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Abstract. We study finite time blow-up and global existence of solutions to the Cauchy problem

for the porous medium equation with a variable density ρ(x) and a power-like reaction term. We

firstly consider the case that ρ(x) decays at infinity like the critical case |x|−2 divided by a positive

power of the logarithm of |x| and we show that for small enough initial data, solutions globally

exist for any p > 1. On the other hand, when ρ(x) decays at infinity like the critical case |x|−2

multiplied by a positive power of the logarithm of |x|, if the initial datum is small enough, then

one has global existence of the solution for any p > m, while if the initial datum is large enough,

then the blow-up of the solutions occurs for any p > m. Such results generalize those established

in [27] and [28], where it is supposed that ρ(x) decays at infinity like a power of |x|, without

logarithmic terms.

1. Introduction

We are concerned with global existence and blow-up of nonnegative solutions to
the Cauchy parabolic problem{

ρ(x)ut = ∆(um) + ρ(x)up in RN × (0, τ)

u = u0 in RN × {0} ,
(1.1)

where m > 1, p > 1, N ≥ 3, τ > 0. Furthermore, we always assume that{
(i) u0 ∈ L∞(RN ), u0 ≥ 0 in RN ;

(ii) ρ ∈ C(RN ), ρ > 0 in RN ;
(1.2)

the function ρ = ρ(x) is usually referred to as a variable density.
The differential equation in problem (1.1), posed in (−1, 1) with homogeneous

Dirichlet boundary conditions, has been introduced in [21] as a mathematical
model of a thermal evolution of a heated plasma.
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We refer the reader to [27, Introduction], [28, Introduction] for a comprehensive
account of the literature concerning various problems related to (1.1). Here we
limit ourselves to recall only some contribution of that literature. Problem (1.1)
without the reaction term has been widely examined, e.g., in [3, 4, 8, 9, 10, 14, 15,
16, 17, 18, 19, 20, 29, 30, 31, 33, 34]. Furthermore, global existence and blow-up
of solutions of problem (1.1) with m = 1 and ρ ≡ 1 have been studied, e.g., in
[5, 12]). If

p ≤ 1 +
2

N
,

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

p > 1 +
2

N
,

global existence prevails for sufficiently small initial conditions. In addition, in
[22] (see also [2]), problem (1.1) with m = 1 has been considered.

Similar results for quasilinear parabolic equations, also involving p-Laplace
type operators or double-nonlinear operators, have been stated in [13, 23, 24, 25,
32, 36] (see also [7] and [26] for the case of Riemannian manifolds); moreover, in
[11] the same problem on Cartan-Hadamard manifolds has been investigated.

Global existence and blow-up of solutions for problem (1.1) with ρ satisfying

1

k1|x|q
≤ ρ(x) ≤ 1

k2|x|q
for all |x| > 1 (1.3)

have been investigated in [27] for q ∈ [0, 2), and in [28] for q ≥ 2. In [27], for
q ∈ [0, 2), the following results have been established.

• ([27, Theorem 2.1]) If p > p, for a certain p = p(k1, k2, q,m,N) > m and
the initial datum is sufficiently small, then solutions exist globally in time.
Observe that

p = m+
2− q
N − q

when k1 = k2.

• ([27, Theorem 2.4]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time.

• ([27, Theorem 2.6]) For 1 < p < m, for any non trivial initial data, solutions
blow-up in finite time.

• ([27, Theorem 2.7]) If m < p < p, for a certain p = p(k1, k2, q,m,N) ≤ p,
then, for any non trivial initial data, solutions blow-up in finite time, under
specific extra assumptions on ρ.

Such results extend those stated in [35] for problem (1.1) with ρ ≡ 1, m > 1, p > 1
(see also [6]).

Furthermore, assume that (1.3) holds with q ≥ 2. In [28] the following results
have been showed.
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• ([28, Theorem 2.1]) If q = 2 and p > m, then, for sufficiently small initial
data, solutions exist globally in time.

• ([28, Theorem 2.2]) If q = 2 and p > m, then, for sufficiently large initial
data, solutions blow-up in finite time.

• ([28, Theorem 2.3]) If q > 2, then, for any p > 1, for sufficiently small initial
data, solutions exist globally in time.

Finally, in [7], (1.1) is addressed, when p < m. It is assumed that (1.2) is
satisfied, and that the weighted Poincaré inequality with weight ρ holds. Moreover,
in view of the assumption on ρ also the weighted Sobolev inequality is fulfilled. By
using such functional inequalities, it is showed that global existence for Lm data
occurs, as well as a smoothing effect for the solution, i.e. solutions corresponding
to such data are bounded for any positive time. In addition, a quantitative bound
on the L∞ norm of the solution is given.

In what follows, we always consider two types of density functions ρ. To be
more specific, we always make one of the following two assumptions:

there exist k ∈ (0,+∞) and α > 1 such that

1

ρ(x)
≥ k (log |x|)α |x|2 for all x ∈ RN \Be(0) ;

(H1)

there exist k1, k2 ∈ (0,+∞) with k1 ≤ k2 and α > 1 such that

k1
|x|2

(log |x|)α
≤ 1

ρ(x)
≤ k2

|x|2

(log |x|)α
for all x ∈ RN \Be(0) .

