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Existence of a W 1,1
0 -solution for a semilinear Dirichlet

problem with very singular convection term

Lucio Boccardo

To Assunta (remembering the sharing “studio 107” years)

Abstract. In this paper we prove the existence in W1,1
0 (not in BV ) of a solution (in a very

weak sense) for the boundary value problem (1.1).

1. Introduction

In this paper we prove the existence in W1,1
0 of a solution (in a very weak sense)

for the semilinear boundary value problem{
−div(M(x)∇u) +Au|u| = −div(uE(x)) + f(x) in Ω,

u = 0 on ∂Ω.
(1.1)

Here we assume that
f ∈ L1(Ω), A ∈ R+ (1.2)

and, on the singular convection term, that

E ∈
(
L2(Ω)

)N
, (1.3)

where Ω is a bounded, open subset of RN , N > 2, and M : Ω→ RN2

is a matrix
such that (for α, β ∈ R+)

α|ξ|2 ≤M(x)ξξ, |M(x)| ≤ β. (1.4)

Existence of distributional solutions for semilinear Dirichlet problems

u ∈W 1,q
0 (Ω) : −div(M(x)∇u) +Au|u|λ−1 = −div(uE(x)) + f(x),

with f ∈ Lm(Ω), m > 1, E ∈
(
Lr(Ω)

)N
, r > 2, λ > 1 is studied in [8].

We point out that our assumptions (1.3), (1.2) on E, f are the minimal possi-
ble, so that even the existence of solutions in the sense of distributions can be lost
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and a very weak formulation (entropy solutions introduced in [7], following [5]) is
needed.

We draw attention to the fact that we will prove the existence of a solution
only belonging to the (nonreflexive) space W 1,1

0 (Ω) ∩ L2(Ω).

Nonlinear elliptic boundary value problems with W 1,1
0 (Ω) solutions are studied

in several papers; only we recall [13] and [12], where a semilinear problem with
a W 1,1

0 (Ω) ∩ L2(Ω) solution is studied, with assumptions on the principal part of
the operator similar to the ones of the paper [1] by Porzio–Pozio (see also [11]).
Moreover radial examples show that the results of [13] and [12] are optimal.

2. Existence

2.1. Setting

We consider the following approximate Dirichlet problems

un ∈W 1,2
0 (Ω) : −div(M(x)∇un) +Aun|un| = −div

(
unEn

1 + 1
n |un|

)
+ fn, (2.1)

where

En(x) =
E(x)

1 + 1
n |E|

, fn(x) =
f(x)

1 + 1
n |f |

.

Observe that

|En| ≤ |E|, |fn| ≤ |f |,

and ∣∣∣∣ un

1 + 1
n |un|

∣∣∣∣ ≤ |un| .
Note that a weak solution un exists thanks to Schauder fixed point theorem (see
also [8]), since, for every n ∈ N, the nonlinear composition un

1+ 1
n |un|

of the solution

un is a bounded one.

Moreover, since for every fixed n the function fn(x) and the vectorial field
En(x) are bounded, every un is bounded thanks to Stampacchia’s boundedness
theorem (see [15]).

2.2. Estimates

The following lemma is an improvement of a lemma of [6].

Lemma 2.1. The sequence {un} of the solutions of (2.1) satisfies the inequality∫
{k≤|un|}

|∇un|2

(1 + |un|)2
≤ 1

α2

∫
{k≤|un|}

|E|2 +
2

α

∫
{k≤|un|}

|f |, ∀ k ∈ R+. (2.2)
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Proof. Take

(
|un|

1 + |un|
− k

1 + k

)+
un
|un|

, k ∈ R+, as test function in (2.1). We

have ∫
{k≤|un|}

M(x)∇un · ∇un
(1 + |un|)2

+A

∫
{k≤|un|}

u2
n

(
|un|

1 + |un|
− k

1 + k

)
≤
∫
{k≤|un|}

|un|
1 + 1

n |un|
|En|

|∇un|
(1 + |un|)2

+

∫
{k≤|un|}

|fn| |un|
1 + |un|

.

