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Large solutions of semilinear elliptic equations with a Hardy
potential

Catherine Bandle

In memory of my dear friend and long-time collaborator Assunta Pozio

Abstract. Semilinear elliptic problems with solutions blowing up at the boundary are consid-

ered. The effect of a Hardy potential with a boundary singularity is discussed. Positive potentials

reinforce the solution to blow up whereas negative prevent it. For the standard nonlinearities

and sufficiently large potentials there exist solutions which are comparable to the blowing up

solutions of the problem without Hardy potential. Near the boundary they depend only on the

distance to the boundary, and the first order approximation is independent of the geometry. The

precise estimates imply that those solutions are unique. The main tools used in this paper are

the method of upper and lower solutions and boundary estimates for the blowup solutions without

Hardy potential.

1. Introduction

Let Ω be bounded smooth domain in Rn and denote by δ(x) the distance from
x ∈ Ω to the boundary. We consider problems of the type∆u+

µ

δ2(x)
u = f(u) in Ω,

u(x)→∞ as x→ ∂Ω,

(1.1)

where f : R→ R+ is a continuous and increasing function. The expression
µ

δ2(x)
u

is called the Hardy potential.
It is well-known that the problem without Hardy potential{

∆UP = f(UP ) in Ω,

UP (x)→∞ as x→ ∂Ω,
(1.2)

possesses a solution provided the nonlinearity satisfies the Keller–Osserman con-
dition ∫ ∞ 1√

F (s)
ds <∞ where F ′ = f. (F-1)
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The solutions of Problem (1.2) are called large solutions because they dominate all
bounded solutions. The boundary behavior of large solutions has been the object
of many studies, cf. for instance [1, 3, 2, 7, 11] and the references cited therein. It
turns out that the blowup rate is given by

ψ(UP (x))

δ(x)
→ 1 as δ(x)→ 0, (1.3)

where

ψ(t) =

∫ ∞
t

ds√
2F (s)

.

If in addition

lim inf
t→∞

ψ(βt)

ψ(t)
> 1, ∀β ∈ (0, 1) (F-2)

holds, then

lim
x→∂Ω

UP (x)

φ(δ(x))
= 1, uniformly on ∂Ω, (1.4)

where φ = ψ−1(δ). It solves the one-dimensional problem

φ′′(x) = f(φ(x)), φ(x)→∞ as x→ 0.

The functions f for which (F-2) holds will be called strongly superlinear nonlinear-
ities. Typical examples of strongly superlinear nonlinearities are et and tp, p > 1.

Problem (1.2) with weakly superlinear nonlinearities for which (F-2) is not
satisfied, like f(t) = t(log t)α, α > 2, has been treated in [7]. A similar boundary
behavior has been observed there too.

In Problem (1.1) there is near the boundary a competition between the non-

linearity f(t) and the Hardy potential
µ

δ2
u. In [6] the following theorem has been

derived:

Let ∂Ω ∈ C2+γ for some γ ∈ (0, 1), f(t) = tp, p > 1 and −c∗ < µ < 0 where

c∗ :=
2(p+ 1)

(p− 1)2
.

For any c ∈ C2+γ(∂Ω), c ≥ 0, there exists a unique solution of (1.1) such that

lim
δ(x)→0

(
u(x)

δ(x)β−
− c(x∗)

)
= 0 , (1.5)

where x∗ ∈ ∂Ω is the projection of x on the boundary.

This solution is governed by the Hardy potential.
The aim of this paper is to study solutions governed by the nonlinearity. For

instance we prove for f(t) = tp and for −c∗ < µ that Problem (1.1) has a solution
for which

lim
x→∂Ω

u(x)

δ−
2
p−1 (x)

= (c∗ + µ)
1
p−1 .
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It is larger than than those mentioned above. For positive µ this result was already
obtained by Du and Wei [10] who studied the problems with nonlinearities of the

type
up

δσ
.

A negative Hardy potential can also prevent the existence of a solution to (1.1)
for example if f(t) = et as it was shown in [5].

Our main interest is to prove the existence and the boundary behavior of
solutions u to Problem (1.1) which are comparable to UP in the sense that 0 <
aUP ≤ u ≤ bUP , a < b. A similar investigation has been carried out in [15]
where mostly the case of positive µ has been considered. The assumptions on
the nonlinearities are different. However for special cases the results coincide with
ours.

