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Entropy solutions of some nonlinear elliptic problems with
measure data in Musielak-Orlicz spaces

Rachid Bouzyani, Badr El Haji∗ and Mostafa El Moumni

Abstract. In this work, we prove an existence theorem of entropy solutions for nonlinear ellip-

tic problem of the type − div(a(x, u,∇u) + Φ(x, u)) = µ in Ω, in the setting of Musielak-Orlicz

spaces. The lower order term Φ verifies the natural growth condition, no ∆2-condition is as-

sumed on the Musielak function, and the datum µ is assumed to belong to L1(Ω) +W−1Eψ(Ω).

1. Introduction and Basic Assumptions

In this note, we prove an existence theorem of entropy solutions for nonlinear
elliptic problem whose model is :{

A(u)− div Φ(x, u) = f − divF in Ω

u ≡ 0 on ∂Ω,
(1.1)

where Ω is a bounded domain of RN , N ≥ 2, A(u) = −div(a(x, u,∇u)) is a Leray-
Lions operator defined from the space W 1

0Lϕ(Ω) into its dual W−1Lϕ̄(Ω), with ϕ
and ϕ̄ are two complementary Musielak-Orlicz functions and where a is a function
satisfying the following conditions:

a : Ω× R× RN −→ RN is a Carathéodory function. (1.2)

There exist two Musielak-Orlicz functions ϕ and P such that P ≺≺ ϕ, a positive
function d(x) ∈ Eϕ̄(Ω), α > 0 and ki > 0 for i = 1, . . . , 4, such that for a.e. x ∈ Ω
and all s ∈ RN and all ξ, ξ′ ∈ RN , ξ 6= ξ′:

|a(x, s, ξ)| ≤ k1

(
d(x) + ϕ̄−1

x (P (x, k2|s|)) + ϕ̄−1
x (ϕ (x, k3|ξ|))

)
, (1.3)

(a(x, s, ξ)− a (x, s, ξ′)) (ξ − ξ′) > 0, (1.4)

a(x, s, ξ).ξ ≥ αϕ(x, |ξ|). (1.5)

The lower order term Φ is a Carathéodory function satisfying, for a.e. x ∈ Ω
and for all s ∈ R, the following condition:

|Φ(x, s)| ≤ Px
−1
Px(|s|). (1.6)
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The right-hand side of (1.1) is assumed to satisfy

µ ∈ L1(Ω) +W−1Eϕ̄(Ω) such that ,
µ = f − div(F ),

with f ∈ L1(Ω) and F ∈ (Eϕ̄(Ω))
N
.

(1.7)

The notion of entropy solution, used in [19], allows us to give a meaning to a
possible solution of (1.1)

Boccardo proved in [19], for p such that 2 − 1/N < p < N, the existence and
regularity of an entropy solution u of problem (1.1) . For the case φ = 0 and f is
a bounded measure, Bnilan et al. proved in [10] the existence and uniqueness of
entropy solutions,the same problem is treated using the notion of entropy solution
introduced in [31] where f ∈ L1(Ω), and F ∈ Lp′(Ω)N . We mention as a parallel
development, the work of Lions and Murat [32] who consider similar problems in
the context of the renormalized solutions introduced by Diperna and Lions [28] for
the study of the Boltzmann equations,they can prove existence and uniqueness of
renormalized solution.

For the case of Orlicz spaces, Gossez and Mustonen have studied in [29] the
following strongly nonlinear elliptic problem

A(u) + g(x, u) = f in Ω (1.8)

they have proved the existence of solutions for the unilateral elliptic problem (1.8).
Several researches deals with the existence solutions of elliptic and parabolic

problems under various assumptions and in different contexts (see [2, 3, 4, 5, 6, 7,
8, 9, 12, 13, 14, 15, 16, 17, 18, 21, 22, 20, 23, 24, 27, 28, 34, 36, 37, 38] for more
details).

In this work, we will prove the existence of solutions for the elliptic problem
(1.1) in Musielak-Orlicz-Sobolev spaces, where the lower order term Φ verifies the
natural growth condition, no ∆2-condition is assumed on the Musielak function,
and the datum µ is assumed to belong to L1(Ω) +W−1Eψ(Ω). Where Φ ≡ 0 one
of the motivations for studying the Eq. (1.1) in the generalized Orlicz-Sobolev
spaces come from the fact that these spaces are more adequate for studying the
behavior of some physical phenomenon like the flow electro-rheological fluids that
is characterized by their ability to drastically change the mechanical properties
under the influence of an extremal electromagnetic field. A mathematical model
of electro-rheological fluids was proposed by Ruzicka in [40] .

The paper is organized as follows: In Section 2, we give some preliminaries and
background. Section 3 is devoted to some auxiliary lemmas which can be used to
our result. In Section 4, we state our main result and finally give the prove of an
existence solution in Section 5 .