Since |un|
1+|un| ≤ 1 we have, using (1.4) and the fact that |fn| ≤ |f |,

α

∫
{k≤|un|}

|∇un|2

(1 + |un|)2
+A

∫
{k≤|un|}

u2
n

(
|un|

1 + |un|
− k

1 + k

)
≤
∫
{k≤|un|}

|E| |∇un|
1 + |un|

+

∫
{k≤|un|}

|f | ,

so that (thanks to Young inequality),∫
{k≤|un|}

|∇un|2

(1 + |un|)2
+A

∫
{k≤|un|}

u2
n

(
|un|

1 + |un|
− k

1 + k

)
≤ 1

α2

∫
{k≤|un|}

|E|2 +
2

α

∫
{k≤|un|}

|f |

and, dropping a positive term,∫
{k≤|un|}

|∇un|2

(1 + |un|)2
≤ 1

α2

∫
{k≤|un|}

|E|2 +
2

α

∫
{k≤|un|}

|f |.

Recall Stampacchia’s definition of truncate:

Tk(s) =


s, if |s| ≤ k,

k
s

|s|
, if |s| > k,

The inequalities we will prove in the two lemmas below are improvements of results
of [6, 7].

Lemma 2.2. The sequence {un} of the solutions of (2.1) satisfies the inequality∫
Ω

|∇Tk(un)|2 ≤ k2

α2

∫
Ω

|E|2 + k
2

α

∫
Ω

|f |, ∀ k ∈ R+. (2.3)

Proof. Take Tk(un), k ∈ R+, as test function in (2.1). We have, using the ellipticity
of the principal part and dropping a positive term,

α

∫
Ω

|∇Tk(un)|2 ≤
∫

Ω

|un||E||∇Tk(un)|+ k

∫
Ω

|f |

≤ k
∫

Ω

|E||∇Tk(un)|+ k

∫
Ω

|f | .
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Then the Young inequality yields (2.3).

Lemma 2.3. The sequence {un} of the solutions of (2.1) satisfies the inequality∫
Ω

u2
n ≤

1

A

∫
Ω

|f |, (2.4)

Proof. Take Th(un), h ∈ R+, as test function in (2.1). Again we have

α

∫
Ω

|∇Th(un)|2 +A

∫
Ω

u2
n|Th(un)| ≤ h

∫
Ω

|E||∇Th(un)|+ h

∫
Ω

|f | .

Then the Young inequality yields

α

2

∫
Ω

|∇Th(un)|2 +A

∫
Ω

u2
n|Th(un)| ≤ h2 1

2α

∫
Ω

|E|2 + h

∫
Ω

|f | .

Now we drop the first term and we have, dividing by h > 0,

A

∫
Ω

u2
n

|Th(un)|
h

≤ h 1

2α

∫
Ω

|E|2 +

∫
Ω

|f | .

The Fatou lemma, as h→ 0, yields (2.4).

As a consequence of the estimate (2.4), we can state the following corollaries.

Corollary 2.4. Passing to a subsequence if necessary, we may assume the se-
quence {un} converges weakly in L2(Ω) to some u.

Corollary 2.5. Thanks to the estimate (2.4) we have

meas{x ∈ Ω : |un(x)| > k} ≤ 1

Ak2

∫
Ω

|f |. (2.5)

In the following lemma we prove an a priori bound (and more) in W 1,1
0 (Ω) for

the sequence {un}.

Lemma 2.6. The sequence {un} of the solutions of (2.1) satisfies the inequality

∫
{k≤|un|}

|∇un| ≤
[ ∫
{k≤|un|}

(
1

α2
|E|2 +

2

α
|f |
)] 1

2

·
[
‖1‖L2(Ω) +

1

A
‖f‖L1(Ω)

] 1
2

,

(2.6)

for any k ∈ R+.
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Proof. We write ∫
{k≤|un|}

|∇un| =
∫
{k≤|un|}

|∇un|
1 + |un|

(1 + |un|)

and then we use the Hölder inequality and the estimates (2.2), (2.4) so that∫
{k≤|un|}

|∇un| ≤
[

1

α2

∫
{k≤|un|}

|E|2 +
2

α

∫
{k≤|un|}

|f |
] 1

2
[ ∫

Ω

(1 + |un|)2

] 1
2

≤
[ ∫
{k≤|un|}

(
1

α2
|E|2 +

2

α
|f |
)] 1

2
[
‖1‖L2(Ω) +

1

A
‖f‖L1(Ω)

] 1
2

Remark 2.7. Note the importance of the assumption A > 0: if A = 0 it is not
possible to prove the estimates (2.4) and (2.6), but only (2.2).

