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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Multiple positive solutions for some local and non-local
elliptic systems arising in desertification models

Jesús Ildefonso Dı́az∗ and Jesús Hernández

Alla cara memoria di Maria Assunta Pozio

Abstract. We consider a nonlinear elliptic system proposed in 2007 by E. Gilad, J. von Hard-

enberg, A. Provenzale, M. Shachak and E. Meron, in desertification studies. The system models

the mutual interaction between the biomass b, the soil-water content w and the surface-water

height h. The interactions with the plant environment may lead to some non-local terms which

can be approximated by suitable local expressions. Various kinds of feedback processes arise.

The change in environmental conditions can be simulated by the change of suitable parameters

in the differential equations. Here we consider the case of Dirichlet boundary conditions. After

describing some positive solutions corresponding to special values of the parameters, we prove

the existence of positive solutions for the local and non-local system. We obtain some bifurcation

diagrams showing, rigorously, its starting value and characterizing the supercritical (resp. sub-

critical) nature of the branch (something unnoticed before in the previous literature) according to

a suitable parameters balance expression. Finally, we prove that if the precipitation datum p(x)

grows near the boundary of the domain ∂Ω as d(x, ∂Ω)2 then h(x) grows, at most, as d(x, ∂Ω)4.

1. Introduction

Equations and systems of reaction-diffusion type have been widely studied during
the last fifty years both for their mathematical interest and the relevance in ap-
plications (population dynamics, combustion, chemical reactions, nerve impulses,
etc.). See the books [30, 25] and the references therein for more informations.

Existence and uniqueness of solutions for parabolic systems are studied, and
then the asymptotic behavior of solutions. From this point of view it is important
the study of the existence (and multiplicity) of solutions of the associated station-
ary problem together with the stability of their solutions. Very often only positive
solutions are interesting for the applications.

The first author and P. Kyriasopoulos studied in [15] an elliptic system arising
in a dryland vegetation model suggested by Gilad et al. in [18] (other models
can be found in [28, 3, 23]). This system was proposed through the modelling
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of appropriate ecosystems consisting of organisms that interact among themselves
and with their environment. These interactions involve various kinds of feedback
processes that may combine to form positive feedback loops and instabilities when
environmental conditions change, and this can be simulated by the change of suit-
able parameters in the differential equations. Like the well-established activator-
inhibitor principle in bio-chemical systems [24], the combination of these scale-
dependent feedback mechanisms can induce instabilities that result in large-scale
spatial patterns, which are similar to a wide variety of vegetation patterns ob-
served in drylands, peatlands, savannas and undersea (see, e.g. the monograph
[23]). Here we do not intend to enter in the very rich field of pattern formation
but only to complete the mathematical analysis of these types of models already
initiated in [15] (see also [22]). We also mention the mathematical study of the
corresponding dynamical system (now given by a set of parabolic equations) made
in [19, 20, 14]. Understanding the dynamics and stability/instability of spatially
extended ecosystems has become an active field of research in the last two decades
within communities of ecologists, environmental scientists, mathematicians and
physicists.

The more general version of the system we shall consider in this paper is given
by  −δb∆b = −µb+Gbb(1− b) in Ω,

−δw∆w = −Gww − Ebw + Ibh in Ω,
−δh∆h2 = −Ibh+ p in Ω,

(1.1)

where we suppose that Ω ⊂ R2 is a bounded domain with C2 boundary and n
is the outward pointing unit normal on ∂Ω. The vertical variable usually arises
in some extra terms in third equation representing the ground surface height for
non-flat topographies but here they are neglected in order to get a more basic
qualitative study. Here, b represents the biomass, w the soil-water content and h
the surface-water height (after suitable non-dimensionalization). The growth rate
Gb and the water uptake rate Gw are non-local terms given by

Gb(b, w) = ν

∫
Ω

g(x, y)w(y) dy and Gw(b) = γ

∫
Ω

g(y, x)b(y) dy

where

g(x, y) =
1

2πσ2
exp

{
− |x− y|

2 [σ(1 + ηb)]
2

}
for x, y ∈ Ω. (1.2)

Moreover, µ(x) > 0 represents the biomass loss rate,

Eb(b) =
ν

1 + ρb
(1.3)

is the evaporation rate of the soil water, and

Ib(b) = α
b+ q/c

b+ q
(1.4)
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represents the infiltration rate of the surface water. Notice that the third equation
involves nonlinear diffusion of porous medium type and the precipitation rate
datum p which we will assume, for simplicity,

p ∈ C(Ω), p(x) > 0 for any x ∈ Ω. (1.5)

All parameters α, ρ, ν, q, σ are nonnegative and c > 1. With respect to the bound-
ary conditions, we should point out that although in most of the previous papers

it is assumed Neumann boundary conditions,
∂b

∂n
=
∂w

∂n
=
∂h

∂n
= 0 hold on ∂Ω, a

sharper modelling of some concrete example will require the use of other types of
boundary conditions, among them, of course, Dirichlet conditions.

It is well-known ([18, 28, 23]) that the ecosystem response to decreasing rainfall,
for example, may take the form of abrupt collapses to a nonproductive “desert
state”, or involve gradual desertification, consisting of a cascade of state transitions
to sparser vegetation, or gradual vegetation retreat by front propagation. This
explains the crucial role played by the data given by p. In a simplified framework
(for very local purposes) it can be considered as a given positive constant (and
the possible multiplicity of solutions according the values of p lead to different
kinds of bifurcation diagrams). In a more spatially global framework p should
be understood as a spatial given function p(x) which may justify the occurrence
of fronts separating regions in which h > 0 from parts in which h = 0. Let us
mention that rigorous mathematical study of the qualitative behavior of solutions
is a necessary complement of previous studies in which the use of computational
tools for quite special cases (see a very complete source of references in [23]) leads
to create some theories which require to be checked in each new special case of the
parameters and other data.

In [15] the authors consider the situation of plant species with negligible below
ground biomass. In this case it can be assumed that the root extension parameter
is η = 0. And also that since the minimal root size of such plant specie goes to zero,
non-local effects of the root systems are negligible. In such a situation we may
replace g(x, y) with the Dirac delta based on x and hence obtaining the following
local coupled system −δb∆b = −µ(x)b+ υwb(1− b) in Ω,

−δw∆w = −γbw − Ebw + Ibh in Ω,
−δh∆h2 = −Ibh+ p in Ω,

(1.6)

with the Neumann boundary conditions.
Then the authors do not study the full system (1.6) but only the case where

infiltration feedback and soil-water diffusion are not present, i.e., when δw = δh =
0. In this case, they obtain existence of multiple positive solutions for 1 ≤ µ(x) ≤ µ̄
in terms of the parameter p. Moreover, they also get results concerning the free
boundary of the surface-water solution component h in the case of the full system.