The paper is organized as follows. Section 2 contains the major tools used in
connexion with boundary singularities. In Section 3 the existence of large solutions
is proved for µ > 0 whereby the monotone dependence of the domain plays a crucial
role. The existence in the case µ < 0 is treated in Section 4. It applies to a smaller
class of nonlinearities. Section 5 is concerned with the asymptotic behavior leading
to a short discussion of the uniqueness in Section 6.

2. Preliminaries

It is well-known that Problem (1.2) has a maximal and a minimal large solution
which are ordered uP ≤ UP .

The minimal large solution is obtained as limn→∞ un where un solves ∆un =
f(un) in Ω, un = n on ∂Ω. For the construction of the maximal solution we
consider a sequence Ω1 ⊆ Ω2 ⊆ · · · ⊆ Ω, such that

⋃∞
1 Ωn = Ω. Let Un be a large

solution in Ωn. In view of the Keller–Osserman a priori bound for large k the
sequence {Un}n>k is uniformly bounded in any subset of Ω. Then by compactness
there is a subsequence which converges to the maximal solution U .

The uniqueness of large solutions has been studied in [3] and in [8]. In the
last reference it was shown that in the ball there is a unique large solution if f is
increasing and satisfies (F-1).

In connexion with Problem (1.1) the Hardy constant

CH(Ω) := inf
K

∫
Ω

|∇v|2 dx, K =

{
v ∈W 1,2

0 (Ω) :

∫
Ω

δ−2(x)v2(x) dx = 1

}
plays a crucial role. It turns out that for Lipschitz domains 0 < CH(Ω) ≤ 1/4. For
convex domains CH(Ω) = 1/4 and for non-convex domains it can be arbitrarily
small, cf. [9, 12].

As a consequence the problem

∆u+
µ

δ2(x)
u = f(u), u ∈W 1,2

0 (Ω) (2.1)

has no solution for µ < CH(Ω).
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A function u ∈W 1,2(Ω) is called a super solution if

∆u+
µ

δ2(x)
u ≤ f(u) in Ω.

Similarly u is a sub solution if the inequality sign is reversed.

The following comparison principle will be useful for our arguments.

comparison principle. (i) Let µ ≤ CH(Ω) and let f(t) be increasing. If u and
u are sub and super solutions in a domain ω ⊂ Ω such that u ≤ u on ∂ω, then
u ≤ u in ω.

(ii) If µ > CH(Ω), then assertion (i) remains valid provided f(t) is increasing,
convex with f(0) = 0 and u > 0.

The proof of (i) is standard and follows by testing the inequality ∆(u − u) +
µ
δ2 (u−u) ≤ f(u)−f(u) with (u−u)+. The second assertion (ii) has been proved in
[4] for power nonlinearities. Its extension to to convex functions is immediate. A
related statement is found in [10]. The loss of positivity of the operator ∆ + µ/δ2

for large µ is compensated by the nonlinearity.

The presence of the Hardy potential gives rise to a kind of threshold which is
a special case of the Phragmen-Lindelöf alternative derived in [4]. It applies to
positive subharmonic functions satisfying

∆h+
µ

δ2(x)
h ≥ 0 in {x ∈ Ω : δ(x) ≤ δ0} for some positive δ0.

Phragmen-Lindelöf principle. Assume that µ < 1/4 and define

β± =
1

2
±
√

1

4
− µ.

For any positive subharmonic function h either of the following alternatives holds:

lim sup
x→∂Ω

h

δβ−
> 0 or lim sup

x→∂Ω

h

δβ+
<∞.

For µ < CH(Ω) this observation forces a solution of (1.1) to behave like

lim sup
x→∂Ω

u

δβ−
> 0.

Our existence proofs are based on the classical method of sub and super solu-
tions which in this context has been used in [4] for power nonlinearities.

Method of sub and super solutions. If there exist a sub and a super solution
of (1.1) such that u(x) ≤ u(x) in Ω, then there exists a solution u ≤ u ≤ u.
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3. Existence in the case µ > 0

Throughout this section we assume (F − 1). We shall construct sub and super
solutions by means of UP . For the sub solution we need the assumption

UP (x) > 0 in Ω. (3.1)

This is the case whenever f(0) = 0 or if the domain is not too large. If f(t) = et

and UP changes sign, we replace UP by UP + c and et by e−cet.

