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Arithmetic Properties For (7, s)-Regular Partition Functions
With Distinct Parts

Rinchin Drema and Nipen Saikia*

Abstract. For any relatively prime integers r and s, let ar s(n) denote the number of (r,s)-
regular partitions of a positive integer of n into distinct parts. Prasad and Prasad (2018) proved
many infinite families of congruences modulo 2 for az 5(n). In this paper, we establish families
of congruences modulo 2 and 4 for ar s(n) with (r,s) € {(2,5),(2,7),(4,5),(4,9)}. For example,
we show that for all >0 and n > 0, we have

37-528 —1
as 5 <4~525+1n+ T) =0 (mod4).

1. Introduction

The partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is equal to n. If p(n) denote the number of partitions of a positive
integer n and we adopt the convention p(0) = 1, then the generating function for
p(n) satisfies the identity

Zp L (1.1)

(4 @)oo
where -
(@;¢)oc = [ (1 = ag™. (1.2)
n=0

Throughout this paper, we write

fr = (¢";¢")s, for any integer k > 1.
Ramanujan [11] established the following beautiful congruences for all n > 0:
p(5n+4) =0 (mod 5), p(Tn+5)=0 (mod7) and p(lln+6)=0 (mod 11).

Ramanujan’s congruences on p(n) have motivated many mathematicians to seek
similar results for restricted partition functions. One example is the f-regular
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partition function by(n), which counts the number of partitions of n in which no
part is divisible by ¢ and whose generating function satisfies the identity

> bl = 2 (1.3)
n=0 1

Many results on the arithmetic of bs(n) have been established (see, for example,
2,9, 12]).

For relatively prime integers r and s, an (r, s)-regular partition is one in which
none of the parts is divisible by r or s. Denote by a, s(n), the number of (r, s)-
regular partitions of n into distinct parts. For example, as5(13) = 2 since the
(2, 5)-regular partitions of 13 into distinct parts are 13 and 9+3+1. The generating
function for a, s(n) satisfies the identity

= no__ (_q;Q)oo(_qT8§q7‘s)oo
;am(n)q (50 ) (— 0% 0% 0 14

Prasad and Prasad [10] proved many infinite families of congruences modulo 2 for
as5(n).

In this paper, we establish families of congruences modulo 2 for as 5(n), as 7(n),
as,5(n) and aq9(n). We also prove congruences modulo 4 for as 5(n). The congru-
ences are listed in the following theorems:

Theorem 1.1. For every n > 0, we have
azs5(4n+2) =0 (mod 2) (1.5)

and

1 (mod 2), if nis a pentagonal number

az;5(4n) = { (1.6)

0 (mod 2), otherwise.

—10
Theorem 1.2. Let p > 5 be a prime with (—) =—land1<j<p-—1. Then
p

for all v > 0, we have

> 7-pP -1
Z ass (4 pPIn+ %)qn = fofs  (mod 2), (1.7)
n=0
7. 2v+2 _ 1
as,s (4 pP  (pn+j) + pT) =0 (mod 2), (1.8)
= 55-p?7 —1
Z as,s (20 p?n + pT)q” = fifio (mod 2) (1.9)
n=0
and 22
55 - -1
a275(20 P o+ 5) + p#) =0 (mod 2). (1.10)
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Theorem 1.3. If wy € {13,37} and w3 € {41,89}. Then for all > 0, we have

= 13-5%% —1
Z as,s (4 528 + T)q" = 2q2f1f230 (mod 4), (1.11)
n=0
= 17-520+1 — 1
Z a5 (4 5281, 4 f%fl =2f}fs (mod 4), (1.12)
n=0
wy - 5% —1

a2,5(4 N ) =0 (mod 4) (1.13)

6

and
wy - 52T — 1)

ass (4 528Dy 4 :

=0 (mod 4). (1.14)