In this paper we study the full system in both the non-local and the (simplified)
local versions. This study is greatly simplified by making the change of variable
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H = h2 (and then replacing again H by h) obtaining the system (now we change
the boundary conditions)

−δb∆b+ µ(x)b = Gbb(1− b) in Ω,
−δw∆w +Gww + Ebw = Ibh in Ω,

−δh∆h+ Ib
√
h = p in Ω,

b = w = h = 0 on ∂Ω.

(1.7)

This choice of the boundary conditions will simplify (and somewhat modify) the
problem with respect to Neumann boundary conditions, but we will show that
most of the results hold for general (linear) boundary conditions of the third type

∂b

∂n
+ ω(x)b = 0 on ∂Ω,

with ω(x) > 0 smooth (see Remark 5.14).

Notice that the presence of
√
h in the third equation of (1.7)) makes possible

the existence of non-negative solutions with “dead core” where the solution an-
nihilates (the above mentioned fronts originated by data p(x) vanishing in some
subregions). Examples of systems with such solutions were given time ago in
[13, 26, 27].

The paper is organized as follows. Just for the sake of completeness, we deal,
in Section 2, with a simple study of several particular cases of the system which
may have some interest in the applications. The main results of this paper concern
the rest of the sections of this paper. In Section 3 we prove existence of positive
solutions for the local system and in Section 4 in the non-local case. In Section 5
we study, perhaps the deeper results of this paper, the existence of positive solu-
tions when δb > 0 and δw = 0 getting both uniqueness and multiplicity results. In
contrast to previous results dealing with Neumann boundary condition, we obtain
some bifurcation diagrams showing rigorously its starting value (from the first
eigenvalue λ1 of a linear operator with the corresponding weights and with Dirich-
let boundary conditions) and characterizing the supercritical (resp. subcritical)
nature of the branch (something unnoticed before in the literature) according the
positivity (resp. negativity) of the parameters balance expression ν(1− ρ) + γ. In
Section 6 we study the case in which p(x) vanishes on ∂Ω completing the results
of [15]. We show (for δh > 0) that if p(x) grows near ∂Ω as d(x, ∂Ω)2 then h(x)
grows, at most, as d(x, ∂Ω)4. In particular h is a “flat solution”, in the sense that
h = ∂h

∂n = 0 on ∂Ω, with h > 0 on Ω if p > 0 on Ω. Finally, Section 7 is devoted
to recall the main conclusions and to state a few open problems.

2. The local system. Some particular cases

First we will consider some special cases of the general local system which may
have some particular interest for the applications. The general version of the local
system after one change of variable is
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
−δb∆b+ µ(x)b = νwb(1− b) in Ω,

−δw∆w + γbw + Ebw = Ib
√
h in Ω,

−δh∆h+ Ib
√
h = p(x) in Ω,

b = w = h = 0 on ∂Ω.

(2.1)

We recall that we have

Eb(b) =
ν

1 + ρb
, Ib(b) = α

b+ q/c

b+ q
(2.2)

and thus Eb(b) is decreasing in b and

ν

1 + ρ
≤ Eb(b) ≤ ν if b ∈ [0, 1], (2.3)

and that Ib(b) is increasing in b and for any b ≥ 0

0 <
α

c
< Ib(b) < α. (2.4)

In this paper we are mainly interested in continuous solutions of system (2.1)
which requires some assumptions on the data which are stronger than when one
deals with other kind of weak solutions (see Remarks 2.3 and 5.13). We assume
that µ is C1 and for some µ > 1

1 ≤ µ(x) ≤ µ (2.5)

and p(x) ≥ 0 is continuous on Ω.
We will use several well-known auxiliary results which give, at the same time,

some basic properties of solutions. Their proof can be obtained even under con-
ditions much more general than the above indicated framework, nevertheless we
give here a short proof of them for the sake of completeness.

Lemma 2.1. Assume that b ≥ 0 is a solution of (2.1). Then 0 ≤ b(x) < 1 on Ω.

Proof. Indeed, let us prove, first, that 0 ≤ b ≤ 1. If we define

A = {x ∈ Ω | 1 < b(x)},

then we have −δb∆b + µ(x)b < 0 on A and b = 1 on ∂A. From the Maximum
Principle, b < 1 on A, a contradiction. Moreover, if b(x0) = 1 for some x0 ∈ Ω,
then

0 ≤ −∆b(x0) = −µ(x0)b(x0) + νw(x0)b(x0)(1− b(x0)) = −µ(x0) < 0,

which is a contradiction.

Lemma 2.2. The problem{
−∆w + β(w) = h(x)
w = 0

in Ω,
on ∂Ω,

(2.6)

where β is continuous and monotone increasing with β(0) = 0 and h ∈ C(Ω),
h ≥ 0 in Ω, has a solution w ≥ 0. If h > 0 in Ω, then w > 0 in Ω and it is unique.
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Proof. We use sub and supersolutions. As a supersolution we pick w0 such that
−∆w0 = h in Ω, w0 = 0 on ∂Ω, w0 ∈ C1

0 (Ω) and w0 > 0. For a subsolution let us
choose D smooth such that h(x) ≥ c1 > 0 on D, and let µ1 > 0 the first eigenvalue
of −∆ on D with eigenfunction ψ1 > 0, i.e., −∆ψ1 = µ1ψ1 in D, ψ1 = 0 on ∂D.
We can show that

u0 =

{
cψ1 on D
0 on Ω \D,

for c > 0 small is a subsolution. Hence there exists a C1(Ω) solution with w ≥ 0.
We do not have necessarily w > 0, but this is obviously the case if h > 0 in Ω.
Uniqueness is proved by the usual monotonicity argument.

Remark 2.3. As indicated before, the above auxiliary results hold under more
general assumptions. For instance, the proof of Lemma 2.2 for h ∈ L1(Ω, d) where
d = d(x, ∂Ω) can be found in [16]. In this case the (unique) solution should be
understood in the class of very weak solutions of problem (2.6).

We study next a few particular cases of system (2.1). The meaning of such
particular cases sometimes can be easely understood in terms of the ecological
model (see, e.g. Section 9.2.3 of [23]).

2.1. Solutions with b ≡ 0

In this case the system is reduced to −δw∆w + E0w = I0

√
h in Ω,

−δh∆h+ I0

√
h = p(x) in Ω,

w = h = 0 on ∂Ω.

(2.7)

Since p ≥ 0, the second equation has a unique solution h(.; p) ≥ 0 (Lemma
2.2). For this h(.; p) the first equation has a unique solution w > 0. Thus we have

Proposition 2.4. There is a unique solution (w, h) with w > 0, h ≥ 0 of system
(2.1) with b ≡ 0.

2.2. Solutions with w ≡ 0

Now the system is written as
−δb∆b+ µ(x)b = 0 in Ω,

−δh∆h+ Ib
√
h = p(x) in Ω,

b = h = 0 on ∂Ω.
(2.8)

Now b ≡ 0 and the system (2.1) has only the solution (0, 0, h) with h ≥ 0 the
unique solution of {

−δh∆h+ I0

√
h = p(x) in Ω,

h = 0 on ∂Ω.

