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Arithmetic Properties For (r, s)-Regular Partition Functions
With Distinct Parts

Rinchin Drema and Nipen Saikia∗

Abstract. For any relatively prime integers r and s, let ar,s(n) denote the number of (r, s)-
regular partitions of a positive integer of n into distinct parts. Prasad and Prasad (2018) proved
many infinite families of congruences modulo 2 for a3,5(n). In this paper, we establish families
of congruences modulo 2 and 4 for ar,s(n) with (r, s) ∈ {(2, 5), (2, 7), (4, 5), (4, 9)}. For example,
we show that for all β ≥ 0 and n ≥ 0, we have

a2,5

(
4 · 52β+1n+

37 · 52β − 1

6

)
≡ 0 (mod 4) .

1. Introduction

The partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is equal to n. If p(n) denote the number of partitions of a positive
integer n and we adopt the convention p(0) = 1, then the generating function for
p(n) satisfies the identity

∞∑
n=0

p(n)qn =
1

(q; q)∞
, (1.1)

where

(a; q)∞ =

∞∏
n=0

(1− aqn). (1.2)

Throughout this paper, we write

fk := (qk; qk)∞, for any integer k ≥ 1.

Ramanujan [11] established the following beautiful congruences for all n ≥ 0:

p(5n+4) ≡ 0 (mod 5), p(7n+5) ≡ 0 (mod 7) and p(11n+6) ≡ 0 (mod 11).

Ramanujan’s congruences on p(n) have motivated many mathematicians to seek
similar results for restricted partition functions. One example is the `-regular
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partition function b`(n), which counts the number of partitions of n in which no
part is divisible by ` and whose generating function satisfies the identity

∞∑
n=0

b`(n)qn =
f`
f1
. (1.3)

Many results on the arithmetic of b`(n) have been established (see, for example,
[2, 9, 12]).

For relatively prime integers r and s, an (r, s)-regular partition is one in which
none of the parts is divisible by r or s. Denote by ar,s(n), the number of (r, s)-
regular partitions of n into distinct parts. For example, a2,5(13) = 2 since the
(2, 5)-regular partitions of 13 into distinct parts are 13 and 9+3+1. The generating
function for ar,s(n) satisfies the identity

∞∑
n=0

ar,s(n)qn =
(−q; q)∞(−qrs; qrs)∞
(−qr; qr)∞(−qs; qs)∞

. (1.4)

Prasad and Prasad [10] proved many infinite families of congruences modulo 2 for
a3,5(n).

In this paper, we establish families of congruences modulo 2 for a2,5(n), a2,7(n),
a4,5(n) and a4,9(n). We also prove congruences modulo 4 for a2,5(n). The congru-
ences are listed in the following theorems:

Theorem 1.1. For every n ≥ 0, we have

a2,5(4n+ 2) ≡ 0 (mod 2) (1.5)

and

a2,5(4n) ≡

{
1 (mod 2), if n is a pentagonal number

0 (mod 2), otherwise.
(1.6)

Theorem 1.2. Let p > 5 be a prime with
(−10

p

)
= −1 and 1 ≤ j ≤ p− 1. Then

for all γ ≥ 0, we have

∞∑
n=0

a2,5

(
4 · p2γn+

7 · p2γ − 1

6

)
qn ≡ f2f5 (mod 2), (1.7)

a2,5

(
4 · p2γ+1(pn+ j) +

7 · p2γ+2 − 1

6

)
≡ 0 (mod 2), (1.8)

∞∑
n=0

a2,5

(
20 · p2γn+

55 · p2γ − 1

6

)
qn ≡ f1f10 (mod 2) (1.9)

and

a2,5

(
20 · p2γ+1(pn+ j) +

55 · p2γ+2 − 1

6

)
≡ 0 (mod 2). (1.10)
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Theorem 1.3. If w1 ∈ {13, 37} and w3 ∈ {41, 89}. Then for all β ≥ 0, we have