As a consequence of the estimate (2.6), we can state the following corollaries.

Corollary 2.8. The sequence {un} of the solutions of (2.1) is bounded in W 1,1
0 (Ω).

Proof. Take k = 0 in (2.6).

Remark 2.9. Rellich theorem implies the existence of a subsequence {unj
} such

that unj
converges strongly in L1(Ω).

Thus it is possible to improve the statement of Corollary 2.4: passing to a
subsequence if necessary, we may assume the sequence {un} converges weakly in
L2(Ω) and strongly in Lρ(Ω), 1 ≤ ρ < 2, and a.e. to some u.

The next lemma improves the result of Corollary 2.8.

Lemma 2.10. The sequence {un} of the solutions of (2.1) is weakly compact in
W 1,1

0 (Ω).

Proof. We will use the Dunford-Pettis theorem. Let X be a measurable subset of
Ω. Then we have (using the inequality (2.6))∫

X

|∇un| ≤
∫
X

|∇Tk(un)|+
∫
{k≤|un|}

|∇un|

≤ |X| 12
[ ∫

Ω

|∇Tk(un)|2
] 1

2

+

[
1

α2

∫
{k≤|un|}

|E|2 +
2

α

∫
{k≤|un|}

|f |
] 1

2

·
[
‖1‖L2(Ω) +

1

A
‖f‖L1(Ω)

] 1
2

≤ |X| 12
[
k2

α2

∫
Ω

|E|2 + k
2

α

∫
Ω

|f |
] 1

2

+

[ ∫
{k≤|un|}

(
1

α2
|E|2 +

2

α
|f |
)] 1

2

·
[
‖1‖L2(Ω) +

1

A
‖f‖L1(Ω)

] 1
2
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Thus

lim
meas(X)→0

∫
X

|∇un| ≤
[ ∫
{k≤|un|}

(
1

α2
|E|2 +

2

α
|f |
)] 1

2 [
‖1‖L2(Ω) +

1

A
‖f‖L1(Ω)

] 1
2

,

where the right hand side is uniformly (with respect to n) small for k large, thanks
to the absolute continuity of the Lebesgue integral and to the inequality (2.5).

Thus we proved that

lim
meas(X)→0

∫
X

|∇un| = 0, uniformly with respect to n.

Thus, at the present time, we proved the following convergence properties on
the sequence {un}:

un converges weakly to u in W 1,1
0 (Ω);

un converges weakly in L2(Ω), strongly in Lρ, 1 ≤ ρ < 2, a.e. to u;

Tk(un) converges weakly in W 1,2
0 (Ω) to Tk(u), for every k ∈ R+;

(2.7)

where the last convergence is a consequence of the previous ones and of (2.3).

Remark 2.11. We point out that, in the weak formulation of (2.1),∫
Ω

M(x)∇un∇ϕ+A

∫
Ω

un|un|ϕ =

∫
Ω

un

1 + 1
nun

En(x)∇ϕ+

∫
Ω

fn(x)ϕ, (2.8)

∀ϕ ∈ Lip(Ω), thanks to (2.7), it is possible to pass to the limit in 3 of the 4 terms:
the only problematic term is the second one, since we did not prove the strong
convergence of the sequence {un} in L2(Ω).

2.3. Entropy solutions

Since we are not able to pass to the limit (see to Remark 2.11) in∫
Ω

un|un|ϕ, ∀ϕ ∈ Lip(Ω),

in order to give a meaning to the existence of solutions, we use the concept of
entropy solutions which has been used in [7] for problems with convection terms
and previously introduced in [5] to prove existence and uniqueness of solutions of
nonlinear Dirichlet problems with L1 data.