Proposition 2.5. The system (2.1) has a unique solution (0, 0, h) with h ≥ 0 and
w ≡ 0.
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2.3. Solutions with h ≡ 0

It is clear that this is only possible if p(x) ≡ 0 as well. In this case the system
(2.1) is reduced to  −δb∆b+ µ(x)b = νwb(1− b) in Ω,

−δw∆w + γbw + Ebw = 0 in Ω,
b = w = 0 on ∂Ω.

(2.9)

But since b ≥ 0, the second equation and the Maximum Principle give w ≡ 0
and the first one b ≡ 0. Hence

Proposition 2.6. If p(x) ≡ 0 the system (2.1) has only the trivial solution.

2.4. Solutions with δh ≡ 0

Now we have Ib
√
h = p(x) and the resultant system is −δb∆b+ µ(x)b = νwb(1− b) in Ω,

−δw∆w + γbw + Ebw = p(x) in Ω,
b = w = 0 on ∂Ω,

(2.10)

which can be written as −δb∆b+ µ(x)b = νwb(1− b) in Ω,
−δw∆w = p(x)− γbw − Ebw in Ω,
b = w = 0 on ∂Ω.

(2.11)

Let us see first if the system is cooperative (in the sense of the associate dynamical
system; see, e.g., [25] and [29]). First

∂

∂w
(νwb(1− b)) = νb(1− b) ≥ 0,

since b ∈ [0, 1]. For the second equation we need

∂

∂b
(p(x)− γbw − Ebw) = −γw +

νρw

(1 + ρb)2
≥ 0, ∀b ∈ [0, 1],

i.e., νρ > γ(1 + ρb)2, which holds if

νρ > γ(1 + b)2,

for any b ∈ [0, 1], in particular if

νρ > 4γ. (2.12)

Notice that in the framework of activator/inhibitor reaction-diffusion systems this
means that b is an activator, see [24]. Now let us check that (b0, w0) = (0, 0) is
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a subsolution and that (b0, w0) = (1, w∗), with w∗ > 0 the unique solution of the
linear problem {

−δw∆w∗ + γw∗ + E1w∗ = p(x) in Ω,
w∗ = 0 on ∂Ω,

(2.13)

is a supersolution. Indeed,
−δb∆b0 + µ(x)b0 − νw0b0(1− b0) = 0
−δb∆b0 + µ(x)b0 − νw0b

0(1− b0) = µ(x) > 0
−δw∆w0 + γb0w0 + Eb0w0 − p(x) = −p(x) ≤ 0
−δw∆w0 + γb0w0 + Eb0w0 − p(x) = 0

and then there exists at least a solution (b, w) such that 0 ≤ b ≤ 1 and 0 ≤ w ≤ w∗.

Proposition 2.7. Under condition (2.12) there exists at least a solution (b, w) of
the system (2.1) with δh = 0.

Remark 2.8. Apparently the usual “concavity” condition giving uniqueness of
solutions for systems is not satisfied.

If condition (2.12) is not satisfied we should follow a different approach, e.g.,
coupled sub and supersolutions or Schauder fixed point theorem.

If (2.12) is not satisfied we use Schauder’s fixed point theorem with T : K → K,
K = [0, 1]× [0,W ∗] ⊂ C(Ω)2 defined by T (b, w) = (B,W ) given by −δb∆B + µ(x)B = νwb(1− b) in Ω,

−δw∆W + γbW + EbW = p(x) in Ω,
B = W = 0 on ∂Ω,

(2.14)

and where W ∗ is the unique solution of{
−δw∆W ∗ = p(x) in Ω,
W ∗ = 0 on ∂Ω.

(2.15)

It is clear that 0 ≤ B ≤ 1 and we have{
−δw∆(W ∗ −W ) = γbW + EbW > 0 in Ω,
W −W ∗ = 0 on ∂Ω.

(2.16)

Hence, W ≤ W ∗ by the Maximum Principle. We do not prove that T is com-
pact. The reason is that a similar result will be proved later in a more involved
framework.

2.5. Solutions with δw ≡ 0

In this case γbw + Ebw = Ib
√
h, which gives

w =
Ib
√
h

γb+ Eb
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and the corresponding problem is
−δb∆b+ µ(x)b =

νIb
√
h

γb+ Eb
b(1− b) in Ω,

−δh∆h+ Ib
√
h = p(x) in Ω,

b = h = 0 on ∂Ω.

(2.17)

The system is not cooperative since

∂

∂b

{
p(x)− Ib

√
h
}

= −I ′b
√
h < 0.

Again we should use Schauder’s fixed point theorem. We will take K = [0, 1] ×
[0, h∗] where h∗ is given by{

−δh∆h∗ = p(x) in Ω,
h∗ = 0 on ∂Ω,

(2.18)

and define T (b, h) = (B,H) from the system
−δb∆B + µ(x)B =

νIb
√
h

γb+ Eb
b(1− b) in Ω,

−δh∆H + Ib
√
H = p(x) in Ω,

B = H = 0 on ∂Ω.

(2.19)

As above, 0 ≤ B ≤ 1 and{
−δh∆(h∗ −H) = Ib

√
H > 0 in Ω,

H − h∗ = 0 on ∂Ω,
(2.20)

gives H ≤ h∗.

2.6. Solutions with h fixed

In this case the system (2.1) is reduced to
−δb∆b+ µ(x)b = νwb(1− b) in Ω,

−δw∆w = −γbw − Ebw + Ib
√
h in Ω,

−δh∆h+ Ib
√
h = p(x) in Ω,

b = w = 0 on ∂Ω.

(2.21)

Once again, we check if this system is cooperative. First we have that

∂

∂w
(νwb(1− b)) ≥ 0 ∀b ∈ [0, 1].

However
∂

∂b
(−γbw − Ebw + Ib

√
h) = −γw − E ′bw + I ′b

√
h
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which is positive if −E ′bw > γ for any b ∈ [0, 1], which holds as above under
condition (2.12).

Now we can see that (0, 0) is a subsolution and (1, w∗), where w∗ is the unique
solution of {

−δw∆w∗ = I1

√
h in Ω,

w∗ = 0 on ∂Ω,
(2.22)

is a supersolution. Indeed, ∀b ∈ [0, 1]

−δw∆w∗ + γbw∗ + Ebw∗ − I1

√
h = (I1 − Ib)

√
h+ γbw∗ + Ebw∗ > 0,

since Ib is increasing. Thus we have proved

Proposition 2.9. Under condition (2.12) there exists at least a solution of system
(2.21) for h > 0 given.

3. Existence when min(δb, δw, δh) > 0: the local system

We study now the full version of the system
−δb∆b+ µ(x)b = νwb(1− b) in Ω,

−δw∆w = −γbw − Ebw + Ib
√
h in Ω,

−δh∆h = −Ib
√
h+ p(x) in Ω,

b = w = h = 0 on ∂Ω.

