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RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Stability properties of dissipative evolution equations with
nonautonomous and nonlinear damping

Serge Nicaise

Abstract. In this paper, we obtain some stability results of (abstract) dissipative evolution

equations with a nonautonomous and nonlinear damping using the exponential stability of the

retrograde problem with a linear and autonomous feedback and a comparison principle. We

then illustrate our abstract statements for different concrete examples, where new results are

achieved. In a preliminary step, we prove some well-posedness results for some nonlinear and

nonautonomous evolution equations.

1. Introduction

Stability of evolution equations of hyperbolic type with linear or nonlinear au-
tonomous feedbacks has been the object of many works. Let us quote the stability
of the wave equation [30, 31, 33, 34, 36, 41, 66], of the elastodynamic system [1,
8, 19, 20, 21, 23, 37, 63], of the Petrovsky system [18, 34, 35], of Mawxell’s system
[5, 16, 32, 55, 61] or combination of them [14, 26, 54], see also the references cited in
the aforementioned works. On the contrary the case of nonautonomous damping
is less considered in the literature, let us quote [15, 24, 46, 47, 48, 50, 51, 52, 62]
for the wave equation and [6, 7] for the Lamé system.

In the nonautonomous case, even if some similarities appear in the long time
behavior of the solution, the proof is always made for each particular examples.
Hence, our main idea is to treat the stability of (abstract) evolution equations of
hyperbolic type with nonautonomous and nonlinear damping by adapting an ap-
proach that was successfully used in the autonomous case in [53, 55], namely use
Liu’s principle and a comparison principle that goes back to [40] and was improved
in [15]. Liu’s principle consists in estimating the energy of the direct system by
some terms related to the feedbacks using a retrograde system with final data
equal to the final data of the direct system. These terms are then estimated using
the exponential stability of the inverse (retrograde) problem with a linear feedback
(based on Russell’s principle) and a comparison principle. This principle consists
in estimating the energy of the system by the solution of a nonlinear and nonau-
tonomous ODE. Furthermore, our goal is to present an abstract setting leading to
the stability of the abstract (non linear and non autonous) system as soon as the
retrograde linear and autonomous system is exponentially stable. Our setting is
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chosen as large as possible to include all examples of the aforementioned papers
concerning nonautonomous damping and allowing new applications. The strength
of our approach lies in the fact that the stability results (with general feedbacks)
are only based on the exponential stability of the retrograde system with a linear
and autonomous feedback, property that may be checked for an explicit prob-
lem by different techniques, like the multiplier method, microlocal analysis or any
method entering in a linear framework (like nonharmonic analysis for instance).
We further illustrate our approach by considering different examples for which
new stability results are obtained. Many other examples, like the Petrovsky sys-
tem or the thermoelastic system, may be treated using the exponential stability of
the retrograde system with a linear and autonomous feedback, we do not present
them for the sake of shortness.

Let us notice that existence results for evolution equations of hyperbolic type
with nonlinear and nonautonomous feedbacks are no fully direct, because the
domain of the operator may depend on the time variable. Hence, in a preliminary
step, we prove a well-posedness result for a class of nonlinear and nonautonomous
evolution equations, extending a result from [27] and then specializes it to evolution
equations of hyperbolic type.

The paper is organized as follows: in Section 2 we give a well posedness result
for nonlinear and nonautonomous evolution equations. In Section 3, we use this
result to obtain some well posedness results for nonlinear and nonautonomous
evolution equations of hyperbolic type. Section 4 is devoted to the stability results
for a class of nonautonomous and nonlinear feedbacks adapting Liu’s principle.
Finally in Section 5 different illustrative examples are treated.

2. Well-posedness of nonlinear nonautonomous evolution equa-
tions

Let us first recall some useful definitions, see e.g. [9, 59].

Definition 2.1. Let H be a Hilbert space with inner product (·, ·)H and let A be
a (single-valued) nonlinear operator on H with domain D(A). Then
1. A is called monotone if and only if

<(Au−Av, u− v)H ≥ 0, ∀u, v ∈ D(A).

2. A is called maximal monotone if and only if A is monotone and there exists
λ > 0 such that the range of A+ λI is equal to H.
3. A is called maximal quasi-monotone if and only if there exists a non negative
real number ω such that A+ ωI is maximal monotone.