Definition 2.12. The function u is an entropy solution of (1.1), if

u ∈W 1,1
0 (Ω), Tk(u) ∈W 1,2

0 (Ω) :∫
Ω

M(x)∇u∇Tk[u− ϕ] +A

∫
Ω

u|u|Tk[u− ϕ]

≤
∫

Ω

uE(x)∇Tk[u− ϕ] +

∫
Ω

f(x)Tk[u− ϕ]

(2.9)
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for any k ∈ R+ and ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω).

Theorem 2.13. We assume (1.2), (1.3), (1.4). Then there exists u entropy solu-
tion of (1.1), in the sense of the above definition.

Proof. For k ∈ R+ and ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω), we use (recall (2.3)) Tk[un − ϕ] as

test function in (2.1) and we have

Tk(un) ∈W 1,2
0 (Ω) :∫

Ω

M(x)∇un∇Tk[un − ϕ] +A

∫
Ω

un|un|Tk[un − ϕ]

=

∫
Ω

un

1 + 1
n |un|

En(x)∇Tk[un − ϕ] +

∫
Ω

fn(x)Tk[un − ϕ]

for any k ∈ R+ and ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω).

We write the equality as

∫
Ω

M(x)∇Tk[un − ϕ]∇Tk[un − ϕ] +

∫
Ω

M(x)∇ϕ∇Tk[un − ϕ]

+A

∫
Ω

{un|un| − ϕ|ϕ|}Tk[un − ϕ] +A

∫
Ω

ϕ|ϕ|Tk[un − ϕ]

=

∫
Ω

un

1 + 1
n |un|

En(x)∇Tk[un − ϕ] +

∫
Ω

fn(x)Tk[un − ϕ],

(that is I1 + · · · + I4 = I5 + I6) and we recall the convergences on En, fn and
(2.7), which allow to pass to the limit in I2, I4, I5, I6. In particular, note that
∇Tk[un−ϕ] weakly converges in L2 to ∇Tk[u−ϕ] and that, for k∗ = k+‖ϕ‖L∞(Ω),

I5 =
un

1 + 1
n |un|

En(x)∇Tk[un − ϕ] =
Tk∗(un)

1 + 1
n |un|

En(x)∇Tk[un − ϕ],

so that we can pass to the limit thanks to the Lebesgue theorem. Note that we
can pass to the limit thanks to the weak lower semicontinuity and weak W 1,2

0 (Ω)
convergence of Tk(un), in I1, and Fatou lemma, in I3. We obtain

∫
Ω

M(x)∇Tk[u− ϕ]∇Tk[u− ϕ] +

∫
Ω

M(x)∇ϕ∇Tk[u− ϕ]

+A

∫
Ω

{u|u| − ϕ|ϕ|}Tk[u− ϕ] +A

∫
Ω

ϕ|ϕ|Tk[u− ϕ]

≤
∫

Ω

uE(x)∇Tk[u− ϕ] +

∫
Ω

f(x)Tk[u− ϕ]

and so, after simplifications, we prove (2.9).

Open Problem 2.14. Recall we proved that ∇u, u2 and (uE) are summable
function. Then is it possible to say that u is a distributional solution? That is
u ∈W 1,1

0 (Ω) ∩ L2(Ω) is a solution of∫
Ω

M(x)∇u∇ϕ+A

∫
Ω

u2 ϕ =

∫
Ω

uE(x)∇ϕ+

∫
Ω

f(x)ϕ, ∀ϕ ∈ Lip(Ω),
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(see also Remark 2.11).

3. Regularizing effect of the interplay between coefficients

In this section we consider the boundary value problem{
−div(M(x)∇u) + a(x)u|u| = −div(uE(x)) + f(x) in Ω,

u = 0 on ∂Ω,
(3.1)

where

f ∈ Lm(Ω), m ≥ 1, (3.2)

|E|2 ≤ Ra(x) ∈ L1(Ω), for some R ∈ R+, (3.3)

and we define the following approximate Dirichlet problems

un ∈W 1,2
0 (Ω) :

− div(M(x)∇un) + a(x)un|un| = −div

(
un

1 + 1
n |un|

En

)
+ fn,

(3.4)

The fact that the coefficient a(x) belongs to L1(Ω) does not change too much the
framework with respect to the boundary value problem (2.1) (see also [14]); that
is, for every n ∈ N, there exists a bounded weak solution un.