(3.1)

Since I ′b > 0, the right hand side of the last equation is not increasing in b, the
system is not cooperative. We apply Schauder’s fixed point theorem. For this, we
define the nonlinear operator T : E → E, where E = C(Ω)3 by

T (b, w, h) = (B,W,H),

where (B,W,H) is the solution of the system
−δb∆B + µ(x)B = νwb(1− b) in Ω,

−δw∆W + γbW + EbW = Ib
√
h in Ω,

−δh∆H + Ib
√
H = p(x) in Ω,

B = W = H = 0 on ∂Ω.

(3.2)

It is clear that this system has a unique solution from the linear theory and Lemma
2.2. Now, we look for K ⊂ E, K convex, bounded, closed and such that T (K) ⊂ K
with T continuous and compact. To define K we take H0 as the unique solution
H0 > 0 of {

−δh∆H0 = p(x) in Ω,
H0 = 0 on ∂Ω,

(3.3)

(recall that I1 > 0) and with W 0 > 0 the unique solution to{
−δw∆W 0 = I1

√
h in Ω,

W 0 = 0 on ∂Ω.
(3.4)
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We define K =[0, 1]× [0,W 0]× [0, H0], which is convex, bounded and closed in E.
Let us check that T (K) ⊂ K. We have already seen that 0 ≤ B ≤ 1 if 0 ≤ b ≤ 1.
Next we have, from (2.21),{

−δh∆(H0 −H) = Ib
√
H in Ω,

H0 −H = 0 on ∂Ω,
(3.5)

and by the Maximum Principle H0 ≥ H. Finally, we also have{
−δw∆(W 0 −W ) = +γbW + (I1

√
H0 − Ib

√
H) > 0 in Ω,

W 0 −W = 0 on ∂Ω,
(3.6)

and again, from the Maximum Principle W 0 ≥W follows.
The proof of the compactness of the operator K follows from the fact that when

the right hand side data (b, w, h) are uniformly bounded in E = C(Ω)3 then we
know that the solutions are also uniformly bounded in E which implies the same
property for (∆B,∆W,∆H). Then by the linear theory (see, e.g., the exposition
made in [5]) (B,W,H) are uniformly bounded in W 2,p(Ω) for any p ≥ 1 which
implies the equicontinuity and the Ascoli-Arzelà result leads to the compactness
of K. In order to prove the continuity of the operator T it suffices to apply
Proposition 6 of [6]) and then, if f(b) = b(1− b),

‖B1 −B2‖L∞(Ω) ≤ C1 ‖f(b1)− f(b2)‖L∞(Ω) ≤ C1ω ‖b1 − b2‖L∞(Ω) ,

where C1 = νmaxi=1,2 ‖wi‖L∞(Ω) and ω is the Lipschitz constant of the nonlinear

function f(b). Analogously,

‖W1 −W2‖L∞(Ω) ≤ C2

∥∥∥√h1 −
√
h2

∥∥∥
L∞(Ω)

≤ C2

√
‖h1 − h2‖L∞(Ω)

where C2 = maxi=1,2 ‖Ibi‖L∞(Ω). Finally, since Ib is a Lipschitz function of b we
have

−δh∆(H1 −H2) + Ib1(
√
H1 −

√
H2) = (Ib2 − Ib1)

√
H2 ≤ C3C4 ‖b1 − b2‖L∞(Ω) ,

where C3 is the Lipschitz constant of function Ib and C4 ≥ ‖H2‖1/2L∞(Ω). Then,

arguing as in the proof of Proposition 6 of [6] we get

‖H1 −H2‖L∞(Ω) ≤ C3C4 ‖b1 − b2‖L∞(Ω)

(notice that the above inequalities are connected with the accretiveness in L∞(Ω)
of each one of the scalar operators associated to the equations of W and H, and
with the ω−accretiveness in L∞(Ω) of the operator associated to B: see, e.g., [4]).
Thus, since, in fact, (bi, wi, hi), (B,W,H) ∈ E, for i = 1, 2, we get the continuity
of T.
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4. Existence: the non-local system when min(δb, δw, δh) > 0

We study now the original non-local system
−δb∆b+ µ(x)b = Gbb(1− b) in Ω,

−δw∆w +Gww + Ebw = Ib
√
h in Ω,

−δh∆h+ Ib
√
h = p in Ω,

b = w = h = 0 on ∂Ω.

(4.1)

We have already seen that the system (4.1) is not cooperative. We proceed in
a very similar way as in the non-local case. The nonlinear operator T : E → E,
where E = C(Ω)3, is defined by

T (b, w, h) = (B,W,H),

where (B,W,H) is the solution of the system
−δb∆B + µ(x)B = Gb(x)b(1− b) in Ω,

−δw∆W +Gw(x)W + EbW = Ib
√
h in Ω,

−δh∆H + Ib
√
H = p(x) in Ω,

B = W = H = 0 on ∂Ω.

(4.2)

The system (4.2) has a unique solution: this follows from linear theory (coefficients
Gb(x) and Gw(x) are smooth enough) and Lemma 2.2. Again, the Maximum
Principle yields 0 ≤ B ≤ 1 if 0 ≤ b ≤ 1. We define H0 > 0 as above, the same
for W 0 > 0. Both are positive by the Maximum Principle (notice that Gb(x),
Gw(x) ≥ 0).

We consider K =[0, 1]× [0,W 0]× [0, H0] again. The proof that H0 ≥ H is the
same. It is only slightly different for W 0 ≥W . We have{
−δw∆(W 0 −W ) = Gw(x)W + EbW + (I1

√
H0 − Ib

√
h) > 0 in Ω,

W 0 −W = 0 on ∂Ω,
(4.3)

and the comparison follows. The proof of the compactness and continuity of the
operator T is exactly the same than the one given in the above sections since only
a priori estimates in the coefficients of the system were used in the arguments of
the proof.

5. Multiplicity of solutions when δb > 0 and δw = 0

We study in this Section the existence of positive solutions to the system when
δb > 0 and δw = 0.

Let us start by assuming also that δh = 0 and we will consider the case δh > 0
to the end of the Section. As above, µ and p are smooth functions such that
0 ≤ µ(x) ≤ µ̄ and p(x) > 0 on Ω. By simplicity we assume δb = 1. We introduce
a real parameter λ in the equation{

−∆b+ µ(x)b = λp(x)f(b) in Ω,
b = 0 on ∂Ω,

(5.1)
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where

f(b) =
νb(1− b)(1 + ρb)

ν + γb(1 + ρb)
,

with ν, γ, ρ > 0. It is clear that f(0) = f(1) = 0, f ′(0) = 1 and f(b) < 0 for b > 1.
As above solutions satisfy 0 ≤ b ≤ 1 and, by the Strong Maximum Principle, if

b ≥ 0 is a solution b > 0 in Ω and
∂b

∂n
< 0 on ∂Ω.

