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Exponentially slow motion for a one-dimensional
Allen–Cahn equation with memory
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Dedicated to Maria Assunta Pozio with esteem and affection

Abstract. A reaction-diffusion equation with memory kernel of Jeffreys type and with a bal-

anced bistable reaction term is considered in a bounded interval of the real line. Taking advantage

of the fact that in this case the integro-differential equation can be transformed into a local par-

tial differential equation, it is proved that there exist solutions which evolve very slowly in time

and maintain a transition layer structure for an exponentially long time Tε ≥ c1 exp(c2/ε) as

ε → 0+, where ε2 is the diffusion coefficient. Hence, we extend to reaction-diffusion equations

with memory kernel of Jeffreys type the well-known results valid for the classic Allen–Cahn

equation.

1. Introduction

1.1. Description of the model

In this paper, we consider the following reaction-diffusion equation with memory

ut =

∫ t

−∞
kε(t− s)uxx(x, s) ds+ f(u), (1.1)

where u := u(x, t) : [a, b]×R→ R and f is a balanced bistable reaction term. More
precisely, regarding f , in all the paper it is assumed that −f is the derivative of a
double well potential with wells of equal depth, that is f = −F ′ with F ∈ C3(R)
satisfying

F (±1) = F ′(±1) = 0, F ′′(±1) > 0, F (u) > 0 for u 6= ±1. (1.2)

The main example of F satisfying (1.2) is F (u) = 1
4 (u2 − 1)2, which yields the

reaction term f(u) = u−u3; however, we stress that F could be any non–negative
function, which vanishes only at ±1, with F ′′(±1) > 0, and in particular it is
not excluded that F has other critical points in the interval (−1, 1). The memory
kernel kε : R→ R in (1.1) is assumed to be of Jeffreys type [25], namely

kε(s) :=
(1− σ)ε2

τ
exp

(
− s
τ

)
+ σε2δ(s), (1.3)
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where τ > 0 is a relaxation time, σ ∈ [0, 1] is the ratio of a retardation time to the
relaxation time, ε > 0 is a small parameter such that ε2 is the diffusion coefficient
and δ is the Dirac delta function.

The model (1.1) with f(u) = Ru−u3 and memory kernel given by (1.3) (with
ε = 1), subject to homogeneous Dirichlet boundary conditions and appropriate
initial conditions was introduced in [25] as a model for the flow of a viscoelastic
fluid. In this case, the double well potential is given by F (u) = 1

4 (u2−R)2 and in
[25] the Authors study the stability and bifurcation of stationary solutions when
the Rayleigh number R increases, for different values of the parameter τ . Since
its introduction in [25], the reaction-diffusion equation with memory (1.1) has
been studied in many papers, which sometimes include different reaction terms
and memory kernels. Without claiming to be complete, we list some of the con-
tributions. In [7], the Authors consider the n-dimensional versional of the model
proposed in [25] and, after proving existence of a global attractor, they study the
stability and bifurcation of stationary solutions in order to compare the results on
the n-dimensional case with the ones of [25]. For other works on (1.1), we quote
[6, 17, 18, 22] and references therein.

The goal of this paper is to study the limiting behavior as ε→ 0+ of solutions
to (1.1) with memory kernel given by (1.3) and appropriate boundary and initial
conditions, with the aim of proving that solutions starting with an unstable N -
transition layer structure (see Definition 4.1), maintain such a structure for an
exponentially long time as ε → 0+, that is for a time Tε ≥ c1 exp(c2/ε), for some
c1, c2 > 0. To do this, we use the fact that the integro-differential equation (1.1)
with kernel given by (1.3) can be transformed into different local partial differential
equations as the parameter σ changes in the interval [0, 1]. Indeed, if we choose
the kernel (1.3) with σ = 1 in (1.1), we recover the Allen–Cahn equation

ut = ε2uxx + f(u), (1.4)

which is a classic (parabolic) reaction-diffusion, originally proposed in [1] to de-
scribe the motion of antiphase boundaries in iron alloys. Conversely, if σ = 0 in
(1.3), let us introduce the function

S(x, t) :=
ε2

τ

∫ t

−∞
exp

(
− t− s

τ

)
u(x, s) ds,

and rewrite (1.1) as the relaxation system{
ut = Sxx + f(u),

τSt = ε2u− S.
(1.5)

From the system of partial differential equation (1.5) we can obtain a single equa-
tion for u. Indeed, multiplying by τ and differentiating with respect to time the
first equation in (1.5) and differentiating with respect to x the second one, we
eliminate the function S and obtain the hyperbolic reaction-diffusion equation

τutt + {1− τf ′(u)}ut = ε2uxx + f(u), (1.6)
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also known as Allen–Cahn equation with relaxation, see [12, 20]. More generally,
equation (1.6) with f = 0 has been introduced in [5] as a hyperbolic variation to
the classic heat equation in order to avoid some unphysical properties, the most
famous being the infinite speed of propagation of disturbances, see among others
[12] and references therein. Notice that, by (formally) taking the limit as τ → 0+

in (1.6), one obtains (1.4).
Finally, for a generic σ ∈ (0, 1), introduce the function

S(x, t) :=
(1− σ)ε2

τ

∫ t

−∞
exp

(
− t− s

τ

)
u(x, s) ds,

and rewrite (1.1) as {
ut = Sxx + σε2uxx + f(u),

τSt = (1− σ)ε2u− S.