2. Some Preliminary Results

Here we give some definitions and properties that concern Musielak-Orlicz spaces
(see [33]). Let Ω be an open subset of Rn, a Musielak-Orlicz function ϕ is a real-
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valued function defined in Ω× R+ such that:
a) ϕ(x, .) is an N -function for all x ∈ Ω (i.e. convex, nondecreasing, continuous,

ϕ(x, 0) = 0, ϕ(x, t) > 0 for all t > 0 and lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0 and lim

t→∞
inf
x∈Ω

ϕ(x, t)

t
=

∞).
b) ϕ(., t) is a measurable function for all t ≥ 0.

For a Musielak-Orlicz function ϕ, let ϕx(t) = ϕ(x, t) and let ϕ−1
x be the non-

negative reciprocal function with respect to t, i.e. the function that satisfies

ϕ−1
x (ϕ(x, t)) = ϕ

(
x, ϕ−1

x (t)
)

= t

The Musielak-Orlicz function ϕ is said to satisfy the ∆2 -condition if for some
k > 0, and a nonnegative function h, integrable in Ω, we have

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (2.1)

When (2.1) holds only for t ≥ t0 > 0, then ϕ is said to satisfy the ∆2 -condition near
infinity. Let ϕ and γ be two Musielak-Orlicz functions, we say that ϕ dominate
γ and we write γ ≺ ϕ, near infinity (resp. globally) if there exist two positive
constants c and t0 such that for a.e. x ∈ Ω :

γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0, (resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (resp. near infinity)
and we write γ ≺≺ ϕ if for every positive constant c we have

lim
t→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0, (resp. lim

t→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

For a Musielak-Orlicz function ϕ and a measurable function u : Ω −→ R, we define
the functional

ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx.

The setKϕ(Ω) = {u : Ω→ R measurable/ρϕ,Ω(u) <∞} is called the Musielak-
Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (the general-
ized Orlicz spaces) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is, Lϕ(Ω)
is the smallest linear space containing the set Kϕ(Ω). Equivalently

Lϕ(Ω) =
{
u : Ω −→ R measurable/ ρϕ,Ω

(u
λ

)
<∞, for some λ > 0

}
For a Musielak-Orlicz function ϕ we put:

ψ(x, s) = sup
t>0
{st− ϕ(x, t)}.
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Note that ψ is the Musielak-Orlicz function complementary to ϕ (or conjugate of
ϕ) in the sense of Young with respect to the variable s. In the space Lϕ(Ω) we
define the following two norms:

‖u‖ϕ,Ω = inf

{
λ > 0/

∫
Ω

ϕ

(
x,
|u(x)|
λ

)
dx ≤ 1

}
which is called the Luxemburg norm and the so-called Orlicz norm by:

‖|u|‖ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)| dx

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent (see [33]). The closure in Lϕ(Ω) of the bounded measurable functions
with compact support in Ω is denoted by Eϕ(Ω), It is a separable space (see [33,
Theorem 7.10]).

We say that sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈
Lϕ(Ω) if there exists a constant λ > 0 such that

lim
n→∞

ρϕ,Ω

(
un − u
λ

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω)/ ∀|α| ≤ m,Dαu ∈ Lϕ(Ω)}

and
WmEϕ(Ω) = {u ∈ Eϕ(Ω)/ ∀|α| ≤ m,Dαu ∈ Eϕ(Ω)}

where α = (α1, . . . , αn) with nonnegative integers αi, |α| = |α1| + · · · + |αn| and
Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak-Orlicz Sobolev space. Let for u ∈WmLϕ(Ω) :

ρ̄ϕ,Ω(u) =
∑
|α|≤m

ρϕ,Ω (Dαu) and ‖u‖mϕ,Ω = inf
{
λ > 0/ ρ̄ϕ,Ω

(u
λ

)
≤ 1
}

these functionals are a convex modular and a norm on WmLM (Ω), respectively,
and the pair

(
WmLϕ(Ω), ‖ · ‖mϕ,Ω

)
is a Banach space if ϕ satisfies the following

condition (see [33]):

There exist a constant c0 > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c0. (2.2)

The space WmLϕ(Ω) will always be identified to a subspace of the product∏
|α|≤m

Lϕ(Ω) = ΠLϕ,

this subspace is σ (ΠLϕ,ΠEψ) closed. The space Wm
0 Lϕ(Ω) is defined as the

σ (ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω), and the space Wm
0 Eϕ(Ω) as the

(norm) closure of the Schwartz space D(Ω) in WmLϕ(Ω).
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Let Wm
0 Lϕ(Ω) be the σ (ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω). The fol-

lowing spaces of distributions will also be used:

W−mLψ(Ω) =
{
f ∈ D′(Ω)/ f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)
}

and

W−mEψ(Ω) =
{
f ∈ D′(Ω)/ f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)
}
.

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to
u ∈WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

ρ̄ϕ,Ω

(
un − u
k

)
= 0.