We have a first existence result by using sub and supersolutions. The linear
eigenvalue problem {

−∆ϕ+ µ(x)ϕ = λp(x)ϕ in Ω,
ϕ = 0 on ∂Ω,

(5.2)

has a first positive eigenvalue λ1 > 0 with eigenfunction ϕ1 > 0 such that
‖ϕ1‖L∞ = 1. We point out that this holds even if p(x) vanishes on ∂Ω (a case
which will be considered in Section 6 below): see, e.g., [17] and its references.

Theorem 5.1. For any λ > λ1 there exists at least a positive solution of (5.1).

Proof. It is easy to see that b0 ≡ 1 is a supersolution. We look for subsolutions of
the form b0 = cϕ1, c > 0. We have

−∆b0 + µ(x)b0 − λp(x)f(b0) = cλ1p(x)ϕ1 − λp(x)f(b0)

= cλ1p(x)ϕ1 − λp(x)cϕ1 − λp(x)(f(cϕ1)− cϕ1)

= (λ1 − λ)p(x)cϕ1 + o(cϕ1) < 0

for c > 0 small.

We study the uniqueness of the positive solutions. For this we try to check if
the well-known “concavity” condition holds, [7, 8]. This condition reads(

f(b)

b

)′
=
−γρ2b2 − 2ρ(ν + γ)b+ ν(ρ− 1)− γ

(ν + γb+ ργb2)2
< 0 ∀b ∈ [0, 1],

or equivalently

γρ2b2 + 2ρ(ν + γ)b+ ν(1− ρ) + γ > 0, ∀b ∈ [0, 1]. (5.3)

We consider two cases, the first is when

ν(1− ρ) + γ > 0. (5.4)

This means that both real roots of (5.3) have the same sign, which is actually

negative. Hence

(
f(b)

b

)′
< 0 for any b ∈ [0, 1] and we get uniqueness. The

second case is when
ν(1− ρ) + γ < 0. (5.5)

Now both roots of (5.3) have opposite sign and the uniqueness condition is not
satisfied. We have thus proved the first part of the



240 J.I. Diaz and J. Hernàndez

Theorem 5.2. If (5.4) holds there exists a unique positive solution for any λ > λ1

and there is no solution if λ ≤ λ1. Moreover, this unique solution is linearly stable.

Proof. First, it remains to show that there is no solution if λ < λ1. Indeed, assume

that b > 0 is a solution. Since

(
f(b)

b

)′
< 0, f(b) ≤ b for 0 ≤ b ≤ 1. If we multiply

(5.1) by b and integrate by parts on Ω we get∫
Ω

(|∇b|2 + µ(x)b2) = λ

∫
Ω

p(x)f(b)b ≤ λ
∫

Ω

p(x)b2

and hence

λ1 ≤
∫

Ω
(|∇b|2 + µ(x)b2)∫

Ω
p(x)b2

= λ.

If b is a solution to (5.1), the corresponding linearized eigenvalue problem is{
−∆z + µ(x)z − λp(x)f ′(b)z = υz in Ω,
z = 0 on ∂Ω.

(5.6)

If υ1 is the first eigenvalue to (5.6) with eigenfunction ψ1 > 0, ‖ψ1‖L∞ = 1, we
have {

−∆ψ1 + µ(x)ψ1 − λp(x)f ′(b)ψ1 = υ1ψ1 in Ω,
ψ1 = 0 on ∂Ω.

(5.7)

Multiplying (5.1) by ψ1 and (5.7) by b and integrating on Ω with Green’s formula
we obtain ∫

Ω
∇b · ∇ψ1 +

∫
Ω
µ(x)bψ1 −

∫
Ω
λp(x)f(b)ψ1 = 0

=
∫

Ω
∇b · ∇ψ1 +

∫
Ω
µ(x)bψ1 − λ

∫
Ω
p(x)bf ′(b)ψ1 − υ1

∫
Ω
bψ1

and hence

υ1 =
λ
∫

Ω
p(x)

[
f(b)− bf ′(b)

]
ψ1∫

Ω
bψ1

. (5.8)

Since
[
f(b)− bf ′(b)

]
> 0 from the uniqueness condition, υ1 > 0, which ends

the proof.

Remark 5.3. Actually the above computation in the proof of Theorem 5.2 shows
that 0 is not an eigenvalue of the linearization along a solution b of (5.1). This,
together with an application of the well-known Crandall-Rabinowitz local inversion
theorem ([9]) at the simple eigenvalue λ1 and the Implicit Function Theorem shows
that the branch of solutions λ→ b(λ) is a smooth mapping in some function space.
We skip the details.

It remains to study the case (5.5). We start by showing the existence of an
unbounded continuum of positive solutions bifurcating from λ1 in both cases (5.4)
and (5.5).
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Since solutions satisfy 0 ≤ b ≤ 1, we replace f by the continuous function
f(b) = f(b) if 0 ≤ b ≤ 1, f(b) = 0 if b > 1. It is clear that the associate Nemitskii
operator F : C(Ω)→ C(Ω), F (u)(x) = f(u(x)) is well-defined and continuous. If
we denote by K the solution operator of{

−∆u+ µ(x)u = λp(x)h(x) in Ω,
u = 0 on ∂Ω,

(5.9)

for any h ∈ C(Ω), i.e., K = (−∆ + µ(x)I)−1 : C(Ω) → C(Ω) is well-defined
and continuous as follows easily from the classical linear theory and (5.1) can be
written equivalently as b = λKF (b) in C(Ω). Since KF is a compact and positive
operator and right-differentiable at b = 0, we can apply the global bifurcation
result (Theorem 18.3 in [2], see also [11]) and get the following

Theorem 5.4. There exists an unbounded continuum of positive solutions of (5.1)
bifurcating from the line of trivial solutions at the point (λ1, 0).

Now we see that if (5.4) holds this continuum coincides with the branch of
positive solutions for λ > λ1, previously obtained.

Next we study the case where (5.5) holds. Let us consider firstly the associate
heuristics. The McLaurin expansion of the function f is actually

f(b) = b+ ((ρ− 1)− γ

ν
)b2 + · · ·

By the way,

f ′′(0) = 2((ρ− 1)− γ

ν
).

We see immediately that (5.4) (resp. (5.5)) holds if (ρ − 1) − γ
ν < 0 (resp. (ρ −

1) − γ
ν > 0). Heuristics tells us that for “small” solutions the equation (5.1) can

be “approximated” by{
−∆b+ µ(x)b = λp(x)

[
b+ ((ρ− 1)− γ

ν )b2
]

in Ω,
b = 0 on ∂Ω.

(5.10)

If (5.4) holds, (5.10) is the logistic equation and we have obtained the corre-
sponding results in Theorems 5.1 and 5.2.

If (5.5) holds, (5.10) is the well-known semilinear subcritical equation with
a branch of positive solutions “bifurcating” to the left at λ = λ1. Since the
continuum in Theorem 5.4 should go to infinity as λ → +∞ (see Lemma 5.6
below), it seems that there should be at least two solutions in a left-neighborhood
of λ1.