All examples that we will present below can be reduced to a nonlinear evolution
equation in a Hilbert space X of the form{

dU
dt (t) +A(t)U(t) = 0, in X,

U(0) = U0,
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where U is the unknown, U0 ∈ X and A(t) is a (single-valued) nonlinear operators
on X. A general theory of such equations with linear operators A(t) has been
developed using semigroup theory in [29, 28, 60] for instance. For nonlinear oper-
ators A(t) similar results exist but for maximal quasi-monotone operators A(t) (for
one inner product independent of t), see [27, 13, 17, 43] or for maximal monotone
operators A(t) for a time-dependent inner product depending “smoothly” on t, see
[56]. For our systems we need a variant of such results for maximal quasi-monotone
operators A(t) for a time-dependent inner product depending “smoothly” on t (see
Remarks 4 and 5 in [27]). More precisely the next result holds.

Theorem 2.2. Let X be a Hilbert space. For a fixed T > 0 and any t ∈ [0, T ] we
assume that there exists an inner product (·, ·)t on X depending “smoothly” on t
in the following sense: there exists c > 0 such that

d

dt
(u, u)t ≤ 2c(u, u)t, ∀u ∈ X, t ∈ [0, T ]. (2.1)

For each t ∈ [0, T ], denote by ‖ · ‖t the norm associated with this inner product,
namely

‖u‖2t = (u, u)t, ∀u ∈ X.

Furthermore, assume that
(i) For all t ∈ [0, T ], A(t) is single-valued and is a maximal quasi-monotone op-
erator for the inner product (·, ·)t, in other words, there exists a non negative real
number ω (independent of t ∈ [0, T ]) such that A(t) + ωI is a maximal monotone
operator for the inner product (·, ·)t,
(ii) the domain D(A(t)) = D of A(t) is independent of t, for all t ∈ [0, T ],
(iii) there exists a positive constant L such that

‖A(t)u−A(s)u‖ ≤ L|t− s|(1 + ‖u‖+ ‖A(s)u‖),∀u ∈ D, s, t ∈ [0, T ], (2.2)

where for shortness ‖ · ‖0 is denoted by ‖ · ‖.
Then for all a ∈ D the Cauchy problem

du

dt
(t) +A(t)u(t) = 0, for 0 ≤ t ≤ T ,

u(0) = a,

(2.3)

has a unique solution u ∈ C([0, T ];X) such that u(t) belongs to D for all t ∈
[0, T ], its strong derivative du

dt (t) = −A(t)u(t) exists and is continuous except at a
countable number of points t.

Note that the condition (2.1) and Gronwall’s inequality imply that

‖u‖t ≤ ec|t−s|‖u‖s , ∀u ∈ X, s, t ∈ [0, T ]. (2.4)

This estimate implies in particular that the norms ‖ · ‖t are equivalent and gives
the variation of the norm ‖ · ‖t with respect to t.
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Remark 2.3. In the linear case the conditions (2.1) and (i) to (iii) imply that the
triplet {A,X,D} forms a CD-system in the sense of [29, 28].

Proof. The proof is fully similar to the one in [27]; so, we only give its main steps.
First we recall that A(t) + ωI is a monotone operator for the inner product (·, ·)t
if and only if

<(A(t)u−A(t)v + ω(u− v), u− v)t ≥ 0,∀u, v ∈ D, (2.5)

or equivalently (see [27, Lemma 1.1])

‖(1 + αω)(u− v) + α(A(t)u−A(t)v)t ≥ ‖u− v‖t,∀u, v ∈ D,α > 0.

By dividing this estimate by 1 + αω and setting λ = α
1+αω (that is clearly < ω−1

if ω > 0), this is equivalent to

‖u− v+λ(A(t)u−A(t)v)t ≥ (1−λω)‖u− v‖t,∀u, v ∈ D,λ > 0 such that λω < 1.
(2.6)

Hence, we can apply Lemmas 1.1 and 1.2 of [13] to A(t) for the norm t. In
particular for all n ∈ N such that n > ω, I + n−1A(t) is invertible and if we set

Jn(t) = (I + n−1A(t))−1, An(t) = A(t)Jn(t),∀n ∈ N such that n > ω,

then the following estimates hold

‖Jn(t)x− Jn(t)y‖t ≤ (1− n−1ω)−1‖x− y‖t, ∀x, y ∈ X,

‖An(t)x−An(t)y‖t ≤ n(1 + (1− n−1ω)−1)‖x− y‖t, ∀x, y ∈ X,

‖An(t)x‖t ≤ (1− n−1ω)−1‖A(t)x‖t, ∀x ∈ D.