Reasoning as in the derivation of equation (1.6) from system (1.5), we get the
partial differential equation

τutt + {1− τf ′(u)}ut = ε2uxx + f(u) + σε2τuxxt. (1.7)

Motivated by the classical results on the exponentially slow motion of the solutions
to the Allen–Cahn equation (1.4), cfr. [2, 3, 4, 15] and their extension to the
Allen–Cahn equation with relaxation (1.6) in the recent papers [9, 10, 12], in this
paper we are interested in the exponentially slow motion of solutions to (1.7).
The main questions are: the well-known metastable dynamics of the solutions to
(1.4) and (1.6) is preserved in the case (1.7)? What is the effect of the additional
term σε2τuxxt in the exponentially slow motion of the solutions? This paper
furnishes detailed answers to these questions and in particular, thanks to the study
of equation (1.7), we can state that solutions to equation (1.1) with memory kernel
(1.3) exhibit the phenomenon of metastability for any values of the parameter
σ ∈ [0, 1], provided that τ > 0 is sufficiently small if σ 6= 1.

1.2. Comparison with hyperbolic Allen–Cahn models

Let us consider the partial differential equation (1.7) with a generic damping co-
efficient g, namely

τutt + g(u)ut = ε2uxx + f(u) + σε2τuxxt, x ∈ (a, b), t > 0, (1.8)

complemented with Dirichlet boundary conditions

u(a, t) = α, u(b, t) = β, t ≥ 0, α, β = ±1, (1.9)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x). (1.10)
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The main example we have in mind is g(u) = 1 − τf ′(u), but the results of this
paper hold true for a non-negative sufficiently smooth function g, that is we only
require that

g(u) ≥ 0, ∀u ∈ R. (1.11)

The condition (1.11) in the case (1.7) imposes a restriction on the relaxation time
τ , given by

τf ′(u) ≤ 1, ∀u ∈ R.

For instance, in the case f(u) = u − u3, the latter condition becomes τ ≤ 1.
Therefore, the main novelty with respect to the case σ = 0 is that g can vanish;
indeed, in the hyperbolic reaction-diffusion equation (1.6), the crucial assumption
on the damping coefficient, which ensures the exponentially slow motion of the
solutions when ε → 0+, is g(u) ≥ κ > 0, see the previous works [10, 12]. The
additional term σε2τuxxt allows g to vanish in some points or, in general, g can
entirely vanish. In fact, even if the goal of the paper is to study the model (1.1)
with memory kernel (1.3), meaning that g(u) = 1−τf ′(u) and σ ∈ (0, 1) in (1.8), it
is also interesting to study (1.8) for a general damping coefficient g and for σ > 1.
Let us briefly analyze the differences between equation (1.8) and the hyperbolic
reaction-diffusion equation

τutt + g(u)ut = ε2uxx + f(u), x ∈ (a, b), t > 0, (1.12)

in order to highlight the role played by the additional term σε2τuxxt. If g is
strictly positive there is no difference between the results of this paper and the
previous ones about (1.12) in [10, 12]. As mentioned above, the main novelty is
that g can vanish. In particular, it is very interesting to consider the case g ≡ 0,
corresponding to a nonlinear wave equation with the additional term σε2τuxxt:

τutt = ε2uxx + f(u) + σε2τuxxt. (1.13)

In this case the term σε2τuxxt plays a crucial role and it entirely determines
metastability of the solutions. Indeed, it is well-known that there is no metastable
dynamics in the case of the nonlinear wave equation

τutt = ε2uxx + f(u),

which exhibits completely different dynamics. In other words, adding the term
σε2τuxxt has the same effect of adding a damping term in the nonlinear wave
equation.

Another interesting feature of equation (1.7) is that if the damping coefficient
g is bounded from below, then it is possible to choose the parameters σ, τ large
enough that solutions exhibit exponentially slow motion. Thus, the assumption
(1.11) can be removed and g can be also negative. To be more precise, we have
exponentially slow motion if

min
u
g(u) +

π2

(b− a)2
σε2τ > 0, for any ε > 0, (1.14)
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for details see (3.3)-(3.4) and Remark 4.5. Nevertheless, in the rest of the paper
it is assumed that g satisfies (1.11), because the reaction-diffusion equation (1.1)
with memory kernel (1.3), where σ ∈ (0, 1) becomes (1.8) with g(u) = 1− τf ′(u)
and in this case condition (1.14) is satisfied if and only if (1.11) holds true when
ε→ 0+ (because σ ∈ (0, 1)).

1.3. Plan of the paper

We conclude the Introduction with a short plan of the paper. In Section 2 we
consider some special solutions to (1.8) in the whole real line and we prove that
there exist traveling waves solutions φ(x − ct) connecting the two minima of the
potential F if and only if c = 0. In Section 3 we introduce a Lyapunov functional
for (1.8)-(1.9) and show some energy estimates, which are crucial to prove the
exponentially slow motion of solutions. Finally, Section 4 contains the main results
of the paper: we prove that if the initial profile u0 has a transition layer structure,
i.e. u0 ≈ ±1 except to a finite number of transition points, and the initial velocity
u1 is sufficiently small, then the solution to (1.8)-(1.9)-(1.10) maintains the same
transition layer structure of the initial profile for a time Tε ≥ c1 exp(c2/ε) as ε→
0+, see Theorems 4.2-4.4, and the transition points move with an exponentially
small velocity, see Theorem 4.6.