Moreover, if (5.5) holds it is easy to see that, if b2 > 0 is the only positive
solution of

γρ2b2 + 2ρ(ν + γ)b+ ν(1− ρ) + γ = 0, (5.11)

we have 0 < b2 < 1. Indeed, if not

1 <
−2ρ(ν + γ) +

√
4ρ2(ν + γ)2 − 4γρ2(ν(1− ρ) + γ)

2γρ2
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is equivalent to
γρ2 + 2(ν + γ) < ν(1− ρ) + γ < 0,

a contradiction since all coefficients are positive. Hence the integral in (5.8) is neg-
ative if ‖b‖L∞ < b2, i.e., such “small” solutions (if they exist!) should be linearly
unstable, something which fits well with the left bifurcation above argument.

Next, we give a rigorous proof of the heuristic results.

Theorem 5.5. If (5.5) holds, then there exists a smooth curve of positive solutions
of (5.1) bifurcating to the left from λ1 and there exists a positive value λ∗ < λ1

such that no positive solution b is possible if λ ∈ [0, λ∗). Solutions on this branch
of small norm are linearly unstable.

Let us start by proving that the possible bifurcation branch does not touch
the axis λ = 0 since no positive solution b is possible if λ is small enough. That
was already shown when (5.4) holds. Let us prove it for the case in which (5.5) is
satisfied

Lemma 5.6. Assume (5.5). Then there exists a positive value λ∗ < λ1 such that
no positive solution b is possible if λ ∈ [0, λ∗).

Proof. Multiplying the equation by Φ1 with{
−∆Φ1 = λ̃1Φ1 in Ω,
Φ1 = 0 on ∂Ω.

(5.12)

and integrating on Ω we get

λ̃1

∫
Ω

bΦ1 +

∫
Ω

µ(x)bΦ1 = λ

∫
Ω

p(x)f(b)Φ1 .

Thus, necessarily ∫
Ω

Φ1

[
(λ̃1 + µ(x))b− λp(x)f(b)

]
= 0 . (5.13)

But from (6.3)
0 ≤ p(x) ≤ ‖p‖L∞(Ω) := p,

for any x ∈ Ω. Then, (5.13) is clearly impossible if

λp
f(b)

b
≤ λ̃1 for b ∈ (0, 1).

Moreover, since we can assume (thanks to (5.5)) that
f(b)

b
≤M for b ∈ (0, 1), for

some M > 1, we get that no positive solution may exists if

0 ≤ λ ≤ λ̃1

pM
.
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To prove the rest of conclusions of Theorem 5.5 we will apply a local inversion
result by Crandall-Rabinowitz [10]:

Theorem 5.7. [10]. Let X and Y be real Banach spaces, let I ⊂ R be a bounded
interval and F : I ×X → Y , F ∈ C2, let λ0 ∈ I and assume that satisfies
i) F (λ, 0) = 0 for every λ ∈ I;
ii) dim Ker Fx(λ0, 0) = codimR(Fx(λ0, 0)) = 1;
iii) Fλx(λ0, 0)x0 /∈ R(Fx(λ0, 0)), where Ker Fx(λ0, 0) = [x0].
Let Z be a complementary subespace of [x0] in X. Then there exists an interval J
such that 0 ∈ J and C1 functions λ : J → R and ψ : J → Z such that λ(0) = λ0,
ψ(0) = 0 and x(s) = sx0 + sψ(s) implies F (λ(s), x(s)) = 0. Moreover F−1(0) is
uniquely formed (in a neighborhood of (λ0, 0)) by the curves x = 0 and (λ(s), x(s)),
s ∈ J .

Proof of Theorem 5.5. To complete the proof we use Theorem 5.7 with λ0 = λ1,
X = C2,α

0 (Ω) = {u ∈ C2,α(Ω) | u = 0 on ∂Ω}, Y = Cα(Ω), for some α ∈ (0, 1)
and

F (λ, u) = −∆u+ µ(x)u− λp(x)f(u).

It is easy to see that F ∈ C2 (actually C∞). We have

Fu(λ, u)v = −∆v + µ(x)v − λp(x)f ′(u)v

Fλu(λ, u)v = −p(x)f ′(u)v

Fu u(λ, u)(v, w) = −λp(x)f
′′
(u)vw.

Also, we can see that Ker Fu(λ1, 0) = [ϕ1] and

R(Fu(λ1, 0)) =

{
u ∈ Cα(Ω)

∣∣∣∣ ∫
Ω

uϕ1 = 0

}
.

Moreover Fλu(λ1, 0)ϕ1 /∈ R(Fu(λ1, 0)) since
∫

Ω
p(x)ϕ2

1 6= 0. Hence λ1 is a bifurcat-
ing point with a smooth curve bifurcating from λ1 with u(s) > 0 for 0 < s < s0,
for some s0 > 0.

That this curve bifurcates to the left follows, e.g., from the results in [1, pp.
96-97] since the curve is given by

λ = λ1 −
b

a
s+ o(s)

with
a = 〈Fλu(λ1, 0)ϕ1, ϕ1〉 = −

∫
Ω
p(x)ϕ2

1 < 0,
b = 1

2 〈Fu u(λ1, 0)(ϕ1, ϕ1), ϕ1〉 = − 1
2

∫
Ω
p(x)f ′′(0)ϕ3

1 < 0,

since f ′′(0) < 0 by (5.5).
That these solutions are linearly unstable if ‖u‖L∞ ≤ b2 (b2 defined above: see

(5.11) follows from (5.8).

Remark 5.8. If ν(1−ρ)+γ = 0 it is necessary to use the local bifurcation results
in, e.g., [1, p. 97] involving f

′′′
(0).
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Theorem 5.9. If (5.5) holds there exists 0 < λ < λ1 such that there are (at least)
two positive solutions to (5.1) for λ < λ < λ1.

Proof. The result follows from Theorems 5.5, 5.4, Lemma 5.6 and the fact that
0 ≤ b < 1.

We add another proof of existence of positive solutions to the left of λ1. This
is done under very special conditions on the coefficients µ(x) and p(x). However
we include it for the sake of completeness concerning the application of different
methods. We shall built a family of subsolutions of the form bλ(x) = k(λ)ψ1(x),
where k(λ) ∈ (0, 1) will be determined later and ψ1(x) is the normalized (ψ1 >

0, ‖ψ1‖L∞ = 1) first eigenfunction associated to the first eigenvalue λ̂1 of the
auxiliary problem (without absorption term){

−∆ψ1 = λ̂1p(x)ψ1 in Ω,
ψ1 = 0 on ∂Ω.

(5.14)

Notice that since µ > 0 and

λ̂1 = inf
ψ 6=0

∫
Ω
|∇ψ|2∫

Ω
p(x)ψ2

and λ1 = inf
ψ 6=0

∫
Ω

(|∇ψ|2 + µ(x)ψ2)∫
Ω
p(x)ψ2

we obviously know that λ̂1 < λ1. We shall assume now the stronger condition

λ̂1 + Cµ,p < λ1, (5.15)

where

Cµ,p = max
x∈Ω

µ(x)

p(x)
.