Using (2.4), they are equivalent to

‖Jn(t)x− Jn(t)y‖ ≤ (1− n−1ω)−1e2cT ‖x− y‖, ∀x, y ∈ X, (2.7)

‖An(t)x−An(t)y‖ ≤ n(1 + (1− n−1ω)−1)e2cT ‖x− y‖, ∀x, y ∈ X, (2.8)

‖An(t)x‖ ≤ (1− n−1ω)−1e2cT ‖A(t)x‖, ∀x ∈ D, (2.9)

that respectively correspond to the estimates (2.4) and (2.5) of [27] and are valid
for all n ∈ N such that n > ω. As the factor (1 − n−1ω)−1e2cT is uniformly
bounded in n as n goes to infinity, Lemmas 2.4 and 2.5 from [27] remain valid.
Furthermore, by the estimate (2.9) and our assumption (2.2), we have (see the
proof of Lemma 4.1 from [27])

‖An(t)x−An(s)x‖ ≤ (1− n−1ω)−1e2cTL|t− s|(1 + ‖u‖+ (1 + n−1)‖An(s)u‖),

∀u ∈ D, s, t ∈ [0, T ], n > ω,

(2.10)
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that corresponds to the estimate (4.2) of [27]. Since D is dense in X, this estimate
shows that An(t) is Lipschitz continuous in t for all x ∈ X, while (2.8) means that
the map x → A(t)x is Lipschitz continuous for a fixed t ∈ [0, T ], uniformly in x
and t. Thus the approximated problem

dun
dt

(t) +An(t)un(t) = 0, for 0 ≤ t ≤ T ,

un(0) = a,
(2.11)

has a unique solution un ∈ C1([0, T ];X) for all a ∈ X. We now show that the
statements of Lemma 4.2 of [27] hold if a ∈ D, namely there exists a positive
constant K (that depends on c, ω, T , and ‖a‖+ ‖A(0)a‖ but not on n) such that

‖un(t)‖ ≤ K, ∀t ∈ [0, T ], n > ω, (2.12)

‖u′n(t)‖ = ‖An(t)un(t)‖ ≤ K,∀t ∈ [0, T ], n > ω, (2.13)

where for shortness we write dun
dt = u′n. Indeed for t ∈ [0, T ), let us fix h in [0, T−t]

and set xn(t) := un(t+ h)− un(t). As xn is differentiable in t and using (2.1), we
have

2‖xn(t)‖t
d

dt
‖xn(t)‖t =

d

dt
‖xn(t)‖2t ≤ 2c‖xn(t)‖2t + 2<(x′n(t), xn(t))t.

Using (2.11), we get

‖xn(t)‖t
d

dt
‖xn(t)‖t ≤ c‖xn(t)‖2t −<(An(t+ h)un(t+ h)−An(t)un(t), xn(t))t

≤ c‖xn(t)‖2t −<(An(t+ h)un(t+ h)−An(t+ h)un(t), xn(t))t

− <(An(t+ h)un(t)−An(t)un(t), xn(t))t.

Using (2.5) and (2.10), we obtain

‖xn(t)‖t
d

dt
‖xn(t)‖t ≤ (c+ ω)‖xn(t)‖2t

+(1−n−1ω)−1e2cTLh(1+‖un(t)‖+(1 + n−1)‖u′n(t)‖)‖xn(t)‖t,

Simplifying by ‖xn(t)‖t (see [27, p. 515]), we find

d

dt
‖xn(t)‖t ≤ (c+ ω)‖xn(t)‖t

+ (1− n−1ω)−1e2cTLh(1 + ‖un(t)‖+ (1 + n−1)‖u′n(t)‖).

This estimate directly implies that

d

dt

(
e−(c+ω)t‖xn(t)‖t

)
≤ L1h(1 + ‖un(t)‖+ ‖u′n(t)‖),
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for a positive constant L1 that depends on c, ω and T but is independent of n.
Integrating this estimate in (0, t), we find

e−(c+ω)t‖xn(t)‖t − ‖xn(0)‖0 ≤ L1h

∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds.