2. Standing waves

Travelling fronts form an important class of global in time solutions of reaction-
diffusion equations and, in many situations, they describe the transition between
two different states. In general, existence and stability of travelling wave solutions
for classic reaction-diffusion equations (1.4) is a well-know fact, see among others
the landmark articles [19] and [8]. Concerning the existence and stability of travel-
ling waves for the Allen–Cahn equation with relaxation (1.6), we quote the recent
works [20, 21]. Here, we are interested in a travelling wave solution to equation
(1.8) connecting the two states u = −1 and u = 1, the global minimal points of
the potential F satisfying (1.2). Thus, we look for a solution to (1.8) in the whole
real line of the form φ(x− ct) where c ∈ R is the wave speed and the wave profile
φ is monotone increasing and connects the states u = −1 and u = 1. Introducing
the variable ξ = x − ct, denoting by φ = φ(ξ), φ′ = ∂ξφ(ξ), and inserting the
travelling wave form in (1.8), we get the following boundary value problem

c2τφ′′ − cg(φ)φ′ = ε2φ′′ + f(φ)− cσε2τφ′′′, in R, lim
ξ→±∞

φ(ξ) = ±1.

Multiplying by φ′ and integrating in R, we deduce

c2τ − ε2

2

∫
R

d

dξ
(φ′)2dξ − c

∫
R
g(φ)(φ′)2dξ = −

∫
R

d

dξ
F (φ) dξ − cσε2τ

∫
R
φ′′′φ′ dξ,
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where we used F ′(s) = −f(s). Taking advantage of the fact that φ(±∞) = ±1,
φ′(±∞) = 0 and using integration by parts, we end up with the relation

c

∫
R
g(φ)(φ′)2 dξ + cσε2τ

∫
R

(φ′′)2 dξ = F (+1)− F (−1) = 0,

being F (±1) = 0. Since g ≥ 0 and all the parameters σ, ε, τ are strictly positive, we
deduce that a travelling wave with speed c 6= 0 can not exist. Hence, exactly like
the classical reaction-diffusion equation (1.4), if the potential F satisfies (1.2), then
the only travelling wave solutions to (1.8) connecting −1 and +1 are stationary
for any σ ≥ 0. It is worth pointing out that such a result holds true also when
g ≡ 0 in (1.8), i.e. for equation (1.13), where the term σε2τuxxt plays a crucial
role and allows us to exclude travelling waves with c 6= 0.

In the case c = 0, we obtain an increasing standing wave connecting −1 and
+1, given by the unique (up to translation) solution to the problem

ε2Φ′′ε + f(Φε) = 0, in R, lim
x→±∞

Φε(x) = ±1. (2.1)

Notice that Φε is the same standing wave of equation (1.4), and so, we extended the
well-known results on the existence of travelling/standing waves when F satisfies
(1.2) to the case of the reaction-diffusion equation (1.1) with memory kernel given
by (1.3). We recall that, in the simplest example F (u) = 1

4 (u2 − 1)2, the solution

to (2.1) is given by Φε(x) = tanh

(
x− h√

2 ε

)
, h ∈ R, and that Φε(−x) is a decreasing

standing wave connecting +1 and −1.

The existence of standing waves solutions (or, the non-existence of travelling
wave solutions with c 6= 0) suggests the existence of metastable patterns for (1.8)-
(1.9): by using the functions (2.1), we can construct initial profiles such that
the corresponding solutions to (1.8)-(1.9)-(1.10) evolve very slowly in time and
maintain an unstable structure for a time Tε ≥ c1 exp(c2/ε), see Figure 1. Let us
fix an integer N > 0, N transition layers a < h1 < h2 < · · · < hN < b and define
the function

UNε (x) := Φε
(
(−1)i+1(x− hi)

)
for x ∈ [hi−1/2, hi+1/2], (2.2)

and i = 1, . . . , N , where Φε is the solution of (2.1) with Φε(0) = 0 and

hi+1/2 :=
hi + hi+1

2
, i = 1, . . . , N − 1, h1/2 = a, hN+1/2 = b.

We will show in Section 4 that solutions to (1.8)-(1.9), starting with an initial
profile like the one in (2.2) and depicted in Figure 1, and a sufficiently small initial
velocity u1 (see assumptions (4.1) and (4.3)), evolve exponentially slowly in time,
that is they maintain such an unstable structure for an exponentially long time
and the layers move with an exponentially small velocity as ε→ 0+.
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Figure 1: Example of function UN
ε in the case f(u) = u− u3: N = 8, ε = 0.1.

3. Energy estimates

In this section, we introduce the energy functional for the initial boundary value
problem (1.8)-(1.9), which plays the key role in the proof of the main result of this
paper.

3.1. Lyapunov functional

First of all, let us prove that the assumption (1.11) on g implies that there exists a
Lyapunov functional for the boundary value problem (1.8)-(1.9), for any σ, ε, τ > 0.
Indeed, we shall prove that the functional

E[u, ut](t) :=

∫ b

a

[
τ

2
u2t (x, t) +

ε2

2
u2x(x, t) + F (u(x, t))

]
dx, (3.1)

where F (u) = −
∫ u

0

f(s) ds, satisfies the following energy estimates.