We recall that

ϕ(x, t) ≤ tψ−1(ϕ(x, t)) ≤ 2ϕ(x, t) for all t ≥ 0. (2.3)

For ϕ and her complementary function ψ, the following inequality is called the
Young inequality (see [33]):

ts ≤ ϕ(x, t) + ψ(x, s), ∀t, s ≥ 0, a.e. x ∈ Ω. (2.4)

This inequality implies that

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) + 1 . (2.5)

In Lϕ(Ω) we have the relation between the norm and the modular

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) if ‖u‖ϕ,Ω > 1 (2.6)

and
‖u‖ϕ,Ω ≥ ρϕ,Ω(u) if ‖u‖ϕ,Ω ≤ 1. (2.7)

For two complementary Musielak-Orlicz functions ϕ and ψ, let u ∈ Lϕ(Ω) and
v ∈ Lψ(Ω), then we have the Hölder inequality (see [33]):∣∣∣∣∫

Ω

u(x)v(x)dx

∣∣∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω. (2.8)

Definition 2.1. A Musielak function ϕ is called locally integrable on Ω if∫
E

ϕ(x, t)dx =

∫
Ω

ϕ (x, tχE(x)) dx < +∞

for all t ≥ 0 and all measurable set E ⊂ Ω with mes(E) < +∞.
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Remark 2.2. If P ≺≺ ϕ near infinity such that P is locally integrable on Ω, then
∀c > 0 there exists a nonnegative integrable function h such that

P (x, t) ≤ ϕ(x, ct) + h(x), for all t ≥ 0 and for a.e. x ∈ Ω.

Definition 2.3. A Musielak function ϕ satisfies the log-Hölder continuity condi-
tion on Ω if there exists a constant A > 0 such that

ϕ(x, t)

ϕ(y, t)
≤ t

(
A

log( 1
x−y| )

)

for all t ≥ 1 and for all x, y ∈ Ω with |x− y| ≤ 1
2 .

3. Some Auxiliary Lemmas

We will use the following technical lemmas.

Lemma 3.1 ([1]). Let Ω be a bounded Lipschitz domain in RN (N ≥ 2) and let ϕ
be a Musielak function satisfying the log-Hölder continuity such that

ϕ̄(x, 1) ≤ c1 a.e in Ω for some c1 > 0 (3.1)

Then D(Ω) is dense in Lϕ(Ω) and in W 1
0Lϕ(Ω) for the modular convergence.

Remark 3.2. Note that if limt→∞ infx∈Ω
ϕ(x,t)
t =∞, then (3.1) holds:

Example 3.3. Let p ∈ P (Ω) a bounded variable exponent on Ω, such that there
exists a constant A > 0 such that for all points x, y ∈ Ω with |x− y| < 1

2 , we have
the inequality

|p(x)− p(y)| ≤ A

log
(

1
|x−y|

)
We can verify that the Musielak function defined by ϕ(x, t) = tp(x) log(1 + t)
satisfies the conditions of Lemma 3.1

Lemma 3.4 ([1]). (Poincare’s inequality: Integral form) Let Ω be a bounded Lip-
schitz domain of RN (N ≥ 2) and let ϕ be a Musielak function satisfying the con-
ditions of Lemma 3.1. Then there exists positive constants β, η and λ depending
only on Ω and ϕ such that∫

Ω

ϕ(x, |v|)dx ≤ β + η

∫
Ω

ϕ(x, λ|∇v|)dx for all v ∈W 1
0Lϕ(Ω). (3.2)

Lemma 3.5 ([1] Poincaré’s inequality). Let Ω be a bounded Lipchitz domain of
RN (N ≥ 2) and let ϕ be a Musielak function satisfying the same conditions of
Lemma 3.4. Then there exists a constant C > 0 such that

‖v‖ϕ ≤ C‖∇v‖ϕ ∀v ∈W 1
0Lϕ(Ω).
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Lemma 3.6 ([35]). Let F : R −→ R be uniformly Lipschitzian, with F (0) = 0. Let
ϕ be a Musielak-Orlicz function and let u ∈W 1

0Lϕ(Ω). Then F (u) ∈W 1
0Lϕ(Ω).

Moreover, if the set D of discontinuity points of F ′ is finite, we have

∂

∂xi
F (u) =

{
F ′(u) ∂u∂xi a.e in {x ∈ Ω : u(x) ∈ D}
0 a.e in {x ∈ Ω : u(x) /∈ D}

Lemma 3.7 ([17]). Suppose that Ω satisfies the segment property and let u ∈
W 1

0Lϕ(Ω). Then, there exists a sequence (un) ⊂ D(Ω) such that

un → u for modular convergence in W 1
0Lϕ(Ω).

Furthermore, if u ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) then ‖un‖∞ ≤ (N + 1)‖u‖∞.

Lemma 3.8 ([30]). Let (fn) , f ∈ L1(Ω) such that
i) fn ≥ 0 a.e in Ω,
ii) fn −→ f a.e in Ω,

iii)

∫
Ω

fn(x) dx −→
∫

Ω

f(x) dx.

Then fn −→ f strongly in L1(Ω).

Lemma 3.9 ([18]). If a sequence gn ∈ Lϕ(Ω) converges in measure to a measurable
function g and if gn remains bounded in Lϕ(Ω), then g ∈ Lϕ(Ω) and gn ⇀ g for
σ (ΠLϕ,ΠEψ).

Lemma 3.10 ([18]). Let un, u ∈ Lϕ(Ω). If un → u with respect to the modular
convergence, then un → u for σ (Lϕ(Ω), Lψ(Ω)) .