By (2.4), we find

‖xn(t)‖ ≤ L2(‖xn(0)‖+ h

∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds),

for a positive constant L2 that depends on c, ω and T but is independent of n.
Dividing by h and letting h goes to zero, we obtain

‖u′n(t)‖ ≤ L2(‖u′n(0)‖+

∫ t

0

(1 + ‖un(s)‖+ ‖u′n(s)‖) ds).

As u′n(0) = A(0)a and

un(t) = a+

∫ t

0

u′n(s) ds,

we find as in [27, p. 516] that

‖un(t)‖+ ‖u′n(t)‖ ≤ L3

(
1 +

∫ t

0

(‖un(s)‖+ ‖u′n(s)‖) ds
)
,

for a positive constant L3 that depends on c, ω, T and ‖a‖ + ‖A(0)a‖ but is
independent of n. By Gronwall’s Lemma, we deduce that (2.12) and (2.13) hold.

We now show that the statements of Lemma 4.3 of [27] hold, namely for a ∈
D, the strong limit u(t) = limn→∞ un(t) exists uniformly for t ∈ [0, T ] and u
is Lipschitz continuous. Indeed for all m,n ∈ N such that m,n > ω, we set
xmn(t) = um(t)− un(t) and as before we have

d

dt
‖xmn(t)‖2t ≤ 2c‖xmn(t)‖2t + 2<(x′mn(t), xmn(t))t.

Using (2.11) and (2.5), we find

d

dt
‖xmn(t)‖2t ≤ 2c‖xmn(t)‖2t + 2ω‖ymn(t)‖2t

+ 2<(Am(t)xm(t)−An(t)xn(t), ymn(t)− xmn(t))t,

where ymn(t) = Jm(t)um(t)−Jn(t)un(t). By the triangle inequality, we then have

d

dt
‖xmn(t)‖2t ≤ 2(c+ 2ω)‖xmn(t)‖2t + 4ω‖ymn(t)− xmn(t)‖2t

+ 2<(Amxm(t)−An(t)xn(t), ymn(t)− xmn(t))t,
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Using the estimate (2.13) and (2.4), we arrive at

d

dt
‖xmn(t)‖2t ≤ 2(c+2ω)‖xmn(t)‖2t+K1‖ymn(t)−xmn(t)‖2+K1‖ymn(t)−xmn(t)‖,

for a positive constant K1 that depends on c, ω, T , and ‖a‖+ ‖A(0)a‖ but not on
m,n. Obviously, this is equivalent to

d

dt

(
e−2(c+2ω)t‖xmn(t)‖2t

)
≤ K1(‖ymn(t)− xmn(t)‖2 + ‖ymn(t)− xmn(t)‖),

and integrating it between 0 and t, we find (as xmn(0) = 0)

e−2(c+2ω)t‖xmn(t)‖2t ≤ K1

∫ t

0

(‖ymn(s)− xmn(s)‖2 + ‖ymn(s)− xmn(s)‖) ds.

This finally leads to

‖xmn(t)‖2 ≤ e2(3c+2ω)TK1

∫ t

0

(‖ymn(s)− xmn(s)‖2 + ‖ymn(s)− xmn(s)‖ ds.

As

ymn(s)− xmn(s) = Jm(s)um(s)− um(s) + Jn(s)un(s)− un(s)

= n−1An(s)un(s)−m−1Am(s)um(s),

by (2.13), we obtain

‖ymn(s)− xmn(s)‖ ≤ K(m−1 + n−1).

Inserting this estimate in the previous one, we arrive at

‖xmn(t)‖2 ≤ K2(m−1 + n−1), ∀t ∈ [0, T ],

for a positive constant K2 that depends on c, ω, T , and ‖a‖ + ‖A(0)a‖ but not
on m,n. Thus the strong limit u(t) = limn→∞ un(t) exists uniformly in t ∈ [0, T ].
The Lipschitz continuity of u follows from the uniform Lipschitz property of the
un, that is consequence of (2.13).

The remainder of the proof is the same as in [27] since it is based on the
properties proved before.

Remark 2.4. Obviously, the previous Theorem remains valid if X is a real Hilbert
space.
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3. Abstract hyperbolic setting

In this section we describe a general abstract setting of hyperbolic type inspired
from [53] that will be used later on. It is motivated by the examples (and other
ones) given in Section 5 which all enter in this setting.