(H2)

Assume (H1). For 1 < p < m and for suitable initial data u0 ∈ L∞(RN ),
we show the existence of global solutions belonging to L∞(RN × (0, τ)) for each
τ > 0. Indeed, in this case, the global existence follows from the results in [7] for
u0 ∈ Lmρ (RN ). However, now we consider a different class of initial data u0. In

fact, u0 ∈ L∞(RN ) and satisfies a decaying condition as |x| → +∞; however, u0

not necessarily belongs to Lmρ (RN ).
On the other hand, for p > m > 1, if u0 satisfies a suitable decaying condition

as |x| → +∞, then problem (1.1) admits a solution in L∞(RN × (0,+∞)).
Now, assume (H2). For any p > m, if u0 is sufficiently large, then the solutions

to problem (1.1) blow-up in finite time. Moreover, if p > m, u0 has compact
support and is small enough, then, under suitable assumptions on k1 and k2, there
exist global in time solutions to problem (1.1), which belong to L∞(RN×(0,+∞)).

The proofs mainly relies on suitable comparison principles and properly con-
structed sub- and supersolutions, which crucially depend on the behavior at infinity
of the density function ρ(x). More precisely, they are of the type

w(x, t) = Cζ(t)

[
1− (log(|x|+ r0))

q

a
η(t)

] 1
m−1

+

, (1.4)
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for any (x, t) ∈
[
RN \Be(0)

]
× [0, T ), for suitable functions ζ = ζ(t), η = η(t) and

constants C > 0, a > 0, r0 > 0 and q > 1. The paper is organized as follows. In
Section 2 we state our main results, in Section 3 we give the precise definitions
of solutions and we recall some auxiliary results. In Section 4 we prove Theorem
2.1. The blow-up result (that is, Theorem 2.2) is proved in Section 5. Finally, in
Section 6 Theorem 2.3 is proved .

2. Statements of the main results

For any x0 ∈ RN and R > 0 we set

BR(x0) = {x ∈ RN : ‖x− x0‖ < R}. (2.1)

When x0 = 0, we write BR ≡ BR(0).

2.1. Density ρ satisfying (H1)

The first result concerns the global existence of solutions to problem (1.1) for any
p > 1 and m > 1, p 6= m. We introduce the parameter b ∈ R such that

0 < b < α− 1. (2.2)

Moreover, since N ≥ 3, we can choose ε > 0 so that

N − 2− ε(b+ 1) > 0, (2.3)

and r0 > e so that

1

log(|x|+ r0)
< ε for any x ∈ RN . (2.4)

Finally, we can find c̄ > 0 such that

[log(|x|+ r0)]
− b̄p

m ≤ c̄ for any x ∈ RN . (2.5)

Observe that, thanks to (1.2)-(i) and (H1), we can say that there exists k0 > 0
such that

1

ρ(x)
≥ k0 [log(|x|+ r0)]

α
(|x|+ r0)2 for any x ∈ RN . (2.6)

Theorem 2.1. Let assumptions (1.2), (H1) be satisfied. Suppose that

p > 1, p 6= m,

and that u0 is small enough. Then problem (1.1) admits a global solution u ∈
L∞(RN × (0, τ)) for any τ > 0. More precisely, we have the following cases.
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(a) Let 1 < p < m. If C > 0 is big enough, T > 1, β > 0,

u0(x) ≤ CT β (log(|x|+ r0))
− b

m for any x ∈ RN , (2.7)

with b, ε, r0 as in (2.2), (2.3) and (2.4), then problem (1.1) admits a global
solution u, which satisfies the bound from above

u(x, t) ≤ C(T + t)β (log(|x|+ r0))
− b

m for any (x, t) ∈ RN × (0,+∞) . (2.8)

(b) Let p > m > 1. If C > 0 is small enough, T > 0 and (2.7) holds with β = 0,
then problem (1.1) admits a global solution u ∈ L∞(RN × (0,+∞)), which
satisfies the bound from above (2.8) with β = 0.

2.2. Density ρ satisfying (H2)

The next result concerns the blow-up of solutions in finite time, for every p > m >
1, provided that the initial datum is sufficiently large. We assume that hypotheses
(1.2) and (H2) hold. In view of (1.2)-(i), there exist ρ1, ρ2 ∈ (0,+∞) with ρ1 ≤ ρ2

such that

ρ1 ≤
1

ρ(x)
≤ ρ2 for all x ∈ Be(0). (2.9)

Let
b := α+ 1, (2.10)

and

s(x) :=


(log |x|)b if x ∈ RN \Be,

b |x|2

2e2
+ 1− b

2
if x ∈ Be .

(2.11)

Theorem 2.2. Let assumptions (1.2), (H2). Let

p > m,

T > 0; suppose that, for C > 0 and a > 0 large enough, the initial datum satisfies

u0(x) ≥ CT−
1

p−1

[
1− s(x)

a
T

m−p
p−1

] 1
m−1

+

for any x ∈ RN , (2.12)

with b and s(x) as in (2.10) and (2.11), then there exists S ∈ (0, T ] such that the
solution u of problem (1.1) blows-up at time S, in the sense that

‖u(t)‖∞ →∞ as t→ S− . (2.13)

Moreover, the solution u satisfies the bound from below

u(x, t) ≥ C(T − t)−
1

p−1

[
1− s(x)

a
(T − t)

m−p
p−1

] 1
m−1

+

for any (x, t) ∈ RN × (0, S) .