∞∑
n=0

a2,5

(
4 · 52βn+

13 · 52β − 1

6

)
qn ≡ 2q2f1f

3
20 (mod 4), (1.11)

∞∑
n=0

a2,5

(
4 · 52β+1n+

17 · 52β+1 − 1

6

)
qn ≡ 2f34 f5 (mod 4), (1.12)

a2,5

(
4 · 52β+1n+

w1 · 52β − 1

6

)
≡ 0 (mod 4) (1.13)

and

a2,5

(
4 · 52(β+1)n+

w3 · 52β+1 − 1

6

)
≡ 0 (mod 4). (1.14)

Theorem 1.4. Let p > 7 be a prime with
(−14

p

)
= −1 and 1 ≤ j ≤ p− 1. Then

for all α ≥ 0, we have

∞∑
n=0

a2,7

(
2 · p2αn+

5 · p2α − 1

4

)
qn ≡ f1f14 (mod 2), (1.15)

a2,7

(
2 · p2α+1(pn+ j) +

5 · p2α+2 − 1

4

)
≡ 0 (mod 2), (1.16)

∞∑
n=0

a2,7

(
14 · p2αn+

21 · p2α − 1

4

)
qn ≡ f2f7 (mod 2) (1.17)

and

a2,7

(
14 · p2α+1(pn+ j) +

21 · p2α+2 − 1

4

)
≡ 0 (mod 2). (1.18)

Theorem 1.5. If w ∈ {13, 17}, then for all α ≥ 0, we have

∞∑
n=0

a4,5

(
2 · 5αn+

5α − 1

2

)
qn ≡ f1f5 (mod 2) (1.19)

and

a4,5

(
2 · 5α+1n+

w · 5α − 1

2

)
≡ 0 (mod 2). (1.20)

Theorem 1.6. Let p > 5 be a prime with
(−5

p

)
= −1 and 1 ≤ j ≤ p− 1. Then

for all α ≥ 0, we have

∞∑
n=0

a4,5

(
2 · p2αn+

p2α − 1

2

)
qn ≡ f1f5 (mod 2) (1.21)

and

a4,5

(
2 · p2α+1(pn+ j) +

p2α+2 − 1

2

)
≡ 0 (mod 2). (1.22)
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Theorem 1.7. Let w1 ∈ {3, 5}, w2 ∈ {13, 25, 37} and α ≥ 0. Then

a4,9

(
6n+ w1

)
≡ 0 (mod 2), (1.23)

a4,9

(
24n+ 19

)
≡ 0 (mod 2), (1.24)

a4,9

(
6 · 4α+2n+ 20 · 4α+1 − 1

)
≡ 0 (mod 2), (1.25)

a4,9

(
48n+ w2

)
≡ 0 (mod 2) (1.26)

and

a4,9(48n+ 1) ≡

{
1 (mod 2) if n is a pentagonal number,

0 (mod 2) otherwise.
(1.27)

2. Preliminaries

In this section, we collect the q-series identities that are used in our proofs. Recall
that Ramanujan’s general theta-function f (a, b) is defined by

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2. (2.1)

Important special cases of f(a, b) [1, p. 36, Entry 22 (i), (ii), (iii)] are the theta-
functions φ(q), ψ(q) and f(−q), which satisfy the identities

φ(q) := f(q, q) =

∞∑
n=0

qn
2

= (−q; q2)2∞(q2; q2)∞ =
f2

5

f1
2f4

2 , (2.2)

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f2

2

f1
, (2.3)

and

f(−q) := f(−q,−q2) =

∞∑
n=0

(−1)nqn(3n−1)/2 = (q; q)∞ = f1. (2.4)

In terms of f(a, b), Jacobi’s triple product identity [1, Entry 19, p.35] is given by

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.5)

Lemma 2.1 ([3, Theorem 2.2]). For any prime p ≥ 5, we have

f1 =

k=(p−1)/2∑
k=−(p−1)/2
k 6=(p∗−1)/6

(−1)kq(3k
2+k)/2f

(
−q(3p

2+(6k+1)p)/2,−q(3p
2−(6k+1)p)/2

)

+ (−1)(p
∗−1)/6q(p

2−1)/24fp2 ,

(2.6)
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where

p∗ =

{
p, if p ≡ 1 (mod 6)

−p, if p ≡ 5 (mod 6).