3.1. General assumptions

Let us fix two real Hilbert spaces H, V with respective inner products (., .)H, (., .)V
and such that V is densely and continuously embedded into H. Identifying H with
its dual H′ we have the standard diagram

V ↪→ H = H′ ↪→ V ′.

The duality pairing between V ′ and V will be denoted by 〈·, ·〉, so that

〈u, v〉 = (u, v)H, ∀u, v ∈ H.

We suppose that V is continuously embedded into a control space U , that is
supposed to be in the form

U =

J∏
j=1

Uj , (3.1)

where for all j = 1, . . . , J ∈ N? := N\{0}, Uj is a closed subspace of L2(Xj , µj)
Nj ,

with Nj ∈ N?, when Xj is a metric space, and (Xj ,Aj , µj) is a measure space
such that µj(Xj) <∞.

For all j = 1, . . . , J , we suppose given a mapping αj ∈ C([0,∞)×Xj ; (0,∞))
and locally Lipschitz with respect to the time variable, in the sense that for all T ,
there exist a positive constant κ(T ) (that may depend on T ) such that

|αj(t, x)− αj(t, x)| ≤ κ(T )|t− s|,∀t ∈ [0, T ], x ∈ Xj , (3.2)

and a continuous mapping gj : RNj → RNj such that:

(gj(x)− gj(y)) · (x− y) ≥ 0,∀x, y ∈ RNj (monotonicity), (3.3)

gj(0) = 0, (3.4)

|gj(x)| ≤M(1 + |x|),∀x ∈ RNj , (3.5)

for some positive constant M .
We further define the (nonlinear) time-dependent operator B(t) from V into

V ′ by

〈B(t)u, v〉 =

J∑
j=1

∫
Xj

αj(t, xj)gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj),∀u, v ∈ V, (3.6)
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where IU denotes the embedding from V to U and therefore, (IUu)j is the jth

component of IUu.
We finally suppose given a bounded linear operator A1 from V into V ′ and

consider the evolution equation
dx

dt
(t) +A1x(t) +B(t)x(t) = 0 in H, t ≥ 0,

x(0) = x0.

(3.7)

This system clearly involves the (nonlinear) and time-dependent operatorAB(t)
defined by

D(AB(t)) = {v ∈ V|(A1 +B(t))v ∈ H}, (3.8)

AB(t) = (A1 +B(t))v,∀v ∈ D(AB(t)). (3.9)

In its full generality, the domain of AB(t) depends on the time variable. Conse-
quently we cannot apply Theorem 2.2. Nevertheless there are two cases treated
below for which this Theorem applies. In both cases, if x0 ∈ D(AB(0)), we will
show that a unique solution x exists with the following properties:

x ∈ C([0,∞),H) is such that x(t) ∈ D(AB(t)), for all t ∈ [0,∞)

and x′(t) = −AB(t)x(t) exists in H and is continuous except at

a countable number of points t.

(3.10)

Before going on let us show that under the additional assumption that

〈A1u, u〉 = 0,∀u ∈ V, (3.11)

system (3.7) is dissipative.

Lemma 3.1. Under the above assumptions, for all t ≥ 0, the operator AB(t) is
monotone for the natural inner product of H, namely

(AB(t)u−AB(t)v, u− v)H = 〈B(t)u−B(t)v, u− v〉 ≥ 0,∀u ∈ D(AB(t)). (3.12)

Consequently if x is a solution of (3.7) with the regularity (3.10), its associated
energy

E(t) =
1

2
||x(t)||2H (3.13)

is non-increasing; moreover, we have

E(S)− E(T ) =

∫ T

S

〈B(t)u(t), u(t)〉 dt,∀0 ≤ S < T <∞, (3.14)

d

dt
E(t) = −〈B(t)u(t), u(t)〉 ≤ 0, for a. a. t ≥ 0. (3.15)
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Proof. Let us first show that AB(t) is monotone. Indeed for any u, v ∈ D(AB(t)),
by the definition of AB(t) and the property (3.11), we have

(AB(t)u−AB(t)v, u− v)H = 〈A1(u− v), u− v〉
+〈B(t)u−B(t)v, u− v〉 = 〈B(t)u−B(t)v, u− v〉.