(2.14)
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Observe that if u0 satisfies (2.12), then

suppu0 ⊇ {x ∈ RN : s(x) < aT
p−m
p−1 } .

From (2.14) we can infer that

suppu(·, t) ⊇ {x ∈ RN : s(x) < a(T − t)
p−m
p−1 } for all t ∈ [0, S) . (2.15)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 5.2.

The next result concerns the global existence of solutions to problem (1.1) for
p > m. We assume that ρ satisfies a stronger condition than (H2). Indeed, we
suppose that

k1
(|x|+ r0)2

(log(|x|+ r0))
α ≤

1

ρ(x)
≤ k2

(|x|+ r0)2

(log(|x|+ r0))
α for all x ∈ RN , (2.16)

where

r0 > e,
k2

k1
< m+ (N − 3)

(
m− 1

b

)
, (2.17)

and
b := α+ 2. (2.18)

Theorem 2.3. Assume (1.2), (2.16), (2.17). Suppose that

p > m ,

and that u0 is small enough and has compact support. Then problem (1.1) admits
a global solution u ∈ L∞(RN × (0,+∞)).

More precisely, if C > 0 is small enough, a > 0 is so that

0 < ω0 ≤
Cm−1

a
≤ ω1

for suitable 0 < ω0 < ω1, T > 0,

u0(x) ≤ CT−
1

p−1

[
1− (log(|x|+ r0))

b

a
T−

p−m
p−1

] 1
m−1

+

for any x ∈ RN , (2.19)

with b as in (2.18), then problem (1.1) admits a global solution u ∈ L∞(RN ×
(0,+∞)). Moreover,

u(x, t) ≤ C(T + t)−
1

p−1

[
1− (log(|x|+ r0))

b

a
(T + t)−

p−m
p−1

] 1
m−1

+

(2.20)

for any (x, t) ∈ RN × (0,+∞).
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Observe that if u0 satisfies (2.19), then

suppu0 ⊆ {x ∈ RN : (log(|x|+ r0))
b ≤ aT

p−m
p−1 } .

From (2.20) we can infer that

suppu(·, t) ⊆ {x ∈ RN : (log(|x|+ r0))
b ≤ a(T + t)

p−m
p−1 } for all t > 0 . (2.21)

The choice of the parameters C > 0, T > 0 and a > 0 is discussed in Remark 6.2.

3. Preliminaries

In this section we give the precise definitions of solutions of all problems we address.
Moreover, we recall some auxiliary results. The proofs can be found in [27, Section
3].

Throughout the paper we deal with very weak solutions to problem (1.1) and to
the same problem set in different domains, according to the following definitions.

Definition 3.1. Let u0 ∈ L∞(RN ) with u0 ≥ 0. Let τ > 0, p > 1,m > 1. We say
that a nonnegative function u ∈ L∞(RN × (0, S)) for any S < τ is a solution of
problem (1.1) if

−
∫
RN

∫ τ

0

ρ(x)uϕt dt dx =

∫
RN

ρ(x)u0(x)ϕ(x, 0) dx

+

∫
RN

∫ τ

0

um∆ϕdt dx

+

∫
RN

∫ τ

0

ρ(x)upϕdt dx

for any ϕ ∈ C∞c (RN × [0, τ)), ϕ ≥ 0. Moreover, we say that a nonnegative function
u ∈ L∞(RN × (0, S)) for any S < τ is a subsolution (supersolution) if it satisfies
(3.1) with the inequality “ ≤ ” (“ ≥ ”) instead of “ = ” with ϕ ≥ 0.

Proposition 3.2. Let hypotheses (1.2) be satisfied. Then there exists a solution
u to problem (1.1) with

τ ≥ τ0 :=
1

(p− 1)‖u0‖p−1
∞

.

Moreover, u is the minimal solution, in the sense that for any solution v to problem
(1.1) there holds

u ≤ v in RN × (0, τ) .

We state the following two comparison results, which will be used in the sequel.
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Proposition 3.3. Let hypothesis (1.2) be satisfied. Let ū be a supersolution to
problem (1.1). Then, if u is the minimal solution to problem (1.1) given by Propo-
sition 3.2, then

u ≤ ū a.e. in RN × (0, τ) .

In particular, if ū exists until time τ , then also u exists at least until time τ .

Proposition 3.4. Let hypothesis (1.2) be satisfied. Let u be a solution to problem
(1.1) for some time τ = τ1 > 0 and u a subsolution to problem (1.1) for some time
τ = τ2 > 0. Suppose also that

suppu|RN×[0,S] is compact for every S ∈ (0, τ2) .

Then

u ≥ u in RN × (0,min{τ1, τ2}) .

In what follows we also consider solutions of equations of the form

ut =
1

ρ(x)
∆(um) + up in Ω× (0, τ), (3.1)

where Ω ⊆ RN is an open subset. Solutions are meant in the following sense.