Proposition 3.1. If u ∈ C1([0, T ], H2(a, b)) ∩ C2([0, T ], L2(a, b)) is a solution to
(1.8)-(1.9), then the energy (3.1) satisfies the following equality:

E[u, ut](0)− E[u, ut](T ) =

∫ T

0

∫ b

a

g(u)u2t dxdt+ σε2τ

∫ T

0

∫ b

a

u2xt dxdt. (3.2)

Proof. Multiplying by ut equation (1.8) and integrating in [a, b], we infer

d

dt

∫ b

a

τ

2
u2t dx+

∫ b

a

g(u)u2t dx =

∫ b

a

(
ε2uxxut + σε2τuxxtut

)
dx− d

dt

∫ b

a

F (u)dx,

where we used F ′ = −f . Using integration by parts and the boundary conditions
(1.9), we obtain

d

dt

∫ b

a

τ

2
u2t dx+

∫ b

a

g(u)u2t dx = −
∫ b

a

(
ε2uxuxt + σε2τu2xt

)
dx− d

dt

∫ b

a

F (u)dx,
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and, as a consequence, we have∫ b

a

g(u)u2t dx+ σε2τ

∫ b

a

u2xt dx = − d

dt

∫ b

a

[
τ

2
u2t +

ε2

2
u2x + F (u)

]
dx

= − d

dt
E[u, ut](t),

where E is defined in (3.1). Integrating in [0, T ] the latter equality, we end up
with (3.2) and the proof is complete.

Thanks to equality (3.2) and the fact that g is a non–negative function, we
can state that (1.8)-(1.9) possesses a Lyapunov functional for any σ, ε, τ > 0, or,
in other words, that the energy defined in (3.1) is a non-increasing function of
time t along the solutions to (1.8)-(1.9). In general, if g could be negative, the
equality (3.2) does not ensure directly the dissipative character of equation (1.8)
with Dirichlet boundary conditions (1.9), because we need to compare the two
integrals in the right hand side of (3.2). To do this, we can use Poincaré–Wirtinger
inequality to obtain the following result.

Proposition 3.2. If u ∈ C1([0, T ], H2(a, b)) ∩ C2([0, T ], L2(a, b)) is a solution to
(1.8)-(1.9), then the energy (3.1) satisfies the following equality:

E[u, ut](0)− E[u, ut](T ) ≥
(

min
u
g(u) + c2pσε

2τ
)∫ T

0

∫ b

a

u2t dxdt, (3.3)

where cp :=
π

b− a
.

Proof. The Dirichlet boundary conditions (1.9) imply that ut(a, t) = ut(b, t) = 0
for any t ≥ 0 and we can apply the Poincaré–Wirtinger inequality to the function
uxt, namely we have ∫ b

a

u2xt dx ≥
π2

(b− a)2

∫ b

a

u2t dx,

and inequality (3.3) becomes a trivial consequence of the equality (3.2).

Remark 3.3. In all the rest of the paper, we deal with sufficiently regular solutions
to (1.8)-(1.9)-(1.10) such that the equality (3.3) holds true. The well-posedness
of the latter initial boundary value problem is beyond the scope of this paper,
but we mention the fundamental contribution [23], where the Author applies the
semigroup theory for solutions of differential equations on Banach spaces to study
well-posedness of a general abstract equation, which includes (1.8).

The energy estimate (3.3) guarantees the dissipative character of (1.8)-(1.9) if

min
u
g(u) +

π2

(b− a)2
σε2τ > 0. (3.4)

However, in this paper we are interested in the behavior of the solutions to (1.8)-
(1.9), when the diffusion coefficient ε→ 0+, with σ ∈ [0, 1] and τ > 0 independent
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from ε. Therefore, the condition (3.4) is not satisfied if the minimum of g is strictly
negative and ε is sufficiently small and this is the reason why we need to assume
that g is non-negative. Hence, substituting (1.11) in (3.3), we conclude that

E[u, ut](0)− E[u, ut](T ) ≥ π2σε2τ

(b− a)2

∫ T

0

∫ b

a

u2t dxdt. (3.5)

Finally, notice that if g is strictly positive, that is g(u) ≥ κ, for any u ∈ R, for
some κ > 0 independent on ε, then there is no need to take advantage of the

positive term σε2τ

∫ T

0

∫ b

a

u2xt dxdt in (3.2) and we can simply state that

E[u, ut](0)− E[u, ut](T ) ≥ κ
∫ T

0

∫ b

a

u2t dxdt. (3.6)

It is worth to observe that the difference between (3.5) and (3.6) is that the
constant in front of the L2–norm of ut in the right hand side is of O(ε2) in (3.5),
while it does not depend on ε in (3.6). We will see in Section 4 how this affects
the study of the limiting behavior as ε→ 0+ of the solutions to (1.8)-(1.9).

3.2. A lower bound on the energy

In the study of the exponentially slow motion of solutions to (1.8)-(1.9) it is crucial
to use the following renormalized version of the energy functional defined in (3.1)

Eε[u, ut](t) :=
τ

2ε
‖ut(·, t)‖2L2 + Pε[u](t), (3.7)

where

Pε[u] :=

∫ b

a

[
ε

2
u2x +

F (u)

ε

]
dx. (3.8)

Thus, the functional Eε has simply been obtained by multiplying by ε−1 the
energy defined in (3.1). We introduced the classical Ginzburg–Landau functional
(3.8), because a very important variational result on Pε together with the energy
estimates (3.5) (or (3.6)) allows us to prove exponentially slow motion of solutions
to (1.8)-(1.9). Here, we present the aforementioned variational result.

There is a vast literature of works about the Γ-convergence of the Ginzburg–
Landau functional (3.8) both in the one space dimensional and in the multidi-
mensional case. A comprehensive list of all these contributions goes beyond the
scope of our presentation; here we only recall [24, 26] and that in the one space
dimensional case, the minimum energy of a transition between −1 and +1 for (3.8)
is given by a strictly positive constant, which depends only on F (independent on
ε). Such a constant can be derived in the following way: consider a monotone
function u connecting −1 and +1, then Young inequality gives

Pε[u] ≥
∫ b

a

ux
√

2F (u) dx ≥
∫ +1

−1

√
2F (s) ds =: c0. (3.9)
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Notice that the constant c0 obtained in (3.9) is strictly positive and independent
on ε, because of the renormalization of the energy functional. It represents the
minimum energy of a transition between −1 and +1 in the following sense: here
and for the rest of the paper, fix N ∈ N, a piecewise constant function v and a
constant r > 0 such that

v : [a, b]→ {−1,+1} has N jumps located at a < h1 < h2 < · · · < hN < b,

r <
hi+1 − hi

2
for i = 1, . . . , N − 1 and a ≤ h1 − r, hN + r ≤ b.