For µ > 0, u = UP of (1.2) is a sub solution. We are looking for a super
solution of the form u = b(UP + C), where b > 1 and C > 0 will be determined
later. It has to satisfy the inequality

∆bUP +
µ

δ2
b(UP + C) ≤ f(b(UP + C)) in Ω,

or equivalently
µ

δ2
≤ f

(
b(UP + C)

)
b(UP + C)

− f(UP )

UP + C
in Ω. (3.2)

Define

h(t) :=
f(t)

t

and assume that it satisfies the condition

h(t) is monotone increasing for t > t0 ≥ 0. (H-1)

The constant C is now chosen so large that UP (x) + C > t0.
Consider first strongly superlinear nonlinearities f satisfying condition (F−2).

By (1.4) there exists for given ε > 0 a small number δ0 > 0 such that

(1− ε)φ(δ) ≤ UP (x) ≤ (1 + ε)φ(δ) in Ωδ0 := {x ∈ Ω : dist{x, ∂Ω} < δ0}.

Hence if there exist b > 1 such that

µ

δ2
≤ h[b(1− ε)φ(δ) + bC]− h[(1 + ε)φ(δ) + C] in Ωδ0 , (3.3)

then (3.2) holds in Ωδ0 and b(UP + C) is a super solution. We claim that this is
the case when h satisfies the additional condition:

for any t ≥ t0,
h(bt)

h(t)
= γ(b)→∞ as b→∞. (H-2)

This can be seen as follows. Set ζ = (1 + ε)φ+ C. Then (1− ε)φ+ C ≥ ( 1−ε
1+ε ) ζ.

By (H-1) and (H-2)

h[b((1− ε)φ+C)]−h(ζ) ≥ h
(
b

1− ε
1 + ε

ζ

)
−h(ζ) ≥

{
γ

(
b

1− ε
1 + ε

)
− 1

}
h(ζ), (3.4)
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From (1.4) we have

δ =

∫ ∞
φ

dt√
2F (t)

>

∫ ζ

φ

dt√
2F (t)

and by (H-1)

2(F (t)− F (t0)) = 2

∫ t

t0

h(s)s ds ≤ h(t)(t2 − t20).

Choosing t sufficiently large we obtain 2F (t) ≤ h(t)t2. Let φ(t) ≥ t0, then

δ >
1√
h(ζ)

∫ ζ

φ

ds

s
=

log ζφ−1√
h(ζ)

⇐⇒ h(ζ) ≥ (log(1 + ε+ C/φ))2

δ2
.

The constant b in (3.4) can be chosen so large that{
γ

(
b

1− ε
1 + ε

)
− 1

}
h(ζ) ≥ µ

δ2
.

Then (3.3) is satisfied and b(UP (x) + C) is a super solution in Ωδ0 . By possibly
increasing b we can achieve that u = b(UP + C) is a super solution in the whole
domain. Since u ≥ u = UP , the method of sub and super solutions leads to

Theorem 3.1. Let µ > 0 and assume (F-1)-(F-2),(H-1),(H-2) and (3.1). Then
Problem (1.1) possesses a solution such that for b sufficiently large

UP (x) ≤ u ≤ b(UP + C).

We now consider the weakly superlinear nonlinearity

f(t) = t(log t)α, α > 2. (3.5)

The Keller-Osserman condition (F-1) is satisfied. However (F-2) does not hold. In
[7] it was shown that the large solution of (1.2) satisfies

lim
δ→0

UP (x)

exp
(
σ
δ

)σ = e1/2,

where σ = 2
α−2 .

Since UP is positive we can use it as a sub solution. As before we look for a
super solution of the form u = bUP . Write for short

v := exp

[(σ
δ

)σ
+

1

2

]
= expA(δ).

Then UP satisfies in Ωδ0 ,

(1− ε)v ≤ Up ≤ (1 + ε)v.
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For small δ ≤ δ0
h(bUP )− h(UP ) ≥(log b(1− ε)v)α − (log(1 + ε)v)α

={log b(1− ε) +A(δ)}α − {log(1 + ε) +A(δ)}α.

Since α > 2, we have −σ(α− 1) = −2− σ < −2 and therefore

h(bUP )− h(UP ) ≥ g(b)δ−σ(α−1) ≥ g(b)δ−2 in Ωδ0 .