Definition 3.5. Let τ > 0, p > 1,m > 1. We say that a nonnegative function
u ∈ L∞(Ω× (0, S)) for any S < τ is a solution of equation (3.1) if

−
∫

Ω

∫ τ

0

ρ(x)uϕt dt dx =

∫
Ω

∫ τ

0

um∆ϕdt dx

+

∫
Ω

∫ τ

0

ρ(x)upϕdt dx

(3.2)

for any ϕ ∈ C∞c (Ω × [0, τ)) with ϕ|∂Ω = 0 for all t ∈ [0, τ). Moreover, we say
that a nonnegative function u ∈ L∞(Ω × (0, S)) for any S < τ is a subsolution
(supersolution) if it satisfies (3.2) with the inequality “ ≤ ” (“ ≥ ”) instead of
“ = ”, with ϕ ≥ 0.

Finally, let us recall the following well-known criterion, that will be used in the
sequel. Let Ω ⊆ RN be an open set. Suppose that Ω = Ω1 ∪Ω2 with Ω1 ∩Ω2 = ∅,
and that Σ := ∂Ω1 ∩ ∂Ω2 is of class C1.

Let n be the unit outwards normal to Ω1 at Σ. Let

u =

{
u1 in Ω1 × [0, T ),

u2 in Ω2 × [0, T ) ,
(3.3)

where ∂tu ∈ C(Ω1×(0, T )), um1 ∈ C2(Ω1×(0, T ))∩C1(Ω1×(0, T )), ∂tu2 ∈ C(Ω2×
(0, T )), um2 ∈ C2(Ω2 × (0, T )) ∩ C1(Ω2 × (0, T )).
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Lemma 3.6. Let assumption (1.2) be satisfied.

(i) Suppose that

∂tu1 ≥
1

ρ
∆um1 + up1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≥
1

ρ
∆um2 + up2 for any (x, t) ∈ Ω2 × (0, T ),

(3.4)

u1 = u2,
∂um1
∂n
≥ ∂um2

∂n
for any (x, t) ∈ Σ× (0, T ) . (3.5)

Then u, defined in (3.3), is a supersolution to equation (3.1), in the sense of
Definition 3.5.

(ii) Suppose that

∂tu1 ≤
1

ρ
∆um1 + up1 for any (x, t) ∈ Ω1 × (0, T ),

∂tu2 ≤
1

ρ
∆um2 + up2 for any (x, t) ∈ Ω2 × (0, T ),

u1 = u2,
∂um1
∂n
≤ ∂um2

∂n
for any (x, t) ∈ Σ× (0, T ) .

Then u, defined in (3.3), is a subsolution to equation (3.1), in the sense of Defi-
nition 3.5.

4. Proof of Theorem 2.1

In what follows we set r ≡ |x|. We assume (1.2), (H1), (2.2) and (2.3). We want
to construct a suitable family of supersolutions of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0,+∞). (4.1)

In order to do this, we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t) (log(r + r0))
− b

m ; (4.2)

where ζ ∈ C1([0,+∞); [0,+∞)), C > 0 and r0 > e such that (2.4) is verified.

Proposition 4.1. Let ζ ∈ C1([0,+∞); [0,+∞)), ζ ′ ≥ 0. Assume (1.2), (H1),
(2.2), (2.3), (2.4), (2.5), (2.6) and that

k0b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp ≥ 0. (4.3)

Then ū defined in (4.2) is a supersolution of equation (4.1).
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Proof of Proposition 4.1. In view of (2.3) and (2.4), for any (x, t) ∈ (RN \ {0})×
(0,+∞),

ūt −
1

ρ
∆(ūm)− ūp

≥ Cζ ′ (log(r + r0))
− b

m +
1

ρ
{N − 2− ε(b+ 1)}Cmζmb (log(r + r0))

−b−1

(r + r0)2

− Cpζp (log(r + r0))
− bp

m .

(4.4)

Thanks to hypotheses (2.2), (2.5) and (2.6), we have

1

ρ

(log(r + r0))
−b̄−1

(r + r0)2
≥ k0

(log(r + r0))
α−b̄−1

(r + r0)2
(r + r0)2 ≥ k0 ,

− (log(r + r0))
− bp

m ≥ −c̄ .

(4.5)

Since ζ ′ ≥ 0, from (4.5) we get

ūt −
1

ρ
∆(ūm)− ūp ≥ k0 b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp . (4.6)

Hence (4.6) is nonnegative if

k0 b(N − 2− ε(b+ 1))Cmζm − c̄ Cpζp ≥ 0 , (4.7)

which is guaranteed by (2.3) and (4.3). So, we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in (RN \ {0})× (0,+∞) .

Now observe that
ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) ,

ūmr (0, t) ≤ 0 .

Hence, thanks to a Kato-type inequality we can infer that ū is a supersolution to
equation (4.1) in the sense of Definition 3.5.

Remark 4.2. Let assumption (H1) be satisfied. In Theorem 2.1 the precise
hypotheses on parameters β, C > 0, T > 0 are as follows.

(a) Let p < m. We require that
β > 0, (4.8)

k0 b(N − 2− ε(b+ 1))Cm − c̄ Cp ≥ 0 . (4.9)

(b) Let p > m. We require that
β = 0, (4.10)

k0 b(N − 2− ε(b+ 1))Cm − c̄ Cp ≥ 0 . (4.11)
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Lemma 4.3. All the conditions in Remark 4.2 can hold simultaneously.