Furthermore, if

−(p− 1)

2
≤ k ≤ (p− 1)

2
and k 6= (p∗ − 1)

6
,

then

3k2 + k

2
6≡ p2 − 1

24
(mod p).

Lemma 2.2 ([1, p. 303, Entry 17(v)]). We have that

f1 = f49

(
B(q7)

C(q7)
− q A(q7)

B(q7)
− q2 + q5

C(q7)

A(q7)

)
, (2.7)

where A(q) = f(−q3,−q4), B(q) = f(−q2,−q5) and C(q) = f(−q,−q6).

Lemma 2.3 ([5]). We have that

f1 = f25(R(q5)− q − q2R(q5)−1), (2.8)

where

R(q) =
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

.

Lemma 2.4. We have
1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
, (2.9)

f9
f1

=
f312f18
f22 f6f36

+ q
f24 f6f36
f32 f12

, (2.10)

f1f
3
5 = f32 f10 − q

f22 f
2
10f20
f4

+ 2q2f4f
3
20 − 2q3

f44 f10f
2
40

f2f28
, (2.11)

f5
f1

=
f8f

2
20

f22 f40
+ q

f34 f10f40
f32 f8f20

, (2.12)

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4
, (2.13)

f1f7 =
f2f14f

2
16f

5
56

f4f8f328f
2
112

− qf4f28 + q6
f2f

5
8 f14f

2
112

f34 f
2
16f28f56

. (2.14)

For the proof of (2.9), see Hirschhorn [7, p.40]. Equation (2.10) was proved by
Xia and Yao [13]. For the proof of (2.11), see Naika et.al [8]. Equation (2.12) was
proved by Hirschhorn and Sellers [6]. Equation (2.13) was proved by Hirschhorn
et.al [4]. Equation (2.14) was proved by Xia [14, Lemma 3.14].

To end this section, we record the following congruence which can be easily
proved using the binomial theorem: For all positive integers t and m we have

ft
2m ≡ f2tm (mod 2). (2.15)
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3. Proof of Theorems 1.1-1.3

Proof of Theorem 1.1:

Proof. Setting (r, s) = (2, 5) in (1.4) and using elementary q-operations, we obtain

∞∑
n=0

a2,5(n)qn =
f22 f5f20
f1f4f210

. (3.1)

Combining (2.12) and (3.1), we find that

∞∑
n=0

a2,5(n)qn =
f8f

3
20

f4f210f40
+ q

f24 f40
f2f8f10

. (3.2)

Extracting the terms involving even powers of q of (3.2), we obtain

∞∑
n=0

a2,5(2n)qn =
f4f

3
10

f2f25 f20
. (3.3)

In view of (2.15), (3.3) can be written as

∞∑
n=0

a2,5(2n)qn ≡ f2 (mod 2). (3.4)

Extracting the terms involving odd powers of q from (3.4) yields (1.5). Finally,
extracting the terms involving even powers of q from both sides of (3.4) and using
(2.4) yields (1.6).

Proof of Theorem 1.2:

Proof. Extracting the terms involving odd powers of q from both sides of (3.2),
we obtain

∞∑
n=0

a2,5(2n+ 1)qn =
f22 f20
f1f4f5

. (3.5)

In view of (2.15), we can rewrite (3.5) as

∞∑
n=0

a2,5(2n+ 1)qn ≡ f1f
3
5

f2
(mod 2). (3.6)

Combining (2.11) and (3.6), we find that

∞∑
n=0

a2,5(2n+ 1)qn ≡ f22 f10 − q
f2f

2
10f20
f4

(mod 2). (3.7)
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Extracting the terms involving even powers of q from both sides of (3.7), we obtain