Since h(t) is monotone, (3.2) holds in Ω for sufficiently large b, b UP is therefore a
super solution. Moreover by the positivity of UP , b UP ≥ UP . This proves

Corollary 3.2. Assume (F-1) and (3.5). Then Problem (1.1) has a solution
UP ≤ u < bUP for b sufficiently large.

Remark 3.3. The corollary is valid for any nonlinearity f which is asymptotically
equal to t(log t)α in the sense that

lim
t→∞

t(log t)α

f(t)
= 1 .

This is due to the fact that the large solutions UP have the same boundary be-
havior.

4. Existence in the case µ < 0.

Let UP be the maximal solution of (1.2). If UP is negative in a subdomain of Ω,
we add a constant C such that UP + C > 0. Then u = UP is a super solution
of (1.1). The comparison principle implies that any solution u of (1.1) satisfies
u ≤ u. On the other hand it follows from Phragmen-Lindelöf’ s principle that

lim sup
x→∂Ω

u

δβ−(x)
> 0.

This observation leads to some nonexistence results.

Example 4.1. Let f(t) = et. Near the boundary the solutions of (1.2) behave
like (1+o(1)) log 2

δ2 . Obviously lim sup
x→∂Ω

u
δβ− (x)

= 0. Therefore (1.1) has no solution

if µ < 0. This was already observed in [5].

Example 4.2. Let f(t) = tp. Then

φ(δ) = (c∗)
1
p−1 δ−

2
p−1 where c∗ =

2(p+ 1)

(p− 1)2
.

If a solution of (1.1) exists, we must have

lim
δ→0

δ−
2
p−1−

1
2 +
√

1
4−µ > 0.
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This implies that no solution exists if√
1

4
− µ > 2

p− 1
− 1

2

or, equivalently, µ < −c∗.
Next we prove the existence of a large solution for power nonlinearities

f(t) = tp if µ > −c∗.

We choose u = UP as a super solution and u = max{b(UP − B), 0} where b < 1
and B is so large that the support of u is in Ωδ0 . In Ωδ0 ∩ {u > 0} there holds

∆u

u
+
µ

δ2
− up−1 =

UpP
UP −B

+
µ

δ2
− bp−1(UP −B)p−1

≥ Up−1
P (1− bp−1) +

µ

δ2
.

From (1.4) and Example 4.2 it follows that

(1− ε)(c∗) 1
p−1 δ−

2
p−1 ≤ UP in Ωδ0 .

Hence
Up−1
P (1− bp−1) ≥ (1− ε)p−1c∗(1− bp−1)δ−2.

Since by assumption c∗ > −µ we can find ε and b sufficiently small such that
Up−1
P (1− bp−1) + µ

δ2 > 0. Notice that if we choose ε small, then δ0 has to be small
too. Hence u = max{b(UP − C), 0} is a sub solution in Ω and consequently there
exists a solution of (1.1) such that u ≤ u ≤ u.

Consider now more general function satisfying in addition to (F − 1)

(i) f(t) ≤ tp where µ > −c∗,
(ii) f(t) ≥ tp where µ < −c∗. (F-3)

Theorem 4.3. Assume µ < 0 and (F-1).

i. If in addition f satisfies (F-3)(i), then Problem (1.1) has a solution which
near the boundary behaves like

b δ−
2
p−1 ≤ u(x) ≤ UP (x) in Ωδ0 ,

for some 0 < b < 1.

ii. If f satisfies (F-2) and (F-3)(ii), then (1.1) has no solution.

Proof. i. The sub solution constructed above for power nonlinearities is also a sub
solution for the nonlinearity f(t) since

∆u+
µ

δ2
u ≥ up ≥ f(u).
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From the maximum principle it follows that UP ≥ u where UP is a solution of
(1.2) with the nonlinearity f . The method of sub and super solutions applies and
provides a solution of (1.1).

ii. Suppose that (1.1) has a solution. Let UP be the maximal large solu-
tion of (1.2). From the comparison principle it follows that u ≤ UP . Near the
boundary (1.4) implies that u ≤ (1 + ε)φ. By (F-3)(ii), φ(δ) ≤ cδ−2/(p−1). This
is incompatible with with the Phragmen-Lindelöf principle. Hence (1.1) has no
solution.

Let us now look at the problem with the weakly superlinear nonlinearity

f(t) = t(log t)α with α > 2.