The main feature of this section is the inequality |E|2 ≤ Ra(x), supposed in
(3.3) (interplay between coefficients), which produces a regularizing effect on the
solutions. The regularizing effect of the interplay between coefficients in nonlinear
Dirichlet problems is studied in [2, 3, 4]; in particular, interplay between coefficients
in Dirichlet problems with convection terms or drift terms is considered in [9, 10].

With the same proof of Lemma 2.3 it is possible to prove the following lemma.

Lemma 3.1. The sequence {un} of the solutions of (3.4) satisfies the inequality∫
Ω

a(x)u2
n ≤

∫
Ω

|f |. (3.5)

Lemma 3.2. We assume (1.4), (3.2) with m ≥ 2N
N+2 , (3.3). Then the sequence

{un} of the solutions of (3.4) satisfies the estimates

{un} is bounded in W 1,2
0 (Ω);

{a(x)|un|3} is bounded in L1(Ω).
(3.6)

Proof. We use un as test function in the weak formulation of (3.4) and we have,
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thanks to the Young inequality and (3.5),

α

∫
Ω

|∇un|2 +

∫
Ω

a(x)|un|3 ≤
∫

Ω

|un||E||∇un|+
∫

Ω

|f ||un|

≤ α

2

∫
Ω

|∇un|2 +
1

2α

∫
Ω

u2
n|E|2 +

∫
Ω

|f ||un|

≤ α

2

∫
Ω

|∇un|2 +
R

2α

∫
Ω

a(x)u2
n +

∫
Ω

|f ||un|

≤ α

2

∫
Ω

|∇un|2 +
R

2α

∫
Ω

|f |+
∫

Ω

|f ||un|,

which implies

α

2

∫
Ω

|∇un|2 +

∫
Ω

a(x)|un|3 ≤
R

2α

∫
Ω

|f |+
∫

Ω

|f ||un|, (3.7)

that is, a standard estimate for semilinear problems.
Thus, dropping the second (positive) integral, we deduce the first estimate in

(3.6).
Then, in (3.7), dropping the first (positive) integral, thanks to the first estimate

in (3.6) (just proved), we deduce the second estimate in (3.6).

Now, thanks to the assumption (3.3), it is possible to strongly improve the
existence result of Theorem 2.13. Indeed we will prove the existence of finite
energy solutions.

Theorem 3.3. We assume (1.4), (3.2), (3.3). Then there exists a weak solution
u of the boundary value (3.1); that is a function u such that

u ∈W 1,2
0 (Ω), a(x)u2 ∈ L1(Ω) :∫

Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)u|u|ϕ =

∫
Ω

uE∇ϕ+

∫
Ω

fϕ
(3.8)

for any ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω).

Proof. As a consequence of the first statement in (3.6), passing to a subsequence
if necessary, we may assume the sequence {un} converges weakly in W 1,2

0 (Ω) and
a.e. to some u. Moreover, the second statement in (3.6) yields the strong con-
vergence of a(x)un|un| in L1(Ω), thanks to the Vitali theorem. Indeed, since
a(x)un|un| converges a.e., we only need to prove the equi-integrability of the se-
quence {a(x)un|un|}: let X be a measurable subset of Ω and k ∈ R+, we have∫

X

|a(x)u2
n| ≤ k2

∫
X

a(x) +
1

k

∫
Ω

a(x)|un|3.

Thus

lim
meas(X)→0

∫
X

|a(x)u2
n| ≤

C1

k
, ∀ k ∈ R+,
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that is

lim
meas(X)→0

∫
X

|a(x)u2
n| = 0, uniformly with respect to n.

Moreover the inequality∣∣∣∣ un

1 + 1
n |un|

En

∣∣∣∣ ≤√a(x)|un|
|E|√
a(x)

≤ 1

2
a(x)|un|2 +

1

2

|E|2

a(x)
≤ 1

2
a(x)|un|2 +

1

2
R

and the strong convergence of a(x)un|un| in L1(Ω), thanks to the Vitali theorem,
yield to the convergence of un

1+ 1
n |un|

En in L1(Ω).

Thus it is possible to pass to the limit in the weak formulation of (3.4) and we
obtain (3.8).