(3.10)
If {uε} is a sequence converging to v in L1, then

lim inf
ε→0+

Pε[u
ε] ≥ Nc0, (3.11)

with equality if the sequence {uε} is chosen properly (for instance, the sequence
UNε constructed in (2.2); for details see [9, Section 3] or [10, Section 3]).

The crucial variational result to prove exponentially slow motion of solutions
to (1.8)-(1.9) is an improvement of (3.11), stating that if u is sufficiently close to
a piecewise constant function v as in (3.10), then Pε[u

ε] ≥ Nc0−C exp(−A/ε) for
some constants A,C > 0.

Proposition 3.4. Assume that the potential F ∈ C3(R) satisfies (1.2) and define
λ := min{F ′′(±1)}. Let v, r as in (3.10) and A ∈ (0, r

√
2λ). Then, there exist

constants C, δ > 0 (depending only on F, v and A) such that if u ∈ H1 satisfies

‖u− v‖
L1 ≤ δ, (3.12)

then
Pε[u] ≥ Nc0 − C exp(−A/ε),

where Pε and c0 are defined in (3.8) and (3.9), respectively.

A more general version of Proposition 3.4 was first proved by Grant in [16],
where the Author use this variational result to prove exponentially slow motion
of solutions to the Cahn–Morral system. In particular, in [16] u ∈ Rm is a vector,
the potential F : Rm → R vanishes in a finite number of points K ≥ 2 and the
constant Nc0 is replaced by an appropriate asymptotic energy. Moreover, Grant
imposes a weaker assumption on u, which is guaranteed by (3.12). On the other
hand, the proof of Proposition 3.4 in the scalar case can be found also in [13].

4. Exponentially slow motion

This section contains the main results of the paper, which are obtained by using
the energy approach introduced by Bronsard and Kohn in [2] in the study of
the classic Allen–Cahn equation and then improved by Grant in [16] to study
exponentially slow motion for the Cahn–Morral system. This energy approach is
quite elementary yet very powerful and it can be applied to different evolution
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PDEs exhibiting slow motion of solutions: just to mention some contributions, it
has been used to prove slow motion of solutions for hyperbolic variations of the
Allen–Cahn equation [9, 10], hyperbolic Cahn–Hilliard equation [13], and parabolic
reaction-diffusion equations with different nonlinear diffusions [11, 14].

The key points to apply the energy approach proposed in [2] are the energy
estimates (3.5) or (3.6) (depending whether g is strictly positive or it vanishes)
and Proposition 3.4, which establishes a lower bound on the energy functional. In
particular, Proposition 3.4 is a variational result concerning the Ginzburg–Landau
functional, in which equation (1.8) plays no role, and the exponentially slow motion
is consequence of the fact that solutions to the boundary value problem (1.8)-(1.9)
satisfy the energy estimates (3.5) or (3.6) with the particular energy functional
(3.7). Moreover, if g is strictly positive, we can use (3.6) and, by proceeding
exactly as in [10], we obtain the same results of the hyperbolic reaction-diffusion
equation (1.12) on the exponentially slow motion of the solutions, see Theorem
4.4 below. Here, since we consider the case when g vanishes and satisfies (1.11),
we need to slightly modify the standard procedure, in particular in the proof of
Proposition 4.3, and we shall obtain a weaker result. We still obtain exponentially
slow motion of the solutions, but, when g vanishes, the evolution is faster than the
one of the case g(u) ≥ κ > 0, for any u ∈ R; compare Theorem 4.2 and Theorem
4.4 below.

Let us start with the following definition.

Definition 4.1. Let us fix v, r as in (3.10). We say that a function uε ∈ H1(a, b)
has an N -transition layer structure if

lim
ε→0
‖uε − v‖

L1 = 0, (4.1)

and there exist C > 0, A ∈ (0, r
√

2λ) and λ = min{F ′′(±1)} (independent on ε)
such that

Pε[u
ε] ≤ Nc0 + C exp(−A/ε), (4.2)

for any ε � 1, where the energy Pε and the positive constant c0 are defined in
(3.8) and (3.9), respectively.

An example of function with a N -transition layer structure can be found in
[13, Section 2.4] or, alternatively, one can check that the function defined in (2.2)
satisfies (4.1) and (4.2).

Roughly speaking, the main result of this paper states that if the initial profile
u0 has a N -transition layer structure and the initial velocity u1 is sufficiently small,
then the solution to (1.8)-(1.9)-(1.10) maintains the N -transition layer structure
for an exponentially long time as ε → 0+, provided that g satisfies (1.11) and
f = −F ′ with F satisfying (1.2). More precisely, we assume that the initial data
(u0, u1) in (1.10) depend on ε, with uε0 satisfying (4.1) and there exist C > 0,
A ∈ (0, r

√
2λ) independent from ε, with λ := min{F ′′(±1)}, such that

Eε[u
ε
0, u

ε
1] ≤ Nc0 + C exp(−A/ε), (4.3)
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for any ε ∈ (0, ε0), where the energy Eε and the positive constant c0 are defined in
(3.7) and (3.9), respectively. Clearly, the assumptions (4.1) and (4.3) imply that
uε0 has a N -transition layer structure. Moreover, if uε0 satisfies (4.1), by using (4.3)
and Proposition 3.4, we infer

τ

2ε
‖u1‖2L2 ≤ Nc0 + C exp(−A/ε)− Pε[uε0] ≤ C exp(−A/ε), (4.4)

for some C > 0. Hence, the assumptions on the initial data (4.1), (4.3) are
equivalent to (4.1), (4.2) and (4.4): the initial profile uε0 has an N -transition
layer structure and the L2-norm of the initial velocity uε1 is exponentially small as
ε→ 0+.