Proof. (a) We observe that, due to (2.3),

N − 2− ε(b+ 1) > 0.

Therefore, we can select C > 0 sufficiently large to guarantee (4.9).
(b) We choose C > 0 sufficiently small to guarantee (4.11).

Proof of Theorem 2.1. We now prove Theorem 2.1 in view of Proposition 4.1. In
view of Lemma 4.3 we can assume that all conditions in Remark 4.2 are fulfilled.
Set

ζ(t) = (T + t)β , for all t ≥ 0 .

Let p < m. Inequality (4.3) reads

k0 b(N − 2− ε(b+ 1))Cm(T + t)mβ − c̄ Cp(T + t)pβ ≥ 0 for all t > 0 .

This follows from (4.8) and (4.9), for T > 1. Hence, by Propositions 4.1 and 3.2
the thesis follows in this case.

Let p > m. Conditions (4.10) and (4.11) are equivalent to (4.3). Hence, by
Propositions 4.1 and 3.2 the thesis follows in this case too. The proof is complete.

5. Proof of Theorem 2.2

We construct a suitable family of subsolutions of equation

ut =
1

ρ(x)
∆(um) + up in RN × (0, T ). (5.1)

We assume (1.2) and (H2). Let

w(x, t) ≡ w(r(x), t) :=

{
u(x, t) in [RN \Be(0)]× [0, T ),

v(x, t) in Be(0)× [0, T ),
(5.2)

where

u(x, t) ≡ u(r(x), t) := Cζ(t)

[
1− (log r)

b

a
η(t)

] 1
m−1

+

(5.3)

and

v(x, t) ≡ v(r(x), t) := Cζ(t)

[
1−

(
br2

2e2
+ 1− b

2

)
η

a

] 1
m−1

+

. (5.4)

Let

F (r, t) := 1− (log r)
b

a
η(t) ,
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and

G(r, t) := 1−
(
br2

2e2
+ 1− b

2

)
η

a
.

Observe that for any (x, t) ∈ [RN \Be(0)]× (0, T ), we have:

ut = Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1−1. (5.5)

∆(um) =
Cm

a
ζmη

m

(m− 1)2
b2

(log r)
b−2

r2
F

1
m−1−1

− Cm

a
ζmη

(
m

m− 1

)2

b2
(log r)

b−2

r2
F

1
m−1

+
Cm

a
ζmη

m

m− 1
b

(log r)
b−2

r2
F

1
m−1

− Cm

a
ζmη

m

m− 1
b

(log r)
b−1

r2
F

1
m−1 (N − 2)

(5.6)

Observe that for any (x, t) ∈ Be(0)× (0, T ), we have:

vt = Cζ ′G
1

m−1 + Cζ
1

m− 1

η′

η
G

1
m−1 − Cζ 1

m− 1

η′

η
G

1
m−1−1, (5.7)

∆(vm) =
Cm

a2
ζm

m

(m− 1)2

b2 r2

e4
η2G

1
m−1−1 −N Cm

a
ζm

m

m− 1

b

e2
ηG

1
m−1 . (5.8)

We also define

σ(t) := ζ ′ +
ζ

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
η k2

(
b

m

m− 1
+N − 2

)
,

δ(t) :=
ζ

m− 1

η′

η

γ(t) := Cp−1ζp,

σ0(t) := ζ ′ +
ζ

m− 1

η′

η
+ ρ2N

b

e2

Cm−1

a
ζm

m

m− 1
η ,

K :=

(
m− 1

p+m− 2

)m−1
p−1

−
(

m− 1

p+m− 2

) p+m−2
p−1

> 0.

(5.9)

Proposition 5.1. Let T ∈ (0,∞), ζ, η ∈ C1([0, T ); [0,+∞)). Let σ, δ, γ, σ0,K be
defined in (5.9). Assume that, for all t ∈ (0, T ),

σ(t) > 0, K[σ(t)]
p+m−2

p−1 ≤ δ(t)γ(t)
m−1
p−1 , (5.10)

(m− 1)σ(t) ≤ (p+m− 2)γ(t) . (5.11)

σ0(t) > 0, K[σ0](t)
p+m−2

p−1 ≤ δ(t)γ(t)
m−1
p−1 , (5.12)

(m− 1)σ0(t) ≤ (p+m− 2)γ(t) . (5.13)

Then w defined in (5.2) is a subsolution of equation (5.1).



Blow-up and global existence for porous medium equation 283

Proof of Proposition 5.1. In view of (5.5) and (5.6) we obtain

ut −
1

ρ
∆(um)− up

= Cζ ′F
1

m−1 + C
ζ

m− 1

η′

η
F

1
m−1 − C ζ

m− 1

η′

η
F

1
m−1−1

− 1

ρ

{
Cm

a
ζm

m

(m− 1)2
b2 η

(log r)
b−2

r2
F

1
m−1−1

+
Cm

a
ζm
(

m

m− 1

)2

b η
(log r)

b−2

r2
F

1
m−1 − Cm

a
ζm

m

m− 1
b η

(log r)
b−2

r2
F

1
m−1

+
Cm

a
ζm

m

m− 1
b η

(log r)
b−1

r2
F

1
m−1 (N − 2)

}
− CpζpF

p
m−1 , for all (x, t) ∈ D1 .