Finally by the definition of B(t) and then (3.3) and recalling that αj(t, x) > 0, we
have

〈B(t)u−B(t)v, u− v〉 =

J∑
j=1

∫
Xj

αj(t, xj) (gj((IUu)j(xj))− gj((IUv)j(xj)))

· ((IUv)j(xj)− (IUv)j(xj)) dµj(xj)

≥ 0,

which proves (3.12).
For the second assertion it suffices to show (3.15) since (3.14) follows by inte-

gration between S and T . By the regularity assumptions on x, we have

d

dt
E(t) = (x′(t), x(t))H = −(AB(t)u(t), u(t))H, for a. a. t ≥ 0,

by (3.7). By our assumption (3.4), we have AB(t)0 = 0 and consequently by
(3.12), we get (3.15).

3.2. The “bounded” case

We here assume that H is continuously embedded into U . As we shall see below
this assumption implies that B(t) becomes a (nonlinear) operator from H into
itself and therefore, the domain of AB(t) does not depend on t anymore.

Theorem 3.2. In addition to the previous assumptions, assume that H is contin-
uously embedded into U , and that there exists a positive real number λ such that
the range R(λI +AB(t)) is equal to H. Then

D(AB(t)) = D = {u ∈ V|A1u ∈ H},∀t ≥ 0, (3.16)

and for any x0 ∈ D, problem (3.7) has a unique solution x satisfying (3.10).

Proof. We first show that (3.16) holds. Indeed as H is continuously embedded
into U , the mapping IU extends to a linear and continuous operator from H into
U ; therefore, there exists a positive constant C such that

‖IUu‖H ≤ C‖u‖H,∀u ∈ H. (3.17)

By our assumption (3.5) and the definition of B(t), we then have

|〈B(t)u, v〉| ≤M
J∑
j=1

∫
Xj

αj(t, xj)(1 + |(IUu)j(xj)|)|IUv)j(xj | dµj(xj),∀u, v ∈ V.
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By the continuity property of αj(t, ·), Cauchy-Schwarz’s inequality and the esti-
mate (3.17), we obtain

|〈B(t)u, v〉| ≤ C(t)(1 + ‖u‖H)‖v‖H,∀u, v ∈ V,

where C(t) is a positive constant that depends on M,C, and t. As V is dense in
H, for a fixed u ∈ V, the linear mapping

V → R : v → 〈B(t)u, v〉,

can be extended to a linear and continuous form to the whole H. By the Riesz’s
representation theorem, there exists h(t) ∈ H such that

〈B(t)u, v〉 = (h(t), v)H,∀v ∈ H.

In other words, for u ∈ V, B(t)u can be identified with h(t) and therefore,
(A1 +B(t))u ∈ H if and only if A1u ∈ H, which proves (3.16).

By Lemma 3.1 and our additional assumption R(λI + AB(t)) = H, for some
λ > 0, we deduce that the assumption (i) of Theorem 2.2 holds.

Let us end up with the third assumption. Fix T > 0 and let u ∈ D, and
t, s ∈ [0, T ], then we clearly have

AB(t)u−AB(s)u = B(t)u−B(s)u.

Therefore, for any v ∈ H, by the definition of B(t) and our previous considerations,
we may write

(AB(t)u−AB(s)u, v)H

=

J∑
j=1

∫
Xj

(αj(t, xj)− αj(s, xj))gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj).

By our assumptions (3.2) to (3.5), we obtain

|(AB(t)u−AB(s)u, v)H|≤κ(T )|t− s|
J∑
j=1

∫
Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj)

≤κ(T )|t− s|
J∑
j=1

∫
Xj

(1+|(IUu)j(xj)|) · (IUv)j(xj) dµj(xj).

Cauchy-Schwarz’s inequality and the estimate (3.17) allow to conclude that

|(AB(t)u−AB(s)u, v)H| ≤
√

2Cκ(T )|t− s|(
J∑
j=1

µj(Xj) + C‖u‖H)‖v‖H).

Since this estimate is valid for all v ∈ H, this means that

‖AB(t)u−AB(s)u‖H ≤
√

2Cκ(T )|t− s|(
J∑
j=1

µj(Xj) + C‖u‖H),
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and proves that the assumption (iii) of Theorem 2.2 holds.
In conclusion by Theorem 2.2 for x0 ∈ D and any T > 0, there exists a unique

solution uT ∈ C([0, T ];H) of problem
dxT
dt

(t) +A1xT (t) +B(t)xT (t) = 0 in H, t ∈ [0, T ],

xT (0) = x0,

(3.18)

such that xT (t) belongs to D for all t ∈ [0, T ], its strong derivative
dxT
dt

(t) =

−A(t)xT (t) exists and is continuous except at a countable number of points t.
By uniqueness, for T ′ > T , the restriction of xT ′ to [0, T ] coincides with

xT . Therefore, a unique global solution x ∈ C([0,∞);H) of (3.7) exists with the
properties (3.10).