The main result of this paper is the following.

Theorem 4.2. Assume that g satisfies (1.11), F ∈ C3(R) satisfies (1.2) and
define λ := min{F ′′(±1)} > 0. Let v, r be as in (3.10) and let A ∈ (0, r

√
2λ). If

uε is the solution to (1.8)-(1.9)-(1.10) with initial data uε0, uε1 satisfying (4.1) and
(4.3), then

sup
0≤t≤mε1+γ exp(A/ε)

‖uε(·, t)− v‖
L1 −−−→

ε→0
0, (4.5)

for any m, γ > 0.

The proof of Theorem 4.2 is a consequence of the following proposition, which
is proved using only (3.5) and Proposition 3.4.

Proposition 4.3. Assume that g satisfies (1.11) and that F ∈ C3(R) satisfies
(1.2). Let uε be the solution of (1.8)-(1.9)-(1.10) with initial data uε0, uε1 satisfying
(4.1) and (4.3). Then, there exist positive constants ε0, C1, C2 > 0 (independent
on ε) such that ∫ C1ε exp(A/ε)

0

‖uεt‖2L2
dt ≤ C2ε

−1 exp(−A/ε), (4.6)

for all ε ∈ (0, ε0).

Proof. Let ε0 > 0 so small that for all ε ∈ (0, ε0), (4.3) holds and

‖uε0 − v‖L1 ≤
1

2
δ, (4.7)

where δ is the constant of Proposition 3.4. Let T̂ > 0; we claim that if∫ T̂

0

‖uεt‖L1dt ≤
1

2
δ, (4.8)

then there exists C > 0 such that

Eε[u
ε, uεt ](T̂ ) ≥ Nc0 − C exp(−A/ε). (4.9)
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Indeed, from the definition (3.7) we have Eε[u
ε, uεt ](T̂ ) ≥ Pε[uε](T̂ ) and inequality

(4.9) follows from Proposition 3.4 if the condition ‖uε(·, T̂ )− v‖
L1 ≤ δ holds true.

By using triangle inequality, (4.7) and (4.8), we obtain

‖uε(·, T̂ )− v‖
L1 ≤ ‖uε(·, T̂ )− uε0‖L1 + ‖uε0 − v‖L1 ≤

∫ T̂

0

‖uεt‖L1 +
1

2
δ ≤ δ,

and the claim (4.9) is proved. By multiplying by ε−1 the inequality (3.5), we
deduce

Eε[u
ε
0, u

ε
1]− Eε[uε, uεt ](T̂ ) ≥ π2σετ

(b− a)2

∫ T̂

0

∫ b

a

ut(x, t)
2 dxdt. (4.10)

Substituting (4.3) and (4.9) into (4.10), one has∫ T̂

0

‖uεt‖2L2
dt ≤ C2ε

−1 exp(−A/ε). (4.11)

It remains to prove that inequality (4.8) holds for T̂ ≥ C1ε exp(A/ε). If∫ +∞

0

‖uεt‖L1dt ≤
1

2
δ,

there is nothing to prove. Otherwise, choose T̂ such that∫ T̂

0

‖uεt‖L1dt =
1

2
δ.

Using Hölder’s inequality and (4.11), we infer

1

2
δ ≤ [T̂ (b− a)]1/2

(∫ T̂

0

‖uεt‖2L2
dt

)1/2

≤
[
T̂ (b− a)C2ε

−1 exp(−A/ε)
]1/2

.

It follows that there exists C1 > 0 such that

T̂ ≥ C1ε exp(A/ε),

and the proof is complete.

Now, we have all the tools to prove (4.5).

Proof of Theorem 4.2. Fix m, γ > 0. Triangle inequality gives

‖uε(·, t)− v‖
L1 ≤ ‖uε(·, t)− uε0‖L1 + ‖uε0 − v‖L1 , (4.12)

for all t ∈ [0,mε1+γ exp(A/ε)]. The last term of inequality (4.12) tends to 0 by
assumption (4.1). Regarding the first term, we have

sup
0≤t≤mε1+γ exp(A/ε)

‖uε(·, t)− uε0‖L1 ≤
∫ mε1+γ exp(A/ε)

0

‖uεt (·, t)‖L1 dt.



266 R. Folino

By using Cauchy–Schwarz inequality and by taking ε so small that C1 ≥ mεγ in
order to apply Proposition 4.3, we deduce∫ mε1+γ exp(A/ε)

0

‖uεt‖L1 dt ≤
{

(b− a)mε1+γ exp(A/ε)C2ε
−1 exp(−A/ε)

}1/2
≤ Cε

γ
2 .

Hence (4.5) follows.