Since, λ1− λ̂1 is essentially related to the expression
∫

Ω
µ(x)ψ2/

∫
Ω
p(x)ψ2 and we

have, for ψ ∈ H1
0 (Ω) ⊂ L2∗(Ω), 2∗ = 2n/(n− 2) if n ≥ 2,∫

Ω
µ(x)ψ2∫

Ω
p(x)ψ2

≥
µ
∫

Ω
ψ2[∫

Ω
p(x)q

] 1
q ‖ψ‖2L2∗

, with q = 2∗/(2∗ − 2),

then assumption (5.15) requires that p(x) is essentially concentrated in Ω around
the maximum of µ and with p >> p, where p = minx∈Ω p(x) (notice that if p(x)
and µ(x) are constant functions then (5.15) cannot be satisfied). Analogously,
if we assume p(x) almost a constant function then (5.15) requires that µ(x) is
essentially concentrated on Ω around its minimum value µ and with µ << µ
where µ = max

x∈Ω
µ(x).

Theorem 5.10. Assume (5.5) and (5.15). Then, for any λ ∈ (λ̂1 + Cµ,p, λ1)
there exists at least one nontrivial solution b of problem (5.1).
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Proof. Since we know that b ≡ 1 is a supersolution of problem (5.1), by applying
the method of super and subsolutions it is enough to built a branch of positive
subsolutions for λ ∈ (λ̂1 + Cµ,p, λ1). We try with functions of the form bλ(x) =
k(λ)ψ1(x). We have

−∆bλ + µ(x)bλ = (λ̂1 +
µ(x)

p(x)
)kp(x)ψ1 ≤ (λ̂1 + Cµ,p)kp(x)ψ1.

On the other hand, since 0 < bλ(x) ≤ k(λ) < 1,

λp(x)f(bλ) = λp(x)

[
νbλ(1− bλ)(1 + ρbλ)

ν + γbλ(1 + ρbλ)

]
≥ λp(x)ψ1(x)

[
νk(1− k)

ν + γk(1 + ρk)

]
.

Thus, if we take k(λ) such that

(λ̂1 + Cµ,p)k = λ
νk(1− k)

ν + γk(1 + ρk)
(5.16)

then bλ(x) becomes a subsolution since{
−∆bλ + µ(x)bλ ≤ λp(x)f(bλ) in Ω,
bλ = 0 on ∂Ω.

(5.17)

That equation (5.16) admits a positive solution k(λ) for λ ∈ (λ̂1 +Cµ,p, λ1) is easy
to check in the special case γ = 0, since then the equation leads simply to the
expression

k(λ) = 1− λ̂1 + Cµ,p
λ

and by assumption (5.15) k(λ) > 0 if λ ∈ (λ̂1 + Cµ,p, λ1] (and k(λ̂1 + Cµ,p) = 0).
The case γ > 0 small (such that (5.5) holds) is similar. Indeed, now condition
(5.16) can be rewritten as

γρ

[
λ̂1 + Cµ,p

λ

]
k2 +

(
γ

[
λ̂1 + Cµ,p

λ

]
+ ν

)
k + ν

[
λ̂1 + Cµ,p

λ
− 1

]
= 0

which have a positive root k(λ), for λ ∈ (λ̂1 + Cµ,p, λ1], given by

k(λ) =

√(
γ
[
λ̂1+Cµ,p

λ

]
+ ν
)2

+ 4γρ
[
λ̂1+Cµ,p

λ

]
ν
[
1− λ̂1+Cµ,p

λ

]
−
(
γ
[
λ̂1+Cµ,p

λ

]
+ ν
)2

2γρ
[
λ̂1+Cµ,p

λ

] .

Thus, we can apply the method of super and subsolutions and we get the result.

Remark 5.11. It seems possible to get some similar results by taking other sub-
solutions as for instance bλ(x) = k(λ)ψ1(x) with −∆ψ1 +µψ1 = λ̂pψ1 under some
suitable additional assumption of the type (5.15).
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Remark 5.12. In previous studies of the system, corresponding to Neumann
boundary conditions (see [19, 20, 15] and the computational examples in [18, 23]),
it was not indicated the starting value (from λ1) of the bifurcation diagram, neither
its characterization as the supercritical (resp. subcritical) nature of the bifurcation
in terms of the positivity (resp. negativity) of the parameters balance expression
ν(1− ρ) + γ.

Remark 5.13. The above study can be extended to the case of other kinds of
weak solutions, for instance when p(x) is assumed to be merely in h ∈ L1(Ω, d),
but we will not enter into the details.

Remark 5.14. Most of the existence results of this paper can be extended to the
case in which instead of Dirichlet boundary conditions we have Robin boundary
conditions

∂b

∂n
+ ωb(x)b = 0,

∂w

∂n
+ ωw(x)w = 0,

∂w

∂n
+ ωh(x)w = 0 on ∂Ω,

with ωb, ωw, ωh > 0 given and smooth, and also when the boundary conditions are
of mixed type (some equations with Dirichlet boundary conditions and the rest
with Robin ones). The main reason is that the comparison of solutions remains
valid and the rest of the arguments can be easily adapted to this case. As a matter
of fact, nonlinear boundary conditions given in terms of maximal monotone graphs
are also possible (see, e.g., [12] and its references) when dealing with other notions
of weak solutions. The possible extension of the multiplicity results of this paper
to the case of other boundary conditions is more delicate since the construction
of subsolutions requires to be well adapted to the boundary conditions. In [15]
this was made by means of constant subsolutions bλ(x) = k(λ) but no so sharp
information on the starting point of the bifurcation diagram was given there.

Remark 5.15. Variational methods may also be applied to our problem (see [15]
for the case of Neumann boundary conditions). It is easy to see that the associated
functional E : H1

0 (Ω)→ R defined as

E(u) =
1

2

∫
Ω

(|∇u|2 + µ(x)u2)− λ
∫

Ω

p(x)F (u),

where F (u) =
∫ u

0
f(s)ds is coercive and that its minimum is 0 for λ < λ1 if (5.3)

holds.

Finally, let us consider now the case δh > 0 (always under the assumption that
δb > 0 and δw = 0). As mentioned in Subsection 2.5, the equation satisfied by b is
rather similar to the Equation (5.1) since we arrive now to problem{

−∆b+ µ(x)b = λ
√
h(x)f∗(b) in Ω,

b = 0 on ∂Ω,
(5.18)

where
f∗(b) = f(b)Ib(b)
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with Ib(b) given by (2.2). Notice that Ib(0) =
1

c
< 1 and lim

b→+∞
Ib(b) = 1. In

addition

I ′b(b) > 0

so that the qualitative behaviour of f∗(b) is very similar to the one of f(b) and
thus the above treatment for the case δh = 0 can be easily adapted to the case
δh > 0 (as we will explain in the following section

√
h(x) > 0 on Ω and thus this

term behaves also entirely similar to the function p(x) arising in the formulation
of (5.1)).