Lemma 3.11 ([26]). If P ≺ ϕ and un → u for the modular convergence in Lϕ(Ω)
then un → u strongly in EP (Ω).

Lemma 3.12 ([39] Jensen inequality). Let ϕ : R −→ R a convex function and
g : Ω −→ R is function measurable, then

ϕ

(∫
Ω

gdµ

)
≤
∫

Ω

ϕ ◦ g dµ.

Lemma 3.13 ([25] The Nemytskii Operator). Let Ω be an open subset of RN with
finite measure and let ϕ and ψ be two Musielak Orlicz functions.

Let f : Ω× Rp → Rq be a Carathéodory function such that for a.e. x ∈ Ω and
all s ∈ Rp :

|f(x, s)| ≤ c(x) + k1ψ
−1
x ϕ (x, k2|s|)

where k1 and k2 are real positives constants and c(.) ∈ Eψ(Ω). Then the Nemytskii
Operator Nf defined by Nf (u)(x) = f(x, u(x)) is continuous from

P
(
EM (Ω),

1

k2

)p
=
∏{

u ∈ LM (Ω) : d (u,EM (Ω)) <
1

k2

}
into (Lψ(Ω))

q
for the modular convergence. Furthermore if c(·) ∈ Eγ(Ω) and

γ ≺≺ ψ then Nf is strongly continuous from P
(
EM (Ω), 1

k2

)p
to (Eγ(Ω))

q
.
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Throughout the paper, Tk denotes the truncation function at height k ≥ 0:

Tk(s) = max(−k,min(k, s)) .

4. Main Result

Theorem 4.1. Under the assumptions (1.2)-(1.7); there exists an entropy solution
u of the problem (1.1) in the following sense:

Tk(u) ∈W 1
0Lϕ(Ω)∫

Ω

a(x, u,∇u)∇Tk(u− v)dx+

∫
Ω

Φ(x, u)∇Tk(u− v)dx

≤
∫

Ω

fTk(u− v)dx+

∫
Ω

F∇Tk(u− v)dx,

for every v ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) and for every k ≥ 0.

5. Proof of Theorem 4.1

5.1. Approximate problem

For n ∈ N∗, let define the following approximations of f, and Φ
Let fn be a sequence of L∞(Ω) functions that converge strongly to f in L1(Ω),

and ‖fn‖L1 ≤ ‖f‖L1 . Let Φn (x, s) = Φ (x, Tn (s)).
Then we consider the approximate equation (1.1) for n ≥ 1 : un ∈W 1

0Lϕ(Ω)

− div
(
a (x, un,∇un)

)
+ div

(
Φn (x, un)

)
= fn − div(F ) inD′(Ω). (5.1)

there exists at last one solution un ∈ W 1
0Lϕ(Ω) of (5.1) (see [26]).

5.2. A Priori Estimates

Taking v = Tk (un) , k > 0, as test function in (1.1) we get

∫
Ω

a (x, un,∇un) .∇Tk (un) dx+

∫
Ω

Φn (x, un)∇Tk (un) dx

=

∫
Ω

fnTk (un) dx+

∫
Ω

Fn∇Tk (un) dx.

(5.2)

Thanks to (1.6) and applying Young inequality one has∫
Ω

Φn (x, un)∇Tk (un) dx ≤
∫

Ω

Px
−1
Px (|Tk (un)|)∇Tk (un) dx

≤
∫

Ω

P (x, |Tk (un)|) dx+

∫
Ω

P (x, |∇Tk (un)|) dx.
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By choosing ε > 0 such that ε = α
(α+2)(λη+1) , and thanks to Remark 2.2, we can

have ∫
Ω

Φn (x, un)∇Tk (un) dx

≤
∫

Ω

ϕ

(
x,
ελ

λ
|Tk (un)|

)
dx+ ε

∫
Ω

ϕ (x, |∇Tk (un)|) dx+ 2

∫
Ω

h(x)dx

Thanks to Lemma3.4 and choosing v = |Tk(un)|
λ with ελ ≤ 1, we get∫

Ω

Φn (x, un)∇Tk (un) dx

≤ β + ε(λη + 1)

∫
Ω

ϕ (x, |∇Tk (un)|) dx+ 2

∫
Ω

h(x)dx
(5.3)

On the other hand we have∫
Ω

Fn∇Tk (un) dx ≤ α

2

∫
Ω

ϕ (x, |∇Tk (un)un|) dx (5.4)

from (5.2), (5.3) and (5.4) we get∫
{|un|≤k}

a (x, un,∇un)∇undx ≤ ε(λη + 1)

∫
Ω

ϕ (x, |∇Tk (un)|) dx

+β + c1k + 2

∫
Ω

h(x)dx+
α

2

∫
Ω

ϕ (x, |∇Tk (un)un|) dx

which give∫
{|un|≤k}

a (x, un,∇un)∇undx ≤
(
ε(λη + 1) +

α

2

)∫
Ω

ϕ (x, |∇Tk (un)|) dx

+β + c1k + 2

∫
Ω

h(x)dx .