∞∑
n=0

a2,5(4n+ 1)qn ≡ f2f5 (mod 2). (3.8)

Equation (3.8) is the γ = 0 case of (1.7). Now suppose that (1.7) holds for some
γ ≥ 0. Using (2.6) in (1.7), we deduce that

∞∑
n≥0

a2,5

(
4 · p2γn+

7 · p2γ − 1

6

)
qn

≡

[
k=(p−1)/2∑
k=−(p−1)/2
k 6=(p∗−1)/6

q3k
2+kf

(
−q3p

2+(6k+1)p,−q3p
2−(6k+1)p

)

+ q(p
2−1)/12f2p2

]

×

[
m=(p−1)/2∑
m=−(p−1)/2
m 6=(p∗−1)/6

q5(3m
2+m)/2f

(
−q5(3p

2+(6m+1)p)/2,−q5(3p
2−(6m+1)p)/2

)

+ q5(p
2−1)/24f5p2

]
(mod 2). (3.9)

Consider the congruence

3k2 + k + 5
(3m2 +m)

2
≡ 7(p2 − 1)

24
(mod p),

which is equivalent to

(12k + 2)2 + 10(6m+ 1)2 ≡ 0 (mod p).

Since
(−10

p

)
= −1, the only solution of this congruence is k = m =

(p∗ − 1)

6
.

Therefore, extracting the terms involving qpn+7(p2−1)/24 from both sides of (3.9),

dividing by q7(p
2−1)/24 and then replacing qp by q, we find that

∞∑
n=0

a2,5

(
4 · p2γ+1n+

7 · p2γ+2 − 1

6

)
qn ≡ f2pf5p (mod 2), (3.10)

which yields

∞∑
n=0

a2,5

(
4 · p2(γ+1)n+

7 · p2(γ+1) − 1

6

)
qn ≡ f2f5 (mod 2), (3.11)
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which is the γ+1 case of (1.7). On the other hand, extracting the terms involving
qpn+j (1 ≤ j ≤ p−1) from (3.10), we arrive at (1.8). Employing (2.8) in (1.7) and
then extracting the terms involving q5n+2 yields (1.9). Next, using (2.6) in (1.9)
and proceeding as in the proof of (1.7), we arrive at

∞∑
n=0

a2,5

(
20 · p2γ+1n+

55 · p2γ+2 − 1

6

)
qn ≡ fpf10p (mod 2). (3.12)

Finally, (1.10) follows from extracting the terms involving qpn+j (1 ≤ j ≤ p − 1)
from (3.12).

Proof of Theorem 1.3:

Proof. Combining (2.9) and (3.3), we find that

∞∑
n=0

a2,5(2n)qn =
f4f

5
40

f2f210f20f
2
80

+ 2q5
f4f20f

2
80

f2f210f40
. (3.13)

Extracting the terms involving odd powers of q from both sides of (3.13), we obtain

∞∑
n=0

a2,5(4n+ 2)qn = 2q2
f2f10f

2
40

f1f25 f20
. (3.14)

In view of (2.15), (3.14) can be written as

∞∑
n=0

a2,5(4n+ 2)qn ≡ 2q2f1f
3
20 (mod 4), (3.15)

which is the β = 0 case of (1.11). Now assume that (1.11) holds for some β ≥ 0.
Employing (2.8) in (1.11), we arrive at

∞∑
n=0

a2,5

(
4·52βn+

13 · 52β − 1

6

)
qn ≡ 2q2f320f25

(
R(q5)−q−q2R(q5)−1)

)
(mod 4).