3.3. The “unbounded” case

Here we assume that the mappings αj do not depend on the variable xj and
coincide, namely there exists a mapping α ∈ C1([0,∞; (0,∞)) such that α′ is
locally Lipschitz (in the sense that for all T > 0, there exists a positive constant
ν(T ) such that

|α′(t)− α′(s)| ≤ ν(T )|t− s|,

for all s, t ∈ [0, T ]) such that

αj(t, xj) = α(t),∀xj ∈ Xj , t ≥ 0. (3.19)

Due to (3.6), this means that B(t) = α(t)B1, where

〈B1u, v〉 =

J∑
j=1

∫
Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj), ∀u, v ∈ V. (3.20)

Theorem 3.3. In addition to the assumptions made in subsection 3.1, assume that
(3.19) holds, that A1 +B1 is maximal quasi-monotone with a dense domain in H,
and that there exist two mappings D ∈ C1([0,∞);L(H)) and D̃ ∈ C([0,∞);L(H))
such that D′ and D̃ are locally Lipschitz and for all t ≥ 0, D(t) and D̃(t) are
invertible, D(t)D̃(t) is symmetric positive definite and for all T > 0, there exists
a positve constant cT such that

(D̃(t)−1D(t)−1x, x)H ≥ cT ‖x‖2H,∀x ∈ H,∀t ∈ [0, T ], (3.21)

and finally

(A1 + α(t)B1)D(t)−1 = D̃(t)(A1 +B1),∀t ≥ 0. (3.22)

Then for all x0 ∈ D(AB(0)), problem (3.7) has a unique solution x satisfying
(3.10).



Stability properties of dissipative evolution equations 73

Proof. Assuming that the solution x of problem (3.7) exists and is smooth enough,
we perform the change of unknown

x̃(t) = D(t)x(t).

Hence, as x̃′(t) = D′(t)x(t) +D(t)x′(t) and by (3.7) , we get

x̃′(t) = D′(t)D(t)−1x̃(t)−D(t)(A1 + α(t)B1)D(t)−1x̃(t).

With our assumption (3.22), we arrive at

x̃′(t) = D′(t)D(t)−1x̃(t)−D(t)D̃(t)(A1 +B1)x̃(t). (3.23)

This corresponds to (2.3) with the operator

A(t) = D(t)D̃(t)(A1 +B1)−D′(t)D(t)−1,

whose domain is clearly
D(A(t)) = D(A1 +B1),

and is independent of t, due to our assumptions on D(t) and D̃(t).
In order to apply Theorem 2.2 we introduce the time dependent inner product

(x, x̃)t = (D̃(t)−1D(t)−1x, x̃)H,∀x, x̃ ∈ H.

Our assumptions on D and D̃ guarantee that it is indeed an inner product on H
whose associated norm is equivalent to the standard one, namely for a fixed T , we
have √

cT ‖x‖H ≤ ‖x‖t ≤ CT ‖x‖H, ∀x ∈ H, (3.24)

for some positive constant CT , and that the property (2.1) also holds. From its
definition, we see that A(t) is quasi-monotone for this inner product. Indeed from
it definition, for any x, y ∈ D(A1 +B1), and t ∈ [0, T ], we have

(A(t)x−A(t)y, x− y)t = ((A1 +B1)x− (A1 +B1)y, x− y)H

− (D̃(t)−1D(t)−1D′(t)D(t)−1(x− y), x− y)H.

Hence, as A1 + B1 is quasi-monotone in H (i.e. A1 + B1 + ω1I is monotone for
some ω1 ≥ 0), and due to our assumptions on D and D̃, we then have

(A(t)x−A(t)y, x− y)t ≥ −ωT ‖x− y‖2H,

for some ωT > 0 (depending on T ). Due to the equivalence (3.24), we arrive at

(A(t)x−A(t)y, x− y)t ≥ −ωTC2
T ‖x− y‖2t ,

which yields the quasi-monotonicity of A(t). Let us now show the maximality
property. Indeed for λ > 0 large enough, we want to show that

E(t) := λI +D(t)D̃(t)(A1 +B1)−D′(t)D(t)−1
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is surjective. But as D(t)D̃(t) is an isomorphism, this is equivalent to the surjec-
tivity of

E(t) := λ(D(t)D̃(t))−1 +A1 +B1 − (D(t)D̃(t))−1D′(t)D(t)−1.