Thus, by virtue of (1.5) and since (α2 − ε(λη + 1)) > 0, we get∫
Ω

ϕ (x, |∇Tk (un)|) dx ≤ c1 + c2k. (5.5)

Now, choosing v = 1
λ |Tk (un)| in (3.2) we obtain

∫
Ω

ϕ

(
x,

1

λ
|Tk (un)|

)
dx ≤ β + η

∫
Ω

ϕ (x, |∇Tk (un)|) dx ≤ c3 + c4k (5.6)

then
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meas {|un| > k} ≤ 1

infx∈Ω ϕ
(
x, kλ

) ∫
{|un|>k}

ϕ

(
x,
k

λ

)
dx

≤ 1

infx∈Ω ϕ
(
x, kλ

) ∫
Ω

ϕ

(
x,

1

λ
|Tk (un)|

)
dx

≤ c3 + c4k

infx∈Ω ϕ
(
x, kλ

) ∀n, ∀k > 0 .

(5.7)

For any δ > 0, we have

meas {|un − um| > δ}
≤ meas {|un| > k}+ meas {|um| > k}+ meas {|Tk (un)− Tk (um)| > δ}

and so that

meas {|un − um| > δ} ≤ 2 (c3 + c4k)

infx∈Ω ϕ
(
x, kλ

) + meas {|Tk (un)− Tk (um)| > δ} . (5.8)

From (5.5), we deduce that Tk (un) is bounded in W 1
0Lϕ(Ω) and we can assume

that Tk (un) is a Cauchy sequence in measure in Ω.

Let ε > 0, by using (5.8) and the fact that 2(c3+c4k)

infx∈Ω ϕ(x, kλ )
→ 0 as k → +∞ there

exists k(ε) > 0 such that

meas {|un − um| > δ} ≤ ε, for all n,m ≥ n0(k(ε), δ) .

This proves that (un) is a Cauchy sequence in measure in Ω; thus, un converges
almost everywhere to some measurable function u. Finally, for all k > 0, we have
for a subsequence

{
Tk (un) ⇀ Tk(u) weakly in W 1

0Lϕ(Ω) for σ (ΠLϕ,ΠEϕ̄)

Tk (un)→ Tk(u) strongly in Eϕ(Ω) and a.e. in Ω.
(5.9)

5.3. Boundedness of (a (x, un,∇un))n in (Lϕ̄(Ω))
N
.

Let ϑ ∈ (Eϕ(Ω))
N

such that ‖ϑ‖ϕ,Ω = 1. We have

∫
Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) ,

ϑ

k3

)][
∇Tk (un)− ϑ

k3

]
dx ≥ 0 .
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This implies that∫
Ω

1

k3
a (x, Tk (un) ,∇Tk (un))ϑdx

≤
∫

Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx

−
∫

Ω

a

(
x, Tk (un) ,

ϑ

k3

)(
∇Tk (un)− ϑ

k3

)
dx

≤kC1 + C2 −
∫

Ω

a

(
x, Tk (un) ,

ϑ

k3

)
∇Tk (un) dx

+
1

k3

∫
Ω

a

(
x, Tk (un) ,

ϑ

k3

)
ϑdx .

By using Young’s inequality in the last two terms of the last side and (5.5) we get∫
Ω

a (x, Tk (un) ,∇Tk (un))ϑdx ≤ (kC1 + C2)k3

+3k1 (1 + k3)

∫
Ω

ϕ̄

x,
∣∣∣a(x, Tk (un) , ϑk3

)∣∣∣
3k1

 dx

+3k1k3

∫
Ω

ϕ (x, |∇Tk (un)|) dx+ 3k1

∫
Ω

ϕ(x, |ϑ|) dx

≤ (kC1 + C2)k3 + 3k1k3(kC1 + C2) + 3k1

+3k1 (1 + k3)

∫
Ω

ϕ̄

x,
∣∣∣a(x, Tk (un) , ϑk3

)∣∣∣
3k1

 dx .

Now, by using (1.3) and the convexity of ϕ̄ we get

ϕ̄

x,
∣∣∣a(x, Tk (un) , ϑk3

)∣∣∣
3k1

 ≤ 1

3
(ϕ̄(x, d(x)) + P (x, k2 |Tk (un)|) + ϕ(x, |ϑ|)) .

Thanks to Remark 2.2 there exists h ∈ L1(Ω) such that

P (x, k2 |Tk (un)|) ≤ P (x, k2k) ≤ ϕ(x, 1) + h(x);

then by integrating over Ω we deduce that∫
Ω

ϕ̄

x,
∣∣∣a(x, Tk (un) , vk3

)∣∣∣
3k1

 dx ≤ 1

3

(∫
Ω

ϕ̄(x, c(x))dx+

∫
Ω

h(x)dx

+

∫
Ω

ϕ(x, 1)dx+

∫
Ω

ϕ(x, |ϑ|)dx
)
≤ c′k

where c′k is a constant depending on k. So,∫
Ω

a (x, Tk (un) ,∇Tk (un))ϑdx ≤ c′k, ∀ϑ ∈ (Eϕ(Ω))
N

with ‖ϑ‖ϕ,Ω = 1
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and thus ‖a (x, Tk (un) ,∇Tk (un))‖ϕ̄,Ω ≤ c′k, which implies that,

(a (x, Tk (un) ,∇Tk (un)))n is bounded in Lϕ̄(Ω)N . (5.10)

5.4. Almost everywhere convergence of the gradients

Let vj ∈ D(Ω) be a sequence which converges to Tk(u) for the modular convergence
in W 1

0Lϕ(Ω). Let h > 2k > 0 and define the functions

ωhn,j = T2k (un − Th (un) + Tk (un)− Tk (vj)) ,

ωhj = T2k (u− Th(u) + Tk(u)− Tk (vj)) ,

ωh = T2k (u− Th(u)) .

