily that there exists a non-zero
R–module M such that δR(M) = 0. By definition of delta, there exists a surjective
homomorphismX −→M such thatX is maximal Cohen-Macaulay R-module with
no free direct summand. On the other hand, as R is regular, proj.dimR(X) = 0
and so X is free a R-module which is not the case.

Conversely, by assumption and Proposition 2.1, 1 ≤ δR(R/m) ≤ µ(R/m) = 1.
Hence, by Proposition 2.1, R is regular.

Corollary 3.4. Suppose that (R,m) is a Gorenstein local ring of dimension d
such that R/m is infinite. Consider the following statements:

(a) R is not regular;

(b) There exists an m-primary ideal I of R such that

(i) Ii/Ii+1 is free R/I-module for any i ≥ 0, and

(ii) for any R-regular sequence x = x1, · · · , xs in I such that

xi+(x1, · · · , xi−1) ∈ (I/(x1, · · · , xi−1))\(I/(x1, · · · , xi−1))2, 1 ≤ i ≤ s,

one has δnR/xR (R/I) = 0 for all n ≥ 0;

(c) There exists a non-zero ideal I of R such that

δnR(R/Im) = 0 for all integers n ≥ d− depth (G) + 1 and m ≥ 1.

Then the implications (a)⇒(b) and (b)⇒(c) hold true. If depth (G) > depthR(R/I),
the statements (a), (b), and (c) are equivalent.

Proof. (a)⇒(b). We show that I = m works. Assume that x = x1, · · · , xs
is R-regular sequence in m such that x1 ∈ m \ m2 and xi + (x1, · · · , xi−1) ∈
(m/(x1, · · · , xi−1)) \ (m/(x1, · · · , xi−1))2. Set

R̄ = R/(x1, · · · , xs−1)R , m̄ = m/(x1, · · · , xs−1)R

and x̄s = xs + (x1, · · · , xs−1). As R̄/x̄sR̄ is not regular so by [2, Proposition 5.7]
we have, for all n ≥ 0,

δnR/(x1,··· ,xs)R (R/m) = δn
(R̄/x̄sR̄)

(R/m)

= δn
(R̄/x̄sR̄)

(
R̄/m̄

)
= δn

(R̄/x̄sR̄)

(
(R̄/x̄sR̄)/(m̄/x̄sR̄)

)
= 0.

(b)⇒(c). Apply Theorem 3.2.
(c)⇒(a). We assume that R is a regular ring. By our assumption we get

δnR(R/I) = 0 for all integers n ≥ d − depth (G) + 1. Therefore δR(ΩnR(R/I)) = 0
for all integers n ≥ d − depth (G) + 1 and by Remark 3.3 we have ΩnR(R/I)) = 0
for all integers n ≥ d − depth (G) + 1. Then proj.dimR(R/I) ≤ d − depth (G).
On the other hand Auslander-Buchsbaum formula implies that d−depthR(R/I) =
proj.dimR(R/I) ≤ d−depth (G) which contradicts that depth (G) > depthR(R/I).
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Lemma 3.5. Assume that (R,m) is a 1-dimensional Gorenstein local ring and
that I is an m-primary ideal of R such that µR(I) ≥ 2. Then δR(In/In+1) = 0
and δmR (R/In) = 0 for all positive integers n and m.

Proof. The assumption dim (R/I) = 0 and the exact sequence

0 −→ I −→ R −→ R/I −→ 0

imply that I is maximal Cohen-Macaulay as an R–module. As µR(I) ≥ 2, I has no
free direct summand and so δR(I) = 0. For a finite R-module M , the natural epi-

morphism
µR(M)
⊕ I −→ IM , by Proposition 2.1, implies that δR(IM) ≤ δR(

t
⊕I) = 0

which gives δR(IM) = 0. Let n and m be positive integers. As ΩmR (R/In) is a
maximal Cohen-Macaulay R-module for all m ≥ 1, we have δmR (R/In) = 0 for all
m > 1 (see the paragraph just after [2, Proposition 5.3]). For the case m = 1 we
have δ1

R(R/In) = δR(Ω1
R(R/In)) = δR(In) = δR(IIn−1) = 0.

For an R-regular element x in m, we set (−) = (−)⊗R R/xR. Recall from the
first paragraph of Section 5 of [2] that an R-module M is called weakly liftable on
R if M is a direct summand of N for some R-module N . The following result will
be used in characterizing a ring to be non-regular Gorenstein of dimensions 2.

Proposition 3.6. Assume that (R,m) is a 2-dimensional Gorenstein local ring.
Then the following statements are equivalent:

(a) R is not regular;

(b) There exists an m-primary ideal I of R such that

(i) µR(I) ≥ 3,

(ii) I/I2 is a free R/I-module,

(iii) There exists R-regular element x ∈ I \ I2 such that the natural map

R/I
x·−→ I/I2 is injective and δR/xR (R/I) = 0;

(c) There exists a non-zero ideal I of R such that δnR(R/I) = 0 for all positive
integers n ≥ 1.

Proof. (a)⇒(b). We set I = m. Choose an R-regular element x ∈ m \ m2. Hence
the map R/m −→ m/m2, with a + m  ax + m2, is injective. As R/xR is not
regular, δR/xR (R/m) = δR/xR ((R/xR)/(m/xR)) = 0 by [2, Proposition 5.7] and
also it is clear m/m2 is a free R/m module.

(b)⇒(c). Set R = R/xR and assume that n ≥ 1. As dim (R) = 1 and µR̄(Ī) ≥
2, by Lemma 3.5 and assumption (iii), we have δR(Ωn

R
(R/I)) = δR(Ωn

R
(R/I)) = 0

and δR(Ωn−1

R
(R/I)) = δR(Ωn−1

R
(R/I)) = 0. On the other hand, dimR/I = 0 and

the exact sequence

0 −→ R/I −→ I/I2 −→ I/(xR+ I2) −→ 0

imply that proj.dimR/I(I/(xR + I2)) = 0 by Auslander-Buchsbaum formula.
Therefore, the commutative diagram
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0 −→ R/I
x·−→ I/xI −→ I/xR −→ 0

‖ ↓ ↓
0 −→ R/I

x·−→ I/I2 −→ I/(xR+ I2) −→ 0

with exact rows implies that the upper row splits. Hence R/I, as R̄–module, is
weakly liftable on R̄.

Thus, by [14, Proposition 5.2], we obtain ΩnR(R/I) ∼= Ωn
R

(R/I)⊕ Ωn−1

R
(R/I).

Therefore

δnR(R/I) = δR(ΩnR(R/I)) ≤ δR(ΩnR(R/I))

= δR(Ωn
R

(R/I)) + δR(Ωn−1

R
(R/I))

= 0 + 0

= 0.

(c)⇒(a). By assumption δR(I) = 0, therefore R is not regular.
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[14] Takahashi, R.: Syzygy modules with semidualizing or G-projective summands. J. Algebra

295, 179–194 (2006)
[15] Yoshida, K.: A note on minimal Cohen–Macaulay approximations. Commun. Algebra 24,

235–246 (1996)



A study of some special rings by delta invariant 175

[16] Yoshino, Y.: On the higher delta invariants of a Gorenstein local ring. Proc. Amer. Math.
Soc. 124, 2641–2647 (1996)

Received: 16 July 2020/Accepted: 23 March 2021/Published online: 27 March 2021

Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.

yaserkhalatpour@gmail.com

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

	Introduction
	 Generically Gorenstein, regular and Gorenstein rings
	 Gorenstein non-regular rings