(5.14)
In view of (H2) and (2.10), we can infer that

− 1

ρ

(log r)
b−2

r2
≤ − k1

log r
≤ −k1, for all x ∈ RN \Be(0) , (5.15)

1

ρ

(log r)
b−2

r2
≤ k2

log r
≤ k2, for all x ∈ RN \Be(0) , (5.16)

1

ρ

(log r)
b−1

r2
≤ k2, for all x ∈ RN \Be(0) . (5.17)

From (5.14), (5.15), (5.16) and (5.17) we have

ut −
1

ρ
∆(um)− up

≤ CF
1

m−1−1

{
F

[
ζ ′ +

ζ

m− 1

η′

η
+
Cm−1

a
ζm

m

m− 1
b ηk2

(
N − 2 + b

m

m− 1

)]
− ζ

m− 1

η′

η
− Cp−1ζpF

p+m−2
m−1

}
.

(5.18)
Thanks to (5.9), (5.18) becomes

ut −
1

ρ
∆(um)− up ≤ CF

1
m−1−1ϕ(F ),

where, for each t ∈ (0, T ),

ϕ(F ) := σ(t)F − δ(t)− γ(t)F
p+m−2
m−1 .

Our goal is to find suitable C, a, ζ, η such that, for each t ∈ (0, T ),

ϕ(F ) ≤ 0 for any F ∈ (0, 1) .
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To this aim, we impose that

sup
F∈(0,1)

ϕ(F ) = max
F∈(0,1)

ϕ(F ) = ϕ(F0) ≤ 0 ,

for some F0 ∈ (0, 1). We have

dϕ

dF
= 0 ⇐⇒ σ(t)− p+m− 2

m− 1
γ(t)F

p−1
m−1 = 0

⇐⇒ F = F0 =

[
m− 1

p+m− 2

σ(t)

γ(t)

]m−1
p−1

.

Then

ϕ(F0) = K
σ(t)

p+m−2
p−1

γ(t)
m−1
p−1

− δ(t) ,

where the coefficient K depending on m and p has been defined in (5.9). By (5.10)
and (5.11), for each t ∈ (0, T ),

ϕ(F0) ≤ 0 , F0 ≤ 1 . (5.19)

So far, we have proved that

ut −
1

ρ(x)
∆(um)− up ≤ 0 in D1. (5.20)

Furthermore, since um ∈ C1([RN \ Be(0)] × (0, T )), due to Lemma 3.6 (applied
with Ω1 = D1,Ω2 = RN \ [Be(0) ∪D1], u1 = u, u2 = 0, u = u), it follows that u is
a subsolution to equation

ut −
1

ρ(x)
∆(um)− up = 0 in [RN \Be(0)]× (0, T ),

in the sense of Definition 3.5.
Let

D2 := {(x, t) ∈ Be(0)× (0, T ) : 0 < G(r, t) < 1} .

Using (2.9), (5.1) yields, for all (x, t) ∈ D2,

vt −
1

ρ
∆(vm)− vp

≤ CG
1

m−1−1
{
G

[
ζ ′ +

ζ

m− 1

η′

η
+N ρ2

b

e2

Cm−1

a
ζm

m

m− 1
η

]
− ζ

m− 1

η′

η
− Cp−1ζpG

p+m−2
m−1

}
= CG

1
m−1−1

[
σ0(t)G− δ(t)− γ(t)G

p+m−2
m−1

]
.

(5.21)
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Now, by the same arguments used to obtain (5.20), in view of (5.13) and (5.14)
we can infer that

vt −
1

ρ
∆vm ≤ vp for any (x, t) ∈ D2 . (5.22)

Moreover, since vm ∈ C1(Be(0) × (0, T )), in view of Lemma 3.6 (applied with
Ω1 = D2,Ω2 = Be(0) \D2, u1 = v, u2 = 0, u = v), we get that v is a subsolution
to equation

vt −
1

ρ
∆vm = vp in Be(0)× (0, T ) , (5.23)

in the sense of Definition 3.5. Now, observe that w ∈ C(RN × [0, T )); indeed,

u = v = Cζ(t)

[
1− η(t)

a

] 1
m−1

+

in ∂Be(0)× (0, T ) .

Moreover, wm ∈ C1(RN × [0, T )); indeed,

(um)r = (vm)r = −Cmζ(t)m
m

m− 1

η(t)

a

b

e

[
1− η(t)

a

] 1
m−1

+

in ∂Be(0)× (0, T ) .

(5.24)
In conclusion, in view of (5.24) and Lemma 3.6 (applied with Ω1 = Be(0),Ω2 =
RN \Be(0), u1 = v, u2 = u, u = w), we can infer that w is a subsolution to equation
(5.1), in the sense of Definition 3.5.

Remark 5.2. Let p > m and assumptions (H2) and (2.9) be satisfied. Let define
ω := Cm−1/a. In Theorem 2.2, the precise hypotheses on parameters C > 0,
a > 0, ω > 0 and T > 0 are the following.

max

{
1 +mk2 b

Cm−1

a

(
N − 2 + b

m

m− 1

)
; 1+mρ2

Cm−1

a
b
N

e2

}
≤ (p+m− 2)Cp−1 ,

(5.25)

K

(m− 1)
p+m−2

p−1

max

{[
1 +mk2b

Cm−1

a

(
N − 2 + b

m

m− 1

)] p+m−2
p−1

;

(
1 +mρ2

Cm−1

a
b
N

e2

) p+m−2
p−1

}
≤ p−m

(m− 1)(p− 1)
Cm−1 .