Choosing ωhn,j , as test function in (5.1) we obtain∫
Ω

a (x, un,∇un) · ∇ωhn,jdx+

∫
{m≤|un|≤m+1}

Φn (x, un)∇ωhn,jdx

=

∫
Ω

fnω
h
n,jdx+

∫
Ω

F · ∇ωhn,jdx.
(5.11)

Put m = h+ 5k, and denote by ε(n, j, h) any quantity such that

lim
h→∞

lim
j→∞

lim
n→∞

ε(n, j, h) = 0,

and by εh(n, j) any quantity such that

lim
j→∞

lim
n→∞

εh(n, j) = 0, for h fixed.

Remark that ∇ωhn,j = 0 on the set {x ∈ Ω : |un| > m} , then by tanking to (5.11)
we have ∫

Ω

a (x, Tm (un) ,∇Tm (un)) · ∇ωhn,jdx

+

∫
{m≤|un|≤m+1}

Φ (x, Tm (un))∇ωhn,jdx

=

∫
Ω

fnω
h
n,jdx+

∫
Ω

F · ∇ωhn,jdx .

(5.12)

Thanks to (5.9), we have ωhn,j → ωhj weakly ∗ in L∞(Ω) as n→∞ and then∫
Ω

fnω
h
n,jdx→

∫
Ω

fωhj dx as n→∞,∫
Ω

F · ∇ωhn,jdx→
∫

Ω

F · ∇ωhj dx as n→∞

letting j and h to infinity and by applying the Lebesgue’s Theorem we obtain∫
Ω

fnω
h
n,jdx = ε(n, j, h),
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Ω

F · ∇ωhn,jdx = ε(n, j, h) .

Concerning the first term of (5.12), we have∫
Ω

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

=

∫
{|un|≤k}

a (x, Tm (un) ,∇Tm (un)) (∇Tk (un)−∇Tk (vj)) dx

+

∫
{|un|>k}

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

(5.13)

For the second term of the right-hand side of (5.13) we have∫
{|un|>k}

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

≥ −
∫
{|un|>k}

|a (x, Tm (un) ,∇Tm (un))| |∇vj | dx .
(5.14)

since |a (x, Tm (un) ,∇Tm (un))| is bounded in Lϕ̄(Ω), we have for a subse- quence

|a (x, Tm (un) ,∇Tm (un))|⇀ lm

weakly in Lϕ̄(Ω), for σ (ΠLϕ,ΠEϕ) as n→∞ and since∇vjχ{un>k} →∇vjχ{u>k}
strongly in Eϕ(Ω) as n→∞, we have

−
∫
{|un|>k}

|a (x, Tm (un) ,∇Tm (un))| |∇vj | dx→ −
∫
{|u|>k}

lm |∇vj | dx

as n→∞. By using the modular convergence of vj , we get

−
∫
{|u|>k}

lm |∇vj | dx→ −
∫
{|u|>k}

lm|∇u|dx as j →∞ .

Finally,

−
∫
{|un|>k}

|a (x, Tm (un) ,∇Tm (un))| |∇vj | dx = εh(n, j).

By virtue of (5.12), (5.13) and (5.14) we have∫
Ω

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

≥
∫

Ω

a (x, Tm (un) ,∇Tm (un)) (∇Tk (un)−∇Tk (vj)) dx

+ εh(n, j).

(5.15)
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It follows that,∫
Ω

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

≥
∫

Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) , Tk (vj)χ

s
j

)]
×
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx

+

∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

)
·
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx

−
∫

Ω\Ωaj
a (x, Tk (un) ,∇Tk (un)) · ∇Tk (vj) dx+ εh(n, j),

(5.16)

where χsj denotes the characteristic function of the subset

Ωsj = {x ∈ Ω : |∇Tk (vj)| ≤ s} .

We can easily show that

−
∫

Ω\Ωsj
a (x, Tk (un) ,∇Tk (un)) .∇Tk (vj) dx = ε(n, j, s). (5.17)

Concerning the second term of (5.16), remark that by using Lemma 3.13 and

the fact that ∇Tk (un)→ ∇Tk(u) weakly in (Lϕ(Ω))
N
, by (5.9) we obtain

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

)
→ a

(
x, Tk(u),∇Tk (vj)χ

s
j

)
strongly in Eϕ̄(Ω)N as n→∞, then∫

Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

) [
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx

→
∫

Ω

a
(
x, Tk(u),∇Tk (vj)χ

s
j

) [
∇Tk(u)−∇Tk (vj)χ

s
j

]
dx as n→∞.