The same type of arguments with the necessary modifications reveal that for suf-
ficiently small b� 1, b UP is a sub solution. Hence we have

Corollary 4.4. Problem (1.1) has for f(t) = t(log t)α and any µ < 0 a large
solution of the type bUP < u < UP with small b.

Problem 1. Describe the most general class of nonlinearities which admit solu-
tions behaving like

c1UP (x) < u(x) < c2UP (x)

near the boundary.

5. Asymptotic bevavior

5.1. Ball

Let UP (r) be a large radial solution of (1.2) in the ball BR := {x : |x| < R} and
let u(r) be a solution of (1.1) in BR. It solves the ODE

urr +
n− 1

r
ur +

µ

(R− r)2
u = f(u) in (0, R),

ur(0) = 0, lim
r→R

u(r) =∞.

Since UP is positive in the neighborhood of the boundary we can write

u(r) = UP (r)w(r) in (R− ε, R).

Then w satisfies in (R− ε, R)

wrr +
n− 1

r
wr + 2

(UP )r
UP

wr = w

{
h(wUP )− h(UP )− µ

(R− r)2

}
,

or equivalently

(wrr
n−1U2

P )r = rn−1U2
Pwq(r) where q(r) = h(wUP )− h(UP )− µ

(R− r)2
.
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Integration from r0 ∈ (R− ε, R) to R yields

w(r) = w(r0) + c(r0)

∫ r

r0

ds

sn−1U2
P

+

∫ r

r0

sn−1U2
Pwq ds

∫ r

s

dξ

U2
P ξ

n−1
.

The change of variables s = R− δ̃ and ξ̃ = R− ξ together with (1.4) implies that
for strongly superlinear nonlinearities

w(R− δ) = w(r0) + w1(δ)

+ (1 + η(δ))

∫ δ0

δ

φ2(δ̃)w(R− δ̃)q(R− δ̃)dδ̃
∫ δ̃

δ

dξ̃

φ2(ξ̃)
,

(5.1)

where w1 and η are bounded and continuous functions in (0, δ0). This observation
leads to the following lemma which is the basic tool for our asymptotic estimates.

Lemma 5.1. Assume (F-1), (F-2) and Ω = BR. Let UP and u be a solutions of
(1.2) and (1.1), respectively. Suppose that

∃ 0 < a < b such that aUP (r) ≤ u(r) ≤ bUP (r). (5.2)

Then the integral∫ δ0

0

φ2(δ̃)w

{
h(w(1 +O(1))φ)− h((1 +O(1))φ)− µ

δ̃2

}
dδ̃

∫ δ̃

0

dξ̃

φ2(ξ̃)

exists.

Since a < w < b the lemma holds only if the function

E(δ) :=

{
h(w(1 +O(1))φ)− h((1 +O(1))φ)− µ

δ2

}
φ2(δ)

∫ δ

0

dξ

φ2(ξ)

is integrable at 0.
Next we apply Lemma 5.1 to some special cases in order to obtain the asymp-

totic behavior of u(r) near the boundary.

5.1.1. Special cases.

1. f(t) = tp, µ > −c∗.
Then by Theorem 3.1 and Theorem 4.3 the condition (5.2) is satisfied.

φ(δ) =

(
c∗

δ2

)1/(p−1)

, φ2(δ)

∫ δ

0

dξ

φ2(ξ)
=
p− 1

p+ 3
δ,

h(w(1 +O(1))φ)− h((1 +O(1))φ) =
c∗

δ2
[wp−1 − 1 +O(1)].
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For E(δ) to be integrable at 0 we must have

lim
r→R

w(r) =

(
c∗ + µ

c∗

) 1
p−1

.

This implies

lim
r→R

u(r)(R− r)2/(p−1) = (c∗ + µ)1/(p−1). (5.3)

For positive µ this result is already contained in [10].

2. f(t) = et and µ > 0.
Then by Theorem 3.1 the assumptions of Lemma 5.1 are satisfied. In this
case φ(δ) = ln 2

δ2 . We assume that φ(δ) is positive and therefore R <
√

2.
Then

φ2(δ)

∫ δ

0

ds

(log 2
s2 )2

=
φ2

√
2

∫ ∞
φ

dt

t2et/2
=

φ√
2eφ/2

− φ2

23/2

∫ ∞
φ

dt

tet/2
.