(3.16)
Extracting the terms involving q5n+3 from (3.16) yields (1.12). Next, using (2.8)
in (1.12) and then extracting the terms involving q5n+2, we obtain

∞∑
n=0

a2,5

(
4 · 52(β+1)n+

13 · 52(β+1) − 1

6

)
qn ≡ 2q2f1f

3
20 (mod 4), (3.17)

which is the β + 1 case of (1.11). Employing (2.8) in (1.11) and then extracting
the terms involving q5n+j for j ∈ {0, 1} yields (1.13). Finally, using (2.8) in (1.12)
and then extracting terms involving q5n+j for j ∈ {1, 3} yields (1.14).
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4. Proof of Theorem 1.4

Proof. Setting (r, s) = (2, 7) in (1.4) and using elementary q-operations, we have

∞∑
n=0

a2,7(n)qn =
f22 f7f28
f1f4f214

. (4.1)

In view of (2.15), we can rewrite (4.1) as

∞∑
n=0

a2,7(n)qn ≡ f1f7
f2

(mod 2). (4.2)

Combining (2.14) and (4.2), we find that

∞∑
n=0

a2,7(n)qn ≡ f14f
2
16f

5
56

f4f8f328f
2
112

− q f4f28
f2

+ q6
f58 f14f

2
112

f34 f
2
16f28f56

(mod 2). (4.3)

Extracting the terms involving odd powers of q from both sides of (4.3), we obtain

∞∑
n=0

a2,7(2n+ 1)qn ≡ f1f14 (mod 2), (4.4)

which is the α = 0 case of (1.15). Using (2.6) in (1.15) and proceeding as in the
proof of (1.7), we arrive at

∞∑
n=0

a2,7

(
2 · p2α+1n+

5 · p2α+2 − 1

4

)
qn ≡ fpf14p (mod 2), (4.5)

which yields

∞∑
n=0

a2,7

(
2 · p2(α+1)n+

5 · p2(α+1) − 1

4

)
qn ≡ f1f14 (mod 2), (4.6)

which is the α+1 case of (1.15). On the other hand, extracting the terms involving
qpn+j (1 ≤ j ≤ p − 1) from (4.5), we arrive at (1.16). Next, using (2.7) in (1.15)
and then extracting the terms involving q7n+2 yields (1.17). Now employing (2.6)
in (1.17) and proceeding as in the proof of (1.15), we arrive at

∞∑
n=0

a2,7

(
14 · p2γ+1n+

21 · p2γ+2 − 1

4

)
qn ≡ f2pf7p (mod 2). (4.7)

Finally, (1.18) follows from extracting the terms involving qpn+j(1 ≤ j ≤ p − 1)
from (4.7).
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5. Proof of Theorems 1.5-1.6

Proof of Theorem 1.5:

Proof. Setting (r, s) = (4, 5) in (1.4) and using elementary q-operations, we obtain

∞∑
n=0

a4,5(n)qn =
f2f4f5f40
f1f8f10f20

. (5.1)

Combining (2.12) and (5.1), we find that

∞∑
n=0

a4,5(n)qn =
f4f20
f2f10

+ q
f44 f

2
40

f22 f
2
8 f

2
20

. (5.2)

Extracting the terms involving even powers of q from both sides of (5.2), we obtain

∞∑
n=0

a4,5(2n)qn =
f2f10
f1f5

. (5.3)

In view of (2.15), we can rewrite (5.3) as

∞∑
n=0

a4,5(2n)qn ≡ f1f5 (mod 2), (5.4)

which is the α = 0 case of (1.19). Now assume that (1.19) holds for some α ≥ 0.
Using (2.8) in (1.19), we find that

∞∑
n=0

a4,5

(
2 · 5αn+

5α − 1

2

)
qn ≡ f5f25

(
R(q5)− q − q2R(q5)−1)

)
(mod 2). (5.5)

Extracting the terms involving q5n+1 from both sides of (5.5), we arrive at

∞∑
n=0

a4,5

(
2 · 5α+1n+

5α+1 − 1

2

)
qn ≡ f1f5 (mod 2), (5.6)

which is the α+ 1 case of (1.19). Finally, using (2.8) in (1.19) and then extracting
the terms involving q5n+j for j ∈ {3, 4} yields (1.20).