On the other hand, since ∇Tk (vj)χ
s
j → ∇Tk(u)χs strongly in Eϕ(Ω)N as j →∞,

we have∫
Ω

a
(
x, Tk(u),∇Tk (vj)χ

s
j

) [
∇Tk(u)−∇Tk (vj)χ

s
j

]
dx→ 0 as j →∞

and thus

∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

) [
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx = ε(n, j, s). (5.18)

By (5.16), (5.17) and (5.18) one has
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∫
Ω

a (x, Tm (un) ,∇Tm (un))∇ωhn,jdx

≥
∫

Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) , Tk (vj)χ

s
j

)]
×
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx+ εh(n, j) + ε(n, j, s) .

(5.19)

Now, for the second term on the left-hand side of (5.12), we will show that
the sequence Φ (x, Tm (un)) converges strongly in Eϕ(Ω)N By using the pointwise
convergence of un to u as n→∞, we obtain

P̄

(
x,
|Φ (x, Tm (un))− Φ (x, Tm(u))|

µ

)
→ 0 a.e. in

and for µ and n large enough, we have

P̄

(
x,
|Φ (x, Tm (un))− Φ (x, Tm(u))|

µ

)
≤ 1

µ
P (x, |Tm (un)|)

+
1

µ
P (x, |Tm(u)|)

≤ 2

µ
P (x,m) = gm(x)

where gm ∈ L1(Ω). By applying Lebesgue’s dominated convergence theorem, we
obtain

Φ (x, Tm (un))→ Φ (x, Tm(u))

with respect to modular convergence in LP̄ (Ω) as n → ∞ since ϕ̄ ≺≺ P̄ , then,
thanks to Lemma 3.11 we obtain Φ (x, Tm (un))→ Φ (x, Tm(u)) in Eϕ̄(Ω), and by

virtue of ∇T2k (un)→ ∇T2k(u) weakly in (Lϕ̄(Ω))
N
, as n→∞ and then h→∞

we get,

∫
Ω

Φ (x, Tm (un))∇ωhn,jdx =

∫
Ω

Φ (x, Tm(u))∇T2k (u− Th(u)) dx+ εh(n, j)

= ε(n, j, s) .

(5.20)

Thanks to (5.12), (5.19) and (5.20) we obtain∫
Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) , Tk (vj)χ

s
j

)]
·
[
∇Tk (un) −∇Tk (vj)χ

s
j

]
dx ≤ ε(n, j, h, s).

(5.21)



16 R. Bouzyani, B. El Haji and M. El Moumni

On the other hand,∫
Ω

[a (x, Tk (un) ,∇Tk (un))− a (x, Tk (un) ,∇Tk(u)χs)] · [∇Tk (un)

−∇Tk(u)χs] dx

=

∫
Ω

[a (x, Tk (un) ,∇Tk (un))

−a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

)]
·
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx

+

∫
Ω

a (x, Tk (un) ,∇Tk (un)) ·
[
∇Tk (vj)χ

s
j −∇Tk(u)χs

]
dx

−
∫

Ω

a (x, Tk (un) ,∇Tk(u)χs) · [∇Tk (un)−∇Tk(u)χs] dx

+

∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

)
·
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx.

By letting n to infinity and using the modular convergence of vj in the last
three terms of the right-hand side of the above equality, it is easy to get∫

Ω

a (x, Tk (un) ,∇Tk (un))
[
∇Tk (vj)χ

s
j −∇Tk(u)χs

]
dx = ε(n, j)∫

Ω

a (x, Tk (un) ,∇Tk(u)χs) [∇Tk (un)−∇Tk(u)χs] dx = ε(n, j)

and∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

) [
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx = ε(n, j). (5.22)

It follows taht∫
Ω

[a (x, Tk (un) ,∇Tk (un))− a (x, Tk (un)

∇Tk(u)χs)] · [∇Tk (un)−∇Tk(u)χs] dx

=

∫
Ω

[
a (x, Tk (un) ,∇Tk (un))− a

(
x, Tk (un) ,∇Tk (vj)χ

s
j

)]
· [∇Tk (un)

−∇Tk (vj)χ
s
j

]
dx+ ε(n, j).

Combining this with (5.21) we get∫
Ω

[a (x, Tk (un) ,∇Tk (un))

−a (x, Tk (un) , Tk(u)χs)] · [∇Tk (un)−∇Tk(u)χs] dx
≤ ε(n, j, h, s)

in which we pass to the limit as n, j, h and s tend to infinity to get∫
Ω

[a (x, Tk (un) ,∇Tk (un))− a (x, Tk (un) ,∇Tk(u)χs)] · [∇Tk (un)

−∇Tk(u)χs] dx→ 0 as n, s→∞.
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As in [11], we deduce that there exists a subsequence still denoted by un such that

∇un → ∇u a.e in Ω (5.23)

which implies that, for all k > 0,

a (x, Tk (un) ,∇Tk (un)) ⇀ a (x, Tk(u),∇Tk(u)) (5.24)

weakly in Lϕ̄(Ω)N for σ (ΠLϕ̄,ΠEϕ).
From the estimate (5.21), we can read∫

Ω

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

Ω

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (vj)χ
s
jdx

+

∫
Ω

a
(
x, Tk (un) ,∇Tk (vj)χ

s
j

)
·
[
∇Tk (un)−∇Tk (vj)χ

s
j

]
dx

+

∫
Ω\Ωs

lk · ∇Tk(u)dx+ εh(n, j).

by using (5.22), we have∫
Ω

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

Ω

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (vj)χ
s
jdx+

∫
Ω\Ωs

lk · ∇Tk(u)dx+ εh(n, j).