The exponential integral is bounded from above by

E1(φ/2) :=

∫ ∞
φ

dt

tet/2
= e−φ/2 log

(
1 +

2

φ

)

< e−φ/2

(
2

φ
− 1

2

(
2

φ

)2

+
1

3

(
2

φ

)3
)
.

Hence

φ2(δ)

∫ δ

0

ds

(log 2
s2 )2

≥ δ

2
+ o(δ). (5.4)

In [3] it was shown that UP (δ) = log 2
δ2 (1 + n−1

R δ + o(δ)) for δ → 0. Hence

h(wUP ) =
( 2
δ2 )w(1+ω)

w(1 + ω) log 2
δ2

where ω =
n− 1

R
δ + o(δ),

and

q(δ) =
2

(1 + ω) log 2
δ2

{
w−1

(
2

δ2

)w(1+ω)

−
(

2

δ2

)1+ω
}
− µ

δ2
.

In view of (5.4) we have E(δ) > δ
2q(δ). The integrability of E(δ) requires

that limδ→0 q(δ) = 0. Set w = 1 + η(δ) and y = 2
δ2 . Then

q(δ) =
2y1+ω

(1 + ω) log y

{
yη(1+ω)

1 + η
− 1

}
− µ

2
y + o(δ),
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If lim
δ→0

q(δ) = 0, then

η(δ) =
log
(
µ
4 log 2

δ2 + 1
)

log 2
δ2

+ lower order terms.

Consequently lim
δ→0

η(δ) = 0 and lim
r→R

w(r) = 1. Hence

lim
r→R

u(r)

log 2
(R−r)2

= 1. (5.5)

This result was already derived in [5] by a different method.

3. f(t) = t(log t)α, α > 2.
By Corollary 4.4, Lemma 5.1 applies. In this case

UP (δ) = (1 + o(1))e(σδ )σe1/2, σ =
2

α− 2

and

U2
P (δ)

∫ δ

0

U−2
P (ξ) dξ ≈ cons. δ1+σ.

Thus

E(δ) ≈ c
[(

logw +
1

2
+
(σ
δ

)σ)α
−
(

1

2
+
(σ
δ

)σ)α
− µ

δ2

]
δ1+σ

The leading term is c
(
σ
δ

)σ(α−1)
logw. Since −σ(α − 1) + 1 + σ = −1, E(δ)

is integrable if limδ→0 logw = 0 which implies that lim
δ→0

w(δ) = 1 and

lim
r→R

u(r)

UP (r)
= 1. (5.6)

5.2. Annulus

In the annulus, A(R0, R1) := {x : R0 < |x| < R1} we consider the problem

∆û(r) +
µ

(r −R0)2
û(r) = f(û) in (R0, R1),

û(R1) = 0, û(r)→∞ as r → R0.
(5.7)

According to [3] this problem without a Hardy potential has a solution Û0(r)
provided the Keller-Osserman condition (F-1) holds. Denote by δ = r − R0 the
distance to the inner boundary. It is well-known that under the assumption (F-2),

lim
δ→0

Û0(R0 + δ)

φ(δ)
= 1.
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The discussion for the solution of (1.1) in the ball can be transferred literally to
û(r) in the annulus. We therefore omit the details.

In short under the same conditions as for the ball there exists a solution such
that 0 < aÛ0 < û(r) < bÛ0(r). If (1.1) possesses in BR a solution such that
u(r) = UP (r)w(r) with lim

r→R
w(r) = w0. then (5.7) has a solution of the form

û(r) = Û0(r)ŵ(r) with lim
r→R

ŵ(r) = w0

5.3. General domains.

Throughout this section we assume that Ω is a bounded domain satisfying an inner
and outer sphere condition. In addition we require that ∂Ω ∈ C2 and that the
mean curvature H is well-defined.12 CATHERINE BANDLE
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5.3. General domains. Throughout this section we assume that ⌦ is
a bounded domain satisfying an inner and outer sphere condition. In
addition we require that @⌦ 2 C2 and that the mean curvature H is
well-defined.

Theorem 5.1. Let u(x) be a solution of (1.1) such that 0 < aUP (x) 
u(x)  bUP (x) for some 0 < a < b. If µ < 0, we require in addition
that f(0) = 0. Suppose that there is a large solution uB(r) in the ball

such that limr!R
uB(r)
�(R�r)

= w0, where w0 is independent of R. Then

u(x) = w0�(�(x))(1 + o(1)) as x ! @⌦.