Proof of Theorem 1.6:

Proof. Congruence (5.4) is the α = 0 case of (1.21). Now suppose that (1.21)
holds for some α ≥ 0. Using (2.6) in (1.21) and proceeding as in the proof of
(1.7), we arrive at

∞∑
n=0

a4,5

(
2 · p2α+1n+

p2α+2 − 1

2

)
qn ≡ fpf5p (mod 2), (5.7)
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which yields

∞∑
n=0

a4,5

(
2 · p2(α+1)n+

p2(α+1) − 1

2

)
qn ≡ f1f5 (mod 2), (5.8)

which is the case α+1 of (1.21). On the other hand, extracting the terms involving
qpn+j(1 ≤ j ≤ p− 1) from (5.7), we arrive at (1.22).

6. Proof of Theorem 1.7

Proof. Setting (r, s) = (4, 9) in (1.4) and using elementary q-operations, we obtain

∞∑
n=0

a4,9(n)qn =
f2f4f9f72
f1f8f18f36

. (6.1)

Combining (2.10) and (6.1), we find that

∞∑
n=0

a4,9(n)qn =
f4f

3
12f72

f2f6f8f236
+ q

f34 f6f72
f22 f8f12f18

. (6.2)

Extracting the terms involving odd powers of q from (6.2) and then employing
(2.15), we obtain

∞∑
n=0

a4,9(2n+ 1)qn ≡ f39
f3

(mod 2). (6.3)

Comparing the terms involving q3n+j , for j ∈ {1, 2} from both sides of (6.3) yields
(1.23). Next, extracting the terms involving q3n from both sides of (6.3), we obtain

∞∑
n=0

a4,9(6n+ 1)qn ≡ f33
f1

(mod 2). (6.4)

Combining (2.13) and (6.4), we find that

∞∑
n=0

a4,9(6n+ 1)qn ≡ f34 f
2
6

f22 f12
+ q

f312
f4

(mod 2). (6.5)

Extracting the terms involving odd powers of q from (6.5), we obtain

∞∑
n=0

a4,9(12n+ 7)qn ≡ f36
f2

(mod 2). (6.6)

Extracting the terms involving odd powers of q from (6.6) yields (1.24). Next,
extracting the terms involving even powers of q from both sides of (6.6), we obtain

∞∑
n=0

a4,9(24n+ 7)qn ≡ f33
f1

(mod 2). (6.7)
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Combining (6.4) and (6.7), we find that

a4,9(24n+ 7) ≡ a4,9(6n+ 1) (mod 2). (6.8)

From (6.8) and by mathematical induction, we have

a4,9

(
6 · 4α+1n+ 2 · 4α+1 − 1

)
≡ a4,9(6n+ 1) (mod 2). (6.9)

Using (6.9) and congruence (1.24), we arrive at (1.25). On the other hand, ex-
tracting the terms involving even powers of q from both sides of (6.5), we obtain

∞∑
n=0

a4,9(12n+ 1)qn ≡ f4 (mod 2). (6.10)

Extracting the terms involving q4n+j for j ∈ {1, 2, 3} from (6.10) yields (1.26). On
the other hand, extracting the terms involving q4n from both sides of (6.10) and
using (2.4) yields (1.27).
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by an even-odd method. J. Math. Anal. Appl. 387, 126-138 (2012)

[14] Xia, E. X. W.: New congruences modulo powers of 2 for broken 3-diamond partitions and
7-core partitions. J. Number Theory 141, 119-135 (2014)

Received: 8 April 2021/Accepted: 22 June 2021/Published online: 28 June 2021

Rinchin Drema

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh,

India, Pin-79111.

dremarinchin3@gmail.com

Nipen Saikia

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh,

India, Pin-79111.

nipennak@yahoo.com

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Proof of Theorems 1.1-1.3 
	Proof of Theorem 1.4 
	Proof of Theorems 1.5-1.6 
	Proof of Theorem 1.7 