6. Flat solutions for p = p(x) vanishing on ∂Ω

It seems interesting to consider the case in which the precipitation rate p(x)
is not completely constant in Ω, but in fact vanishes outside a closed subset ω of
R2 (the study could be extended to Rn for any n ≥ 1).

Notice that the interesting case corresponds now to the case δh > 0 since if
δh = 0 we get that

Ibh(x) = p(x) for any x ∈ Ω,

and since Ib > 0 we conclude that h(x) = 0 if and only if p(x) = 0.

Thus, the rest of this Section concerns the case δh > 0. The special case in
which p(x) = pχω(x) on Ω, where χω denotes the characteristic function of a
subset ω ⊂⊂ Ω (and with Neumann boundary conditions on ∂Ω) was considered
in [15]. In this paper we will extend the mentioned study to the case in which
ω = Ω, i.e. in addition to (6.3) we will assume that

p = 0 on ∂Ω. (6.1)

Let us consider the case in which min(δb, δw, δh) > 0. Notice that by the
previous existence theorem we can assume that b(x) ∈ [0, 1] is a given positive
solution of the corresponding equation of the local problem (2.1). Moreover, we
know that there exists a positive constant cb such that

cbd(x) ≤ b(x) ≤ 1 for any x ∈ Ω,

where d(x) = d(x, ∂Ω). Indeed, it suffices to apply the strong maximum principle
to the equation satisfied by b.

We set

θ(x) := α
b(x) + q/c

b(x) + q
in Ω.

Then

α
(cbd(x) + q/c)

1 + q
≤ θ(x) ≤ α (1 + q/c)

cbd(x) + q
in Ω,
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and the third equation of (2.1) can be written as −∆h+
θ(x)

δh

√
h = φ(x) in Ω,

h = 0 on ∂Ω,
(6.2)

with φ(x) :=
p(x)

δh
. As mentioned before, for b fixed (i.e., for a given θ(x)) there

is a unique solution h of (6.2). The following result gives a sufficient condition on

p(x) in order to get that h is a flat solution (in the sense that also
∂h

∂n
= 0 on ∂Ω).

Theorem 6.1. Let p(x) be satisfying (6.3). Then, h(x) > 0 a.e. x ∈ Ω. If in
addition p(x) is such that

0 ≤ p(x) ≤ δhKd(x)2 in Ω, (6.3)

for some K > 0 small enough, then there exists a constant C∗σ > 0 such that

0 ≤ h(x) ≤ C∗σd(x)4 in Ω. (6.4)

In particular, h is a flat solution.

Proof. The proof that h(x) > 0 a.e. x ∈ Ω is an easy consequence of a result due
to G. Stampacchia (see, e.g. Lemma A.4 of [21]) since if h(x) = 0 on a positively
measured subset E ⊂ Ω then ∆h = 0 on E and thus Ibh(x) = p(x) for a a.e.
x ∈ E, which implies a contradiction since p(x) > 0 on Ω. To complete the proof
we will apply the method of local supersolutions such as presented in [12]. Let
x0 ∈ ∂Ω and define Ωx0,R = Ω ∩ BR(x0) for some R > 0 to be determined later.
Observe that since d(x) ≤ |x− x0|, we have

−∆h+
αq

δhc(1 + q)

√
h ≤ φ(x) ≤ K |x− x0|2 in Ωx0,R.

Let h(x : x0) = C |x− x0|4 . As a consequence of Theorem 1.15 of [12], if we denote

σ =
αq

δhc(1 + q)
then we know that

−∆h+ σ
√
h = [σ

√
C − (8 + 4N)C] |x− x0|2 ,

(in our model N = 2 but it is pedagogical to work with an arbitrary N ≥ 1). The
function

θ(C) = σ
√
C − (8 + 4N)C

takes nonnegative values for C ∈ [0, CN,σ] with

CN,σ =
σ2

(8 + 4N)2
,
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(notice that θ(CN,σ) = 0). Moreover θ(C) attains its maximum at

C∗N,σ =
σ2

4(8 + 4N)2
=
CN,σ

4
.

Then, a good choice of the constant K mentioned in (6.3) is

K =
θ(C∗N,σ)

δh
.

In that case we know that

−∆h+ σ
√
h ≤ −∆h+ σ

√
h in Ωx0,R.

Moreover, clearly h ≤ h on ∂Ωx0,R ∩ ∂Ω and we also have h ≤ h on ∂Ωx0,R \ ∂Ω
if, for instance,

‖h‖L∞(Ω) ≤ C
∗
N,σR

4. (6.5)

Finally, we assume R “large enough” so that

R ≥

[
‖h‖L∞(Ω)

C∗N,σ

]1/4

and then (6.5) holds. In conclusion, by the maximum principle

0 ≤ h(x) ≤ C∗N,σ |x− x0|4 in Ωx0,R,

and since x0 ∈ ∂Ω is arbitrary this implies (6.4).

7. Conclusions and some open problems

The local and non-local systems (1.6) and (1.7) were considered for the biomass b,
the soil-water content w and the surface-water height h when we assume Dirichlet
boundary conditions. The main results of this paper concern the existence of
positive solutions when δb > 0 and δw = 0 getting both uniqueness and multiplicity
results. In contrast to previous results dealing with Neumann boundary condition,
we obtain some bifurcation diagrams showing rigorously its starting value (from
the first eigenvalue λ1 of a linear operator with the corresponding weights and
with Dirichlet boundary conditions) and characterizing the supercritical (resp.
subcritical) nature of the branch (something unnoticed before in the literature)
depending on (for instance when δh = 0) the positivity (resp. negativity) of the
parameters balance expression ν(1− ρ) + γ. Moreover, we study the case in which
p(x) vanishes on ∂Ω completing previous results in the literature. We show (for
δh > 0) that if p(x) grows near ∂Ω as d(x, ∂Ω)2 then h(x) grows, at most, as
d(x, ∂Ω)4. In particular h is a “flat solution”, in the sense that h = ∂h

∂n = 0 on
∂Ω, with h > 0 on Ω if p > 0 on Ω.
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Notice that, although the results on the bifurcation diagrams requires the
assumption δw = 0, at least for small positive values of δw we expect to have some
similar behaviours, but we live it as an open problem. Notice that the possibility
of having a solution for λ < λ1 is something which is not evident from the mere
modeling arguments.

Several other open problems where mentioned in the paper, but we can also
mention some related to the consideration of the associated parabolic system. For
instance, it would be interesting to analyze the existence and behaviour of possible
travelling waves, already in the one-dimensional framework, linking the stationary
states (for the Cauchy problem on the whole space (−∞,+∞)), b = 1 (for instance
when x → −∞) with b = 0 (when x → +∞). The presence of the slow diffusion
for the surface-water height h presents some important technical difficulties.
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