—-14
Theorem 1.4. Let p > 7 be a prime with (—) =—1land1<j<p—1. Then
p

for all a > 0, we have

= 2c 5 'pZQ -1 n __
Za2,7<2'p n+f)q = fifis (mod 2), (1.15)
n=0
20+1 . 5 'P2a+2 -1
as,7 (2 P (pn+3) + f) =0 (mod 2), (1.16)
= 21-p?* — 1
Z a7 (14 pPn 4 pf)q” = fofr (mod 2) (1.17)
n=0
and ) 2042 _ 1
1. p2at2 _
a2,7(14 P pn +j) + pf) =0 (mod 2). (1.18)

Theorem 1.5. If w € {13,17}, then for all « > 0, we have

- 59— 1
Z Qs (2 -5%n + 5 )q" = fifs (mod 2) (1.19)
n=0
and e 1
ass (2 5oty 4 wf_) =0 (mod 2). (1.20)

-5
Theorem 1.6. Let p > 5 be a prime with (—) =—land1<j3<p—1. Then
p

for all a > 0, we have

> 200 1
Z aq5 (2 - p*n + P 5 )q” = fifs (mod 2) (1.21)
n=0

and

p2a+2 -1
Qa5 (2 P pn +j) + #) =0 (mod 2). (1.22)
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Theorem 1.7. Let wy € {3,5}, we € {13,25,37} and o > 0. Then

as9 (Gn + wl) =0 (mod 2), (1.23)
a9 (24n + 19) =0 (mod 2), (1.24)
a0 (6 L 49F 2 4 90 4ot 1) =0 (mod 2), (1.25)
a49 (48n + wg) =0 (mod 2) (1.26)

and

mod 2) if n is a pentagonal number,
( ) if pentag (1.27)

1
48 1) =
as,9(48n + 1) {0 (mod 2)  otherwise.

2. Preliminaries

In this section, we collect the g-series identities that are used in our proofs. Recall
that Ramanujan’s general theta-function f (a,b) is defined by

f(a,b): Z an(n+1)/2bn(n—1)/2. (21)

n=-—oo

Important special cases of f(a,b) [1, p. 36, Entry 22 (i), (ii), (iii)] are the theta-
functions ¢(q), ¥(q) and f(—gq), which satisfy the identities

6(a) = £(a,0) Zq — (—g )2 (6% ) fff (2.2
wninyfe - (050 £’
¥(q) = Zq = de = (2.3)
and -
f(=q) = f(=¢,=") = >_(=1)"¢"®" V% = (g;9)c = f1. (2.4)

In terms of f(a,b), Jacobi’s triple product identity [1, Entry 19, p.35] is given by
f(a,b) = (—a;ab) oo (—b; ab) oo (ab; ab) o - (2.5)
Lemma 2.1 ([3, Theorem 2.2]). For any prime p > 5, we have

k=(p—1)/2
2 2 2 —
o= DD (LR 2y (_q<3p +Ok+1)P)/2 (3 (6k+1>p>/2)

k=—(p—1)/2 (2.6)
k£ (0 —1)/6

+ (,1)(13"*1)/6(](172*1)/24]4})27
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where
. p, if p=1 (mod 6)
—p, if p=5 (mod 6).

Furthermore, if

(r—1)

(r*—1)
2 2

6 3

and k #

then
32 +k , p?—1
2 a 24
Lemma 2.2 ([1, p. 303, Entry 17(v)]). We have that
_ B(q¢")  A(d") C(q")

=t (S o3 ) 27
where A(q) = f(—q* —¢"), B(q) = f(=¢*, —¢°) and C(q) = f(—q.—¢%).
Lemma 2.3 ([5]). We have that

fi = fas(R(¢°) —q— ¢*R(¢°) ), (2.8)

(mod p).