(5.26)

Lemma 5.3. All the conditions in Remark 5.2 can hold simultaneously.

Proof. We can take ω > 0 such that

ω0 ≤ ω ≤ ω1

for suitable 0 < ω0 < ω1 and we can choose C > 0 sufficiently large to guarantee
(5.25) and (5.26) (so, a > 0 is fixed, too).
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Proof of Theorem 2.2. We now prove Theorem 2.2, by means of Proposition 5.1.
In view of Lemma 5.3 we can assume that all conditions of Remark 5.2 are fulfilled.
Set

ζ = (T − t)−β , η = (T − t)λ , for all t > 0 ,

β =
1

p− 1
, λ =

m− p
p− 1

.

Then

σ(t) :=

[
1

m− 1
+
Cm−1

a

m

m− 1
b k2

(
b

m

m− 1
+N − 2

)]
(T − t)−

p
p−1 ,

δ(t) :=
p−m

(m− 1)(p− 1)
(T − t)−

p
p−1 ,

γ(t) := Cp−1(T − t)−
p

p−1 ,

σ0(t) :=
1

m− 1

[
1 +

ρ2N mb

e2

Cm−1

a

]
(T − t)−

p
p−1 .

(5.27)

Let p > m. Condition (5.25) implies (5.11), (5.13), while condition (5.26) implies
(5.10), (5.12). Hence by Propositions 5.1 and 3.4 the thesis follows.

6. Proof of Theorem 2.3

We assume (1.2), (2.16) and (2.17). In order to construct a suitable family of
supersolutions of (4.1), we define, for all (x, t) ∈ RN × (0,+∞),

ū(x, t) ≡ ū(r(x), t) := Cζ(t)

[
1− (log(r + r0))

b

a
η(t)

] 1
m−1

+

, (6.1)

where η, ζ ∈ C1([0,+∞); [0,+∞)), C > 0, a > 0, r0 > e and b as in (2.18).

Now, we compute

ūt −
1

ρ
∆(ūm)− ūp.

To this aim, set

F (r, t) := 1− (log(r + r0))
b

a
η(t) ,

and
D1 :=

{
(x, t) ∈ [RN \ {0}]× (0,+∞) | 0 < F (r, t) < 1

}
.

For any (x, t) ∈ D1, we have:

ūt = Cζ ′F
1

m−1 + Cζ
1

m− 1
F

1
m−1−1

(
− (log(r + r0))

b

a
η′

)

= Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1−1.

(6.2)
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∆(ūm) =
(N − 1)

r

(
−b C

m

a
ζm

m

m− 1
F

1
m−1

(log(r + r0))
b−1

(r + r0)
η

)

− bC
m

a

m

m− 1
ζmη

[
b

m

m− 1
− 1

]
(log(r + r0))

b−2

(r + r0)2
F

1
m−1

+ b
Cm

a

m

m− 1
ζmη

(log(r + r0))
b−1

(r + r0)2
F

1
m−1

+ b
2Cm

a

m

(m− 1)2
ζmη

(log(r + r0))
b−2

(r + r0)2
F

1
m−1−1 .

(6.3)

We also define

σ̄(t) := ζ ′ +
ζ

m− 1

η′

η
+ b

Cm−1

a
ζm

m

m− 1
ηk1

(
b

m

m− 1
+N − 3

)
,

δ̄(t) :=
ζ

m− 1

η′

η
+ b

2 Cm−1

a
ζm

m

(m− 1)2
ηk2 ,

γ̄(t) := Cp−1ζp .

(6.4)

Proposition 6.1. Let ζ, η ∈ C1([0,+∞); [0,+∞)). Let σ̄, δ̄, γ̄ be as defined in
(6.4). Assume (H2), (2.16), (2.17), (2.18) and that, for all t ∈ (0,+∞),

− η′

η2
≥ b2 C

m−1

a
ζm−1 m

m− 1
k2, (6.5)

and

ζ ′ + b
Cm−1

a
ζm

m

m− 1
η

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1ζp ≥ 0 .

(6.6)

Then ū defined in (6.1) is a supersolution of equation (4.1).

Proof of Proposition 6.1. In view of (6.2) and (6.3), for any (x, t) ∈ D1,

ūt−
1

ρ
∆(ūm)− ūp

≥ Cζ ′F
1

m−1 + Cζ
1

m− 1

η′

η
F

1
m−1 − Cζ 1

m− 1

η′

η
F

1
m−1−1

+
1

ρ
(N − 2) b

Cm

a
ζm

m

m− 1
F

1
m−1

(log(r + r0))
b−1

(r + r0)2
η

+
1

ρ
b
Cm

a

m

m− 1
ζmη

[
b

m

m− 1
− 1

]
(log(r + r0))

b−2

(r + r0)2
F

1
m−1

− 1

ρ
b
2Cm

a

m

(m− 1)2
ζmη

(log(r + r0))
b−2

(r + r0)2
F

1
m−1−1 − CpζpF

p
m−1 ,

(6.7)



288 G. Meglioli and F. Punzo

where we have used the inequality

1

r(r + r0)
≥ 1

(r + r0)2
.