Proof. We shall distinguish between two cases µ > 0 and µ < 0.

(i) µ > 0.

This case has already be treated in [15]. We present the proof for the
sake of completeness. Let x be an arbitrary point on the boundary @⌦
and let BR ⇢ ⌦ be a ball such that x 2 @BR (s. Figure 1). We choose
R so small that such a ball can be inscribed at every boundary point
x. Denote by �B the distance of x 2 BR to @BR. Then since �B  �
and µ > 0

0 = �uB +
µ

�2
B

uB � f(uB) � �uB +
µ

�2
uB � f(uB) in BR \ ⌦,(5.8)

where uB is the solution of (1.1) in BR. By shifting the ball slightly
inside ⌦ and by the comparison principle it follows that u  uB in BR.

Consider now an annulus A(R0, R1) centered at the origin such that
x 2 {|x| = R0} and BR0 \ ⌦ = ;. Moreover we assume that A(R0, R1)
contains BR0 (s. Figure 1). The radii are chosen such that this holds
for every x 2 @⌦. Let uA(r) be a solution of (5.7). Let �A(x) =

Figure 1

Theorem 5.2. Let u(x) be a solution of (1.1) such that

0 < aUP (x) ≤ u(x) ≤ b UP (x) for some 0 < a < b.

If µ < 0, we require in addition that f(0) = 0. Suppose that there is a large
solution uB(r) in the ball such that

lim
r→R

uB(r)

φ(R− r) = w0,

where w0 is independent of R. Then

u(x) = w0 φ(δ(x))
(
1 + o(1)

)
as x→ ∂Ω.

Proof. We shall distinguish between two cases: µ > 0 and µ < 0.

(i) µ > 0.

This case has already be treated in [15]. We present the proof for the sake of
completeness. Let x be an arbitrary point on the boundary ∂Ω and let BR ⊂ Ω
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be a ball such that x ∈ ∂BR (see Figure 1). We choose R so small that such a ball
can be inscribed at every boundary point x. Denote by δB the distance of x ∈ BR
to ∂BR. Then since δB ≤ δ and µ > 0

0 = ∆uB +
µ

δ2
B

uB − f(uB) ≥ ∆uB +
µ

δ2
uB − f(uB) in BR ∩ Ω, (5.8)

where uB is the solution of (1.1) in BR. By shifting the ball slightly inside Ω and
by the comparison principle it follows that u ≤ uB in BR.

Consider now an annulus A(R0, R1) centered at the origin such that x ∈ {|x| =
R0} and BR0

∩ Ω = ∅. Moreover we assume that A(R0, R1) contains BR0
(see

Figure 1). The radii are chosen such that this holds for every x ∈ ∂Ω. Let uA(r)
be a solution of (5.7). Let δA(x) = dist{x, ∂BR0}. Then for x ∈ Ω∩A(R0, R1) we
have δA ≥ δ and therefore

0 = ∆uA +
µ

δ2
A

uA − f(uA) ≤ ∆uA +
µ

δ2
uA − f(uA) in Ω ∩A(R0, R1). (5.9)

The functions uA is a lower solution of (1.1). Similarly by shifting the inner
boundary of A(R0, R1) slightly away from ∂Ω and keeping in mind that u(x)→∞
as x→ ∂Ω we get u ≥ uA in A(R0, R1) ∩ Ω.

The claim is a consequence of uA ≤ u in A(R0, R1) ∩ Ω and u ≤ uB in
BR and the fact that uB(r) = w0φ(R − r)

(
1 + o(1)

)
for r → R and uA(r) =

w0φ(r −R0)
(
1 + o(1)

)
for r → R0.

(ii) µ < 0.

In this case uB and uA cannot serve as local super and sub solutions. We follow
a device used in [6].

We start with the upper solution. Set ũ(δ) := uB(R− δ). It satisfies

ũδδ −
(n− 1)

R− δ ũδ +
µ

δ2
ũ = f(ũ) in (0, R)

lim
δ→0

ũ(δ) =∞, ũδ(R) = 0.