Thanks to Theorem 4.2 and the fact the energy (3.7) is a non-increasing func-
tion of t along the solutions to (1.8)-(1.9), we can state that if the initial data uε0, u

ε
1

in (1.10) satisfy the conditions (4.1) and (4.3), then the solution uε maintains the
N -transition layer structure for a time Tε ≥ mε1+γ exp(A/ε) for any m, γ > 0 (see
(4.5)) and the velocity ut satisfies

τ

2ε
‖ut(·, t)‖2L2 ≤ C exp(−A/ε),

for any t ∈ [0, Tε] (see (4.4)).
By using the energy estimate (3.6) instead of (3.5), we can improve the estimate

(4.6) and, by proceeding as in the proof of Proposition 4.3 (in particular, by using
(3.6) instead of (3.5) in (4.10)), we can prove that there exist positive constants
ε0, C1, C2 > 0 (independent on ε) such that∫ C1ε

−1 exp(A/ε)

0

‖uεt‖2L2
dt ≤ C2ε exp(−A/ε),

for all ε ∈ (0, ε0). As a consequence, we have the following result.

Theorem 4.4. Assume that g(u) ≥ κ > 0 for any u ∈ R, that F ∈ C3(R)
satisfies (1.2) and define λ := min{F ′′(±1)} > 0. Let v, r be as in (3.10) and let
A ∈ (0, r

√
2λ). If uε is the solution to (1.8)-(1.9)-(1.10) with initial data uε0, uε1

satisfying (4.1) and (4.3), then

sup
0≤t≤m exp(A/ε)

‖uε(·, t)− v‖
L1 −−−→

ε→0
0,

for any m > 0.

Therefore, when g is a strictly positive function, we obtain the same result of
the hyperbolic Allen–Cahn equation (1.12), cfr. [10], where a vectorial version of
(1.12) is considered.

Remark 4.5. As it was mentioned at the beginning of this section and as we
saw in the proofs of Proposition 4.3 and Theorem 4.2, the key ingredients of
the energy approach are the energy estimates (3.5) or (3.6) and Proposition 3.4,
which establishes a lower bound on the energy functional. Notice that the energy
estimate (3.6) can be also obtained from (3.3) for a generic damping coefficient g
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which does not satisfy (1.11), if it is possible to choose στ = Cε−2 for some C > 0
so large that

inf
u
g(u) +

π2

(b− a)2
C = κ > 0.

Hence, as we mentioned in the Introduction, solutions to (1.8) exhibit exponen-
tially slow motion for any bounded from below function g, provided that the
product στ is sufficiently large (and depending on ε).

Similarly, an energy estimate like (3.5) can be also obtained in the case σ = 0
(equation (1.12)) if the damping coefficient satisfies g(u) ≥ Cε2, for any u ∈ R.
Hence, proceeding as in the proof of Theorem 4.2, we can extend the results of
[10] valid for (1.12) to the case of a positive damping coefficient g depending on ε
and vanishing (in some points or entirely) as ε→ 0+.

4.1. Layer dynamics

We have proved that solutions to (1.8)-(1.9) with appropriate initial conditions
maintain a transition layer structure for an exponentially long time as ε → 0+.
Now, we conclude this paper with an estimate of the velocity of the layers. Fix a
piecewise constant function v as in (3.10) and define its interface by

I[v] := {h1, h2, . . . , hN}.

Moreover, for an arbitrary function u : [a, b] → R and an arbitrary closed subset
K ⊂ R\{±1}, the interface IK [u] is defined by

IK [u] := u−1(K).

Finally, we recall that for any X,Y ⊂ R the Hausdorff distance d(X,Y ) between
X and Y is defined by

d(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
,

where d(y,X) := inf{|y−x| : x ∈ X}. Then, we can prove that the velocity of the
layers is exponentially small as ε→ 0+.

Theorem 4.6. Assume that g satisfies (1.11), F ∈ C3(R) satisfies (1.2) and
define λ := min{F ′′(±1)} > 0. Let v, r be as in (3.10), A ∈ (0, r

√
2λ) and let uε

be the solution to (1.8)-(1.9)-(1.10) with initial data uε0, uε1 satisfying (4.1) and
(4.3). Given m, γ > 0, δ1 ∈ (0, r) and a closed subset K ⊂ R\{±1}, set

tε(δ1) = inf{t : d(IK [uε(·, t)], IK [uε0]) > δ1}.

There exists ε0 > 0 such that if ε ∈ (0, ε0), then

tε(δ1) > mε1+γ exp(A/ε).
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Proof. The proof is consequence of Theorem 4.2 and the following variational result
on the Ginzburg–Landau functional (3.8). Given δ1 ∈ (0, r) and a closed subset

K ⊂ R\{±1}, there exist constants δ̂, ε0, L > 0 (independent on ε) such that for
any u ∈ H1([a, b]) satisfying

‖u− v‖
L1 < δ̂ and Pε[u] ≤ Nc0 + L, (4.13)

for all ε ∈ (0, ε0), we have

d(IK [u], I[v]) <
1

2
δ1. (4.14)

For the proof of this result see [10, Lemma 4.2] or [13, Lemma 2.9].
Fix ε0 > 0 so small that the assumptions on the initial data (4.1), (4.3) imply

that uε0 satisfies (4.13) for all ε ∈ (0, ε0); thus, (4.14) for uε0 reads as

d(IK [uε0], I[v]) <
1

2
δ1. (4.15)

On the other hand, the solution uε(·, t) satisfies (4.13) for all t∈(0,mε1+γ exp(A/ε)],
for any fixed m, γ > 0. Indeed, the first condition in (4.13) holds true for (4.5) in
Theorem 4.2, while the second one is valid because

Pε[u
ε(·, t)] ≤ Eε[uε, uεt ](t) ≤ Eε[uε0, uε1] ≤ Nc0 + C exp(A/ε),

for any t ∈ [0,mε1+γ exp(A/ε)], where we used the fact that Eε[u
ε, uεt ](t) is a

non-increasing function of t and assumption (4.3). Then, (4.14) yields

d(IK [uε(t)], I[v]) <
1

2
δ1, (4.16)

for all t ∈ [0,mε1+γ exp(A/ε)]. Combining (4.15) and (4.16), we obtain

d(IK [uε(t)], IK [uε0]) < δ1,

for all t ∈ [0,mε1+γ exp(A/ε)] and the proof is complete.