Now we take advantage of Theorem 1 of [10] by considering the previous operator
as a perturbation of T1 := A1 + B1 + ω1I (that satisfies the assumption of this
Theorem). Due to the linearity of

T2(t) := λ(D(t)D̃(t))−1 − (D(t)D̃(t))−1D′(t)D(t)−1 − ω1I,

it is clearly hemicontinous and due to the assumption (3.21), for λ > 0 large
enough, T2(t) will be monotone, bounded and coercive. Using the above Theorem,
we deduce that E(t) = T1 + T2(t) is surjective.

In summary assumption (i) of Theorem 2.2 holds and it remains to check the
assumption (iii) of this Theorem. For that purpose, let us fix x ∈ D(A1 +B1) and
s, t ∈ [0, T ], then by definition we have

A(t)x−A(s)x = (D(t)D̃(t)−D(s)D̃(s))(A1+B1)x+(D′(s)D(s)−1−D′(t)D(t)−1)x.

By the local Lipschitz property of D, D̃ and of the derivative of D, we get

‖A(t)x−A(s)x‖H ≤ K(T )|t− s|(‖(A1 +B1)x‖H + ‖x‖H).

We now transform

(A1 +B1)x = (D(s)D̃(s))−1(D(s)D̃(s)(A1 +B1)x−D′(s)D(s)−1)

+ (D(s)D̃(s))−1D′(s)D(s)−1x,

use the triangle inequality and use the continuity of D, D̃ and D′ to find

‖A(t)x−A(s)x‖H ≤ K1(T )|t− s|(‖A(s)x‖H + ‖x‖H).

for a positive constant K1(T ), which implies that (2.2) is valid.
In conclusion by Theorem 2.2, there exists a unique solution x̃ of (3.23) with

initial condition x̃(0) = D(0)x0 (that belongs to D(A1 + B1) by the assumption
on x0) satisfying x̃ ∈ C([0,∞),H), x(t) ∈ D(A1 + B1), for all t ∈ [0,∞) and
x′(t) = −A(t)x(t) exists in H and is continuous except at a countable number of
points t. Setting x(t) = D(t)−1x̃(t), we readily check that it is the unique solution
of problem (3.7) and that it satisfies (3.10).
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4. Stability results in the nonlinear and nonautonomous case

Here we use Liu’s principle [44] and a comparison principle with a nonlinear and
nonautonomous ODE from [15] (see also [40]) to deduce decay rates of the energy
using appropriate nonlinear and nonautonomous feedbacks.

We first recall the comparison principle obtained in [15] (compare with [40,
Theorem 2 and Corollary 2])).

Theorem 4.1. Let β be a continuous mapping from [0,∞) to (0,∞) and p a
strictly increasing convex mapping from [0,+∞) to [0,+∞) such that p(0) = 0.
Let E : [0,+∞)→ [0,+∞) be a non-increasing mapping satisfying

β((n+ 1)T )p(E(nT )) + E((n+ 1)T ) ≤ E(nT ),∀n ∈ N, (4.1)

for some T > 0. Then

E(t) ≤ ψ−1

(∫ t

T

β(s) ds

)
,∀t ≥ T, (4.2)

where ψ is defined by

ψ(x) =

∫ E(0)

x

1

p(s)
ds,∀x > 0. (4.3)

Proof. Let us shortly recall the proof from [15]. Since (4.2) trivially holds if E(0) =
0 (because in such a case E(t) = 0, for all t ≥ 0), we can assume that E(0) > 0.
First by [15, Lemma 4.2], the next comparison principle holds

E(t) ≤ S(t− T ),∀t ≥ T, (4.4)

where S is the unique solution of the nonlinear and nonautonomous ODE

S′(t) + β(t+ T )p(S(t)) = 0,∀t ≥ 0, S(0) = E(0). (4.5)

Such a solution exists and remains positive for all t > 0 due the Cauchy-Lipschitz
Theorem (because the assumptions on p garantee that it is locally Lipschitz in
[0,