Choose R so small that u(x) := ũ(δ(x)) is twice differentiable in the parallel set
ΩR := {x ∈ Ω : δ(x) < R}. Then

∆u = ũδδ + ũδ∆δ

and
∆δ(x) = H(x)(n− 1) +O(δ),

where H is the mean curvature of ∂Ω at the projection x of x. Thus

∆u+
µ

δ2
u− f(u) = uδ

(
H(n− 1) +O(δ) +

n− 1

R− δ

)
in ΩR.
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If R is sufficiently small, the expression in the bracket is positive. Since uδ < 0
it follows that u is an upper solution in ΩR. Any positive constant is a super
solution. Since uδ(R) = 0

uΩ(x) =

{
u in ΩR,

u(R) in Ω \ ΩR

is a weak super solution in Ω. By the assumption u ≤ b UP we can choose R so
small that uB(0) > u(x) somewhere. Hence the comparison principle shows that
u ≥ u(x) in ΩR.

In order to construct a lower solution we proceed as follows. Consider a solution
uA(r) of (5.7) with R1 = R0 +R. Set δ = r−R0 and ũ(δ) = Û(R0 + δ). For small
R the function u(x) = ũ(R0 + δ(x)) satisfies

∆u+
µ

δ2
u− f(u) = uδ((n− 1)H − n− 1

R0 + δ
+O(δ)) in ΩR.

Let R0 and R be so small that the expression in the bracket is negative in (0, R).
Since uδ is negative, u is a lower solution in Ωρ0 . Since f(0) = 0, u can be extended
to Ω as a sub solution as follows

uΩ =

{
u in ΩR,

0 in Ω \ ΩR,

By the standard arguments varying slightly δ it follows that u ≤ u ≤ u The
conclusion now follows from the fact that the first order asymptotic behavior of
the large solutions in balls and annuli are the same.

6. Uniqueness

The precise asymptotic behavior of the large solutions gives rise to uniqueness
results. The poof is standard and has often been used in the context of problems
with boundary blow up. A different approach is found in [15] where similar results
have been obtained for µ > 0.

The uniqueness of the solutions of Problem (1.2) has been studied by various
authors, s. for instance [13, 1, 8] and the references cited therein. It turns out
that for general bounded domains Ω with smooth boundary Problem (1.2) has a
unique large solution for the nonlinearities

tp (p > 1), et and t(log t)α (α > 2).

Less is known for (1.1). Results for power nonlinearities have been obtained in
[10] The case of et has been treated in [5] and a different class has been considered
in [15].

Theorem 6.1. If h(t) is monotone, then (1.1) has at most one positive solution

for which limx→∂Ω
u(x)

UP (x)
= w0.
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Proof. Let u1 and u2 be two different solutions. Since u2 is positive we can set
u1 = vu2. Then

∆v + 2

(
∇v · ∇u2

u2

)
+

v

u2
∆u2 +

µ

δ2
v = h(vu2)v.

Hence

∆v + 2

(
∇v · ∇u2

u2

)
=
{
h(u2v)− h(u2)

}
v.

Suppose that u1 < u2 and therefore 0 < v < 1 in Ω−. By our assumption v = 1 on

∂Ω and therefore Ω− ⊂ Ω. In Ω− v satisfies ∆v+ 2

(
∇v · ∇u2

u2

)
< 0 and on ∂Ω−

we have v = 1. By the maximum principle v > 1 in Ω−. This is a contradiction
and consequently u2 ≥ u1 in Ω. By interchanging the role of u1 and u2 it follows
that u1 ≥ u2 which establishes the assertion.

We end with an overview of the solutions for Problem (1.1) for power nonlin-
earities f(t) = tp, p > 1. Define

u ∼ g(δ) ⇐⇒ 1

c
<

u(x)

g(δ(x)
< c, c > 1forδ → 0.

We introduce the notion of small, moderate, intermediate, large and very large
solutions as follows

s-solution u ∼ o(δβ−),

m-solution u ∼ δβ− ,

i-solution u = o(δ−2/(p−1)) and
u(x)

δβ−
→∞ as δ → 0,

L-solution u ∼ δ−2/(p−1),

vL-solution
u

δ−2/(p−1)
→∞ as δ → 0.

Notice that for µ > 0, s- and m-solutions don’t make sense.

s-sol. m-sol. i-sol. L-sol- vL-sol.
−c∗ < µ < 0 0 ∞ ? 1 0
0 < µ - - ? 1 0

For radial solutions in the ball the situation is as follows.

s-sol. m-sol. i-sol. L-sol- vL-sol.
−c∗ < µ < 0 0 ∞ 0 1 0
0 < µ - - 0 1 0
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