In conclusion, according to Theorem 4.6 one must wait a time of order ε exp(A/ε)
to see an appreciable change in the position of the zeros of uε.

References

[1] Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application
to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

[2] Bronsard, L., Kohn, R.: On the slowness of phase boundary motion in one space dimension.
Comm. Pure Appl. Math. 43, 983–997 (1990)

[3] Carr, J., Pego, R. L.: Metastable patterns in solutions of ut = ε2uxx − f(u). Comm. Pure
Appl. Math. 42, 523–576 (1989)

[4] Carr, J., Pego, R. L.: Invariant manifolds for metastable patterns in ut = ε2uxx − f(u).
Proc. Roy. Soc. Edinburgh Sect. A 116, 133–160 (1990)



Slow motion for Allen–Cahn equation with memory 269

[5] Cattaneo, C.: Sulla conduzione del calore. Atti del Semin. Mat. e Fis. Univ. Modena 3,
83–101 (1948)

[6] Conti, M., Marchini, E. M., Pata, V.: Nonclassical diffusion with memory. Math. Meth.
Appl. Sci. 38, 948–958 (2015)

[7] Duffy, B. R., Freitas, P., Grinfeld, M.: Memory driven instability in a diffusion process.
SIAM J. Math. Anal. 33, 1090–1106 (2002)

[8] Fife, P. C., McLeod, J. B.: The approach of solutions of nonlinear diffusion equations to
travelling front solutions. Arch. Rational Mech. Anal. 65, 335–361 (1977)

[9] Folino, R.: Slow motion for a hyperbolic variation of Allen–Cahn equation in one space
dimension. J. Hyperbolic Diff. Eqs. 14, 1–26 (2017)

[10] Folino, R.: Slow motion for one-dimensional nonlinear damped hyperbolic Allen–Cahn sys-
tems. Electron. J. Differ. Equ. 2019, 1–21 (2019)

[11] Folino, R., Hernández Melo, C. A., Lopez Rios, L., Plaza, R. G.: Exponentially slow mo-
tion of interface layers for the one-dimensional Allen–Cahn equation with nonlinear phase-
dependent diffusivity. Z. Angew. Math. Phys. 71, 132 (2020)

[12] Folino, R., Lattanzio, C., Mascia, C.: Metastable dynamics for hyperbolic variations of the
Allen–Cahn equation. Commun. Math. Sci. 15, 2055–2085 (2017)

[13] Folino, R., Lattanzio, C., Mascia, C.: Slow dynamics for the hyperbolic Cahn–Hilliard
equation in one-space dimension. Math. Meth. Appl. Sci. 42, 2492–2512 (2019)

[14] Folino, R., Plaza, R. G., Strani, M.: Metastable patterns for a reaction-diffusion model with
mean curvature-type diffusion. J. Math. Anal. Appl. 493, 124455 (2021)

[15] Fusco, G., Hale, J.: Slow-motion manifolds, dormant instability, and singular perturbations.
J. Dyn. Differ. Equ. 1, 75–94 (1989)

[16] Grant, C. P.: Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal.
26, 21–34 (1995)

[17] Gatti, S., Grasselli, M., Pata, V.: Lyapunov functionals for reaction-diffusion equations
with memory. Math. Meth. Appl. Sci. 28, 1725–1735 (2005)

[18] Grasselli, M., Pata, V.: A reaction-diffusion equation with memory. Discrete Contin. Dyn.
Syst. 15, 1079–1088 (2006)

[19] Hadeler, K. P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol.
2, 251–263 (1975)

[20] Lattanzio, C., Mascia, C., Plaza, R. G., Simeoni C.: Analytical and numerical investigation
of traveling waves for the Allen–Cahn model with relaxation. Math. Models and Methods
in Appl. Sci. 26, 931–985 (2016)

[21] Lattanzio, C., Mascia, C., Plaza, R. G., Simeoni C.: Kinetic schemes for assessing stability
of traveling fronts for the Allen–Cahn equation with relaxation. Appl. Numer. Math. 141,
234–247 (2019)

[22] Mascia, C.: Stability analysis for linear heat conduction with memory kernels described by
Gamma functions. Discrete Contin. Dyn. Syst. 35, 3569–3584 (2015)

[23] Massatt, P.: Limiting behavior for strongly damped nonlinear wave equations. J. Differential
Equations 48, 334–349 (1983)

[24] Modica, L.: The gradient theory of phase transitions and the minimal interface criterion.
Arch. Rat. Mech. Anal. 98, 123–142 (1987)

[25] Olmstead, W. E., Davis, S. H., Rosenblat, S., Kath, W. L.: Bifurcation with memory. SIAM
J. Appl. Math. 46, 171–188 (1986)

[26] Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems.
Arch. Rat. Mech. Anal. 101, 209–260 (1988)

Received: 10 November 2020/Accepted: 25 January 2021/Published online: 18 February 2021



270 R. Folino

Departamento de Matemáticas y Mecánica
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