Passing to the limit sup over n and j in both sides of this inequality yields

lim sup
n→∞

∫
Ω

a (x, Tk (un) ,∇Tk (un)) · ∇Tk (un) dx

≤
∫

Ω

a (x, Tk(u),∇Tk(u)) · ∇Tk(u)χsdx+

∫
Ω\Ωa

lk · ∇Tk(u)dx.

In which, we can pass to the limit in s to obtain

lim sup
n→∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx ≤
∫

Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx.

Now,by applying Fatou’s Lemma we have∫
Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx ≤ lim inf
n→∞

∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx.

Which implies that∫
Ω

a (x, Tk (un) ,∇Tk (un))∇Tk (un) dx→
∫

Ω

a (x, Tk(u),∇Tk(u))∇Tk(u)dx,

as n→∞ and, using Lemma 3.8, we conclude that

a (x, Tk (un) ,∇Tk (un))∇Tk (un)→ a (x, Tk(u),∇Tk(u))∇Tk(u) in L1(Ω).

By thanking to (1.5) we have

Tk (un)→ Tk(u) in W 1
0Lϕ(Ω) for the modular convergence, for all k > 0.
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5.5. Passing to the limit

Let v ∈ W 1
0Lϕ(Ω) ∩ L∞(Ω). By Lemma 3.7, there exists a sequence (wj) ⊂ D(Ω)

such that wj → v in W 1
0Lϕ(Ω) for the modular convergence

and ‖wj‖∞,Ω ≤ (N + 1)‖v‖∞,Ω.

Using Tk (un − wj) as a test function in (5.1), we obtain∫
Ω

a (x, Tρ (un) ,∇Tρ (un))∇Tk (un − wj) dx

+

∫
Ω

Φ (x, Tρ (un))∇Tk (un − wj) dx

≤
∫

Ω

fnTk (un − wj) dx+

∫
Ω

F∇Tk (un − wj) dx,

(5.25)

where ρ = k + (N + 1)‖v‖∞.

The first term of the left-hand side of (5.25) reads as∫
Ω

a (x, Tρ (un) ,∇Tρ (un))∇Tk (un − wj) dx

=

∫
{|un−wj |≤k}

a (x, Tρ (un) ,∇Tρ (un))∇undx

−
∫
{|un−wj |≤k}

a (x, Tρ (un) ,∇Tρ (un))∇wjdx.

By Fatou’s lemma, we have∫
{|u−wj |≤k}

a (x, Tρ(u),∇Tρ(u))∇udx

≤ lim inf
n→∞

∫
{|un−wj |≤k}

a (x, Tρ (un) ,∇Tρ (un))∇undx,

and using (5.24) we get

lim
n→∞

∫
{|un−wj |≤k}

a (x, Tρ (un) ,∇Tρ (un))∇wjdx

=

∫
{|u−wj |≤k}

a (x, Tρ(u),∇Tρ(u))∇wjdx.

We conclude that∫
Ω

a (x, Tρ(u),∇Tρ(u))∇Tk (u− wj) dx

≤ lim inf
n→∞

∫
Ω

a (x, Tρ (un) ,∇Tρ (un))∇Tk (un − wj) dx,
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as above we obtain Φn (x, Tρ (un))→ Φ (x, Tρ(u)) in Eϕ̄(Ω) as n→∞, and using
the fact that ∇Tk (un − wj) ⇀ ∇Tk (u− wj) as n→∞, we can easily see that∫

Ω

Φ (x, Tρ (un))∇Tk (un − wj) dx→
∫

Ω

Φ (x, Tρ(u))∇Tk (u− wj) dx

and ∫
Ω

F∇Tk (un − wj) dx→
∫

Ω

F∇Tk (u− wj) dx,

since Tk (un − wj)→ Tk (u− wj) weakly in L∞(Ω) as n→∞, we have∫
Ω

fnTk (un − wj) dx→
∫

Ω

fTk (u− wj) dx as n→∞.

This allows us to let n→∞ in both sides of (5.25), to obtain∫
Ω

a(x, u,∇u)∇Tk (u− wj) dx+

∫
Ω

Φ(x, u)∇Tk (u− wj) dx

≤
∫

Ω

fTk (u− wj) dx,

in which we can easily pass to the limit as j →∞ to get∫
Ω

a(x, u,∇u)∇Tk(u− v)dx+

∫
Ω

Φ(x, u)∇Tk(u− v)dx

≤
∫

Ω

fTk(u− v)dx+

∫
Ω

F∇Tk(u− v)dx,

for all k > 0; we can deduce that u is an entropy solution of the problem (1.1).This
completes the proof of Theorem 4.1 .
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