Thanks to (2.16) and (2.18), we have

1

ρ

(log(r + r0))
b−2

(r + r0)2
≥ k1 for all x ∈ RN , (6.8)

− 1

ρ

(log(r + r0))
b−2

(r + r0)2
≥ −k2 for all x ∈ RN , (6.9)

1

ρ

(log(r + r0))
b−1

(r + r0)2
≥ k1 log(r + r0) ≥ k1 for all x ∈ RN . (6.10)

From (6.8), (6.9) and (6.10) we get

ūt −
1

ρ
∆(ūm)− ūp

≥ CF
1

m−1−1

{
F

[
ζ ′ +

ζ

m− 1

η′

η
+ b

Cm−1

a
ζm

m

m− 1
η k1

(
b

m

m− 1
+N − 3

)]
− ζ

m− 1

η′

η
− b2 C

m−1

a
ζm

m

(m− 1)2
η k2 − Cp−1ζpF

p+m−2
m−1

}
(6.11)

From (6.11) and (6.4), we have

ūt −
1

ρ
∆(ūm)− ūp ≥ CF

1
m−1−1

[
σ̄(t)F − δ̄(t)− γ̄(t)F

p+m−2
m−1

]
. (6.12)

For each t > 0, set

ϕ(F ) := σ̄(t)F − δ̄(t)− γ̄(t)F
p+m−2
m−1 , F ∈ (0, 1) .

Now our goal is to find suitable C, a, ζ, η such that, for each t > 0,

ϕ(F ) ≥ 0 for any F ∈ (0, 1) .

We observe that ϕ(F ) is concave in the variable F . Hence it is sufficient to have
that ϕ(F ) is positive at the extrema of the interval (0, 1). This reduces, for any
t > 0, to the conditions

ϕ(0) ≥ 0 ,

ϕ(1) ≥ 0 .

These are equivalent to

−δ̄(t) ≥ 0 , σ̄(t)− δ̄(t)− γ̄(t) ≥ 0 ,
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that is

− η′

η2
≥ b2 C

m−1

a
ζm−1 m

m− 1
k2 ,

ζ ′ + b
Cm−1

a
ζm

m

m− 1
η

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1ζp ≥ 0 .

which are guaranteed by (2.17), (6.5) and (6.6). Hence we have proved that

ūt −
1

ρ
∆(ūm)− ūp ≥ 0 in D1 .

Now observe that

ū ∈ C(RN × [0,+∞)) ,

ūm ∈ C1([RN \ {0}]× [0,+∞)) , and by the definition of ū ,

ū ≡ 0 in [RN \D1]× [0,+∞)) .

Hence, by Lemma 3.6 (applied with Ω1 = D1, Ω2 = RN \ D1, u1 = ū, u2 = 0,
u = ū), ū is a supersolution of equation

ūt −
1

ρ
∆(ūm)− ūp = 0 in (RN \ {0})× (0,+∞)

in the sense of Definition 3.5. Thanks to a Kato-type inequality, since ūmr (0, t) ≤ 0,
we can easily infer that ū is a supersolution of equation (4.1) in the sense of
Definition 3.5.

Remark 6.2. Let p > m and assumption (2.17) be satisfied. Let ω := Cm−1/a.
In Theorem 2.3 the precise hypotheses on parameters C > 0, ω > 0, T > 0 are
the following:

p−m
p− 1

≥ b2 ω m

m− 1
k2, (6.13)

b ω
m

m− 1

[
k1

(
b

m

m− 1
+N − 3

)
− k2

(m− 1)
b

]
≥ Cp−1 +

1

p− 1
. (6.14)

Lemma 6.3. All the conditions in Remark 6.2 can be satisfied simultaneously.

Proof. Since p > m the left-hand-side of (6.13) is positive. By (2.17), we can
select ω > 0 so that (6.13) holds and

b ω
m

m− 1

[
k1

(
b

m

m− 1
+N − 3

)
− k2

(m− 1)
b

]
≥ 1

p− 1
.

Then we take C > 0 so small that (6.14) holds (and so a > 0 is accordingly
fixed).



290 G. Meglioli and F. Punzo

Proof of Theorem 2.3. In view of Lemma 6.3, we can assume that all the condi-
tions in Remark 6.2 are fulfilled. Set

ζ(t) = (T + t)−
1

p−1 , for all t ≥ 0 ,

and

η(t) = (T + t)−
p−m
p−1 , for all t ≥ 0 .

Let p > m. Consider conditions (6.5) and (6.6) with this choice of ζ and η. They
read

p−m
p− 1

≥ b̄2C
m−1

a

m

m− 1
k2,

− 1

p− 1
+ b

Cm−1

a

m

m− 1

[(
b

m

m− 1
+N − 3

)
k1 −

b

(m− 1)
k2

]
− Cp−1 ≥ 0 .

Therefore, (6.5) and (6.6) follow from assumptions (6.13) and (6.14). Hence, by
Propositions 6.1 and 3.2 the thesis follows.
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[8] Grillo G., Muratori M., Porzio M.M.: Porous media equations with two weights: existence,
uniqueness, smoothing and decay properties of energy solutions via Poincaré inequalities,
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