where ) s s s
(0%50°)50 (0% 4°) 0
(456°)00 (4% 4°) o

1R I3 1

R(q) =

Lemma 2.4. We have

EIR T T 29)
fo _ fiafis fifef36
f = et 4 Fif (2.10)
2 r2 4 2
F13 = f o — q2T000 oy g o lifoli (2.11)
fa faf§
5 _ fsfl | fifiofao
h = B B s (212)
s R
fi fihe +a fa’ (2.13)
_ fahafisfss 6 208 fiafti
oy e T (2.14)

For the proof of (2.9), see Hirschhorn [7, p.40]. Equation (2.10) was proved by
Xia and Yao [13]. For the proof of (2.11), see Naika et.al [§8]. Equation (2.12) was
proved by Hirschhorn and Sellers [6]. Equation (2.13) was proved by Hirschhorn
et.al [4]. Equation (2.14) was proved by Xia [14, Lemma 3.14].

To end this section, we record the following congruence which can be easily
proved using the binomial theorem: For all positive integers t and m we have

F2 = ™ (mod 2). (2.15)
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3. Proof of Theorems 1.1-1.3
Proof of Theorem 1.1:

Proof. Setting (r,s) = (2,5) in (1.4) and using elementary g-operations, we obtain

(oo}
n_ f3f5.f20
ass(n)q” = . 3.1
nz:;) 2 5( ) f1f4f120 ( )
Combining (2.12) and (3.1), we find that
= fsf50 f3 fao
ass(n)g” = + . 3.2
; 25(n)a faffofo Ttafsfro (3:2)
Extracting the terms involving even powers of ¢ of (3.2), we obtain
. f4f130
as5(2n)q" = . 3.3
D (33)
In view of (2.15), (3.3) can be written as
> axs(2n)¢" = fo (mod 2). (3.4)
n=0

Extracting the terms involving odd powers of ¢ from (3.4) yields (1.5). Finally,
extracting the terms involving even powers of ¢ from both sides of (3.4) and using
(2.4) yields (1.6). O

Proof of Theorem 1.2:

Proof. Extracting the terms involving odd powers of ¢ from both sides of (3.2),
we obtain

i ass(2n+1)¢" = 13 20 . (3.5)
o fifafs
In view of (2.15), we can rewrite (3.5) as
o0 3
Z ass(2n+1)¢" = N5 (mod 2). (3.6)
= f
Combining (2.11) and (3.6), we find that
oo 2
Z ass(2n + 1)q" = f3 fi0 — q% (mod 2). (3.7

n=0
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Extracting the terms involving even powers of ¢ from both sides of (3.7), we obtain
(oo}

> ass(n+1)¢" = fofs (mod 2). (3.8)
n=0

Equation (3.8) is the v = 0 case of (1.7). Now suppose that (1.7) holds for some
v > 0. Using (2.6) in (1.7), we deduce that

- 7-p¥ -1
S tso(i- s I
n>0

2 2 2_
Z qSk +kf(7q3p +(6k+1)p, 7q3p (6k+1)p)

k=—(p—1)/2
kA (p"—1)/6

[ k=(p—1)/2

2
+ ¢ 1)/12f2p21

m=(p—1)/2 . . .
% [ N pemtmy (_q5<3p +HOEm+1)p)/2 _ 5(3p 7<6m+1>p>/2)

m=—(p—1)/2
m#(p*—1)/6

+q5<1’2—1>/24f5p21 (mod 2). (3.9)

Consider the congruence

(Bm2+m) _ 7(p>—1)

2
3k“+k+5 5 o

(mod p),

which is equivalent to
(12k +2)* +10(6m +1)>=0 (mod p).