3.1. A second interplay

Now, briefly, we consider a second interplay: instead of (3.3), we assume

|f(x)| ≤ Qa(x) ∈ L1(Ω), for some Q ∈ R+, (3.9)

and we study the behaviour of the sequence {un}.

Lemma 3.4. Under the assumptions (1.4), (3.2), with m = 1, E ∈ (Lr(Ω))
N

,
with r > N , (3.9), the sequence {un} is bounded in L∞(Ω).

Proof. Take

(
|un|

1 + |un|
− k

1 + k

)+
un
|un|

, k ≥
√
Q, as test function in (3.4). We

use the assumption (3.9) and we have

α

∫
{k≤|un|}

|∇un|2

(1 + |un|)2
+

∫
{k≤|un|}

a(x)u2
n

(
|un|

1 + |un|
− k

1 + k

)
≤
∫
{k≤|un|}

|un|
1 + 1

n |un|
|En|

|∇un|
(1 + |un|)2

+

∫
{k≤|un|}

Qa(x)

1 + 1
nQa(x)

(
|un|

1 + |un|
− k

1 + k

)

≤ α

2

∫
{k≤|un|}

|∇un|2

(1 + |un|)2
+

∫
{k≤|un|}

|E|2 +

∫
{k≤|un|}

Qa(x)

(
|un|

1 + |un|
− k

1 + k

)
.

Note that we work with k ≥
√
Q, so that u2

n ≥ Q in the subset {|un| ≥ k}. Then
the above inequalities yield, dropping a positive contribution,

α

2

∫
{k≤|un|}

|∇un|2

(1 + |un|)2
≤
∫
{k≤|un|}

|E|2.

Here the Stampacchia theorem on log(1 + |un|), thanks to the assumption

E ∈
(
Lr(Ω)

)N
, with r > N , gives the boundedness in L∞(Ω) of the sequence

{log(1 + |un|)}; that is the boundedness of the sequence {un}.



Semilinear Dirichlet problem with singular convection term 225

Thanks to the a priori bound of the previous lemma, it is easy to prove that
the sequence {un} is also bounded in W 1,2

0 (Ω).
Thus it is not difficult to pass to the limit in (3.4) and to prove the following

theorem.

Theorem 3.5. Under the assumptions (1.4), (3.2), with m = 1, E ∈
(
Lr(Ω)

)N
,

with r > N , (3.9), there exists a bounded weak solution of the boundary value
problem (3.1), that is a function u such that

u ∈W 1,2
0 (Ω) ∩ L∞(Ω) :∫

Ω

M(x)∇u∇ϕ+

∫
Ω

a(x)u|u|ϕ =

∫
Ω

uE∇ϕ+

∫
Ω

fϕ
(3.10)

for any ϕ ∈W 1,2
0 (Ω) ∩ L∞(Ω).
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[5] Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L.: An L1 theory of
existence and uniqueness of solutions of nonlinear elliptic equations, Annali Sc. Norm. Sup.
Pisa 22, 241–273 (1995)

[6] Boccardo L.: Some developments on Dirichlet problems with discontinuous coefficients, Boll.
Unione Matematica Italiana 2, 285–297 (2009)

[7] Boccardo L.: Dirichlet problems with singular convection terms and applications, J. Differ-
ential Equations 258, 2290–2314 (2015)

[8] Boccardo L.: Two semilinear Dirichlet problems “almost” in duality, Boll. Unione Matem-
atica Italiana 12:3, 349–356 (2019)

[9] Boccardo L.: A duality approach to Dirichlet problems with singular convection or drift
thanks to lower order term, preprint.

[10] Boccardo L.: Regularizing effect of the interplay between coefficients in Dirichlet problems
with singular convection terms or singular drift terms, ESAIM: Control, Optimisation and
Calculus of Variations, to appear.

[11] Boccardo L., Brezis H.: Some remarks on a class of elliptic equations with degenerate
coercivity, Boll. Unione Mat. Ital. 6, 521–530 (2003)

[12] Boccardo L., Croce G., Orsina L.: Nonlinear degenerate elliptic problems with W 1,1
0 solu-

tions, Manuscripta Math. 137, 419–439 (2012)

[13] Boccardo L., Gallouët T.: W 1,1
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