(" —1)
N
Therefore, extracting the terms involving qp"+7(p2_1)/24 from both sides of (3.9),

-10
Since (—) = —1, the only solution of this congruence is k = m =
p

dividing by ¢7®°~1/24 and then replacing ¢? by g, we find that

00 2yl 7. p2’)’+2 -1 N
3 azs (4 P 4 T)q = fopfspy (mod 2), (3.10)
n=0

which yields

° 201
S as (4 20D 4 o1
n=0

- )q” = fofs (mod 2), (3.11)
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which is the v+ 1 case of (1.7). On the other hand, extracting the terms involving
g""t (1 < j <p-—1) from (3.10), we arrive at (1.8). Employing (2.8) in (1.7) and
then extracting the terms involving ¢°"2 yields (1.9). Next, using (2.6) in (1.9)
and proceeding as in the proof of (1.7), we arrive at

e 55 . p27+2 _ 1
> a5 (2097 4 D) = fy iy (mod 2). (3.12)
n=0

Finally, (1.10) follows from extracting the terms involving ¢?"*/ (1 < j <p—1)
from (3.12). O

Proof of Theorem 1.3:

Proof. Combining (2.9) and (3.3), we find that

fafio 5 ff20 13
(2 2 : 3.13
”Z;)azs n)e f2f1of20f80 o J2f70fa0 (3.13)

Extracting the terms involving odd powers of ¢ from both sides of (3.13), we obtain

5 fafi0fio
Zazg, (4n+2)¢" = 2¢q T (3.14)

In view of (2.15), (3.14) can be written as
Z ass(4n +2)q" = 2¢* f1fa,  (mod 4), (3.15)

which is the § = 0 case of (1.11). Now assume that (1.11) holds for some g > 0.
Employing (2.8) in (1.11), we arrive at

- 13-5% — 1
Z as s (4~52ﬁn+?>q" = 2¢° f30 f25 (R(q5)—q—q2R(q5)_1)) (mod 4).

- (3.16)
Extracting the terms involving ¢°"3 from (3.16) yields (1.12). Next, using (2.8)
in (1.12) and then extracting the terms involving ¢°"*2, we obtain

i 13.528+1) _1
Z ass (4 52 4 T)q" =2¢*f1f5 (mod 4), (3.17)
which is the S + 1 case of (1.11). Employing (2.8) in (1.11) and then extracting
the terms involving ¢°"*7 for j € {0, 1} yields (1.13). Finally, using (2.8) in (1.12)
and then extracting terms involving ¢°"*7 for j € {1, 3} yields (1.14). O
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4. Proof of Theorem 1.4

Proof. Setting (r,s) = (2,7) in (1.4) and using elementary g-operations, we have

o n T3 frfos
;al?(n)q - f1f4f124. (41)

In view of (2.15), we can rewrite (4.1) as

Z az7(n)g" = % (mod 2). (4.2)
n=0

Combining (2.14) and (4.2), we find that

3 n — f14f126f556 - Jafos 6 f§f14f1212 m
2t S G g Rt 0 O

Extracting the terms involving odd powers of ¢ from both sides of (4.3), we obtain

> asr(2n+1)¢" = fifia (mod 2), (4.4)
n=0

which is the a = 0 case of (1.15). Using (2.6) in (1.15) and proceeding as in the
proof of (1.7), we arrive at

20042

> 5. 1
Z ag 7 (2 'pzaﬂn + Pf)qn = fpfiap (mod 2), (4.5)
n=0
which yields
s 5. p2latl) _q
Z as 7 (2 ~p2(a+1)n + pf)q" = fifia (mod 2), (4.6)

n=0

which is the a+1 case of (1.15). On the other hand, extracting the terms involving
q""* (1 < j <p—1) from (4.5), we arrive at (1.16). Next, using (2.7) in (1.15)
and then extracting the terms involving ¢""*2 yields (1.17). Now employing (2.6)
in (1.17) and proceeding as in the proof of (1.15), we arrive at

21 ,p2'y+2 -1

Zaw (14op27+1n + 1

n=0

)q” = fopfrp (mod 2). (4.7)

Finally, (1.18) follows from extracting the terms involving ¢?"*7(1 < j < p — 1)
from (4.7). O
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5. Proof of Theorems 1.5-1.6

Proof of Theorem 1.5:

Proof. Setting (r,s) = (4,5) in (1.4) and using elementary g-operations, we obtain

. n _ Jofafs a0
2 s = (5:1)

Combining (2.12) and (5.1), we find that

= n Jaf2o fifi
2 tas(ma" = Py (5:2)

Extracting the terms involving even powers of ¢ from both sides of (5.2), we obtain

- n_ J2f10
§a4,5(2n)q = (5.3)

In view of (2.15), we can rewrite (5.3) as
> ass(2n)g" = fifs  (mod 2), (5.4)
n=0

which is the @ = 0 case of (1.19). Now assume that (1.19) holds for some « > 0.
Using (2.8) in (1.19), we find that

o0 5o _
Z Q4.5 (2 -5% +
n=0

Extracting the terms involving ¢°**! from both sides of (5.5), we arrive at

) = fodos (R~ a - R ) (mod 2). (55)

5 -1
Za45(2 patly . ) "= fifs (mod 2), (5.6)
which is the a+ 1 case of (1.19). Finally, using (2.8) in (1.19) and then extracting
the terms involving ¢°**7 for j € {3,4} yields (1.20). O
Proof of Theorem 1.6:

Proof. Congruence (5.4) is the o = 0 case of (1.21). Now suppose that (1.21)
holds for some o > 0. Using (2.6) in (1.21) and proceeding as in the proof of
(1.7), we arrive at

2a+2 1
)q" = f,fsp (mod 2), (5.7)

I
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which yields

n=0

p2(a+1) -1

5 )qn = f1fs (mod 2), (5.8)

which is the case a+1 of (1.21). On the other hand, extracting the terms involving
"t (1 <j<p-—1) from (5.7), we arrive at (1.22). O

6. Proof of Theorem 1.7

Proof. Setting (r,s) = (4,9) in (1.4) and using elementary g-operations, we obtain

3 w_ Jefsfof
T;)a4,g(n)q  fifshsfss (6.1)
Combining (2.10) and (6.1), we find that
3 w_ Jaftafro f2 fefr2
T;a4,9(n)q  fofefsf3s +qf22f8f12f18. (6.2)

Extracting the terms involving odd powers of ¢ from (6.2) and then employing
(2.15), we obtain

o f3

D ase(2n+1)¢" =% (mod 2). (6.3)
n=0 f3

Comparing the terms involving ¢ %7, for j € {1, 2} from both sides of (6.3) yields

(1.23). Next, extracting the terms involving ¢3" from both sides of (6.3), we obtain

/3

T\ (mod 2). (6.4)

Z a4,9(6n + 1)qn =
n=0

Combining (2.13) and (6.4), we find that

£
s ta (mod2) (6.5)

L)
Z CL4,9(67’L =+ l)qn =
n=0

Extracting the terms involving odd powers of ¢ from (6.5), we obtain

3

Z as0(12n +7)¢" = f—z (mod 2). (6.6)

n=0

Extracting the terms involving odd powers of ¢ from (6.6) yields (1.24). Next,
extracting the terms involving even powers of ¢ from both sides of (6.6), we obtain

Z as9(24n+ 7)¢" = f (mod 2). (6.7)

n=0
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Combining (6.4) and (6.7), we find that
a4,9(24n + 7) = a479(6n + 1) (mod 2). (68)

From (6.8) and by mathematical induction, we have
as (6 4oty 9. gotl 1) = a19(6n+1) (mod 2). (6.9)

Using (6.9) and congruence (1.24), we arrive at (1.25). On the other hand, ex-
tracting the terms involving even powers of ¢ from both sides of (6.5), we obtain

Z as9(12n 4+ 1)¢" = f4  (mod 2). (6.10)

n=0

Extracting the terms involving ¢***7 for j € {1,2,3} from (6.10) yields (1.26). On
the other hand, extracting the terms involving ¢*" from both sides of (6.10) and
using (2.4) yields (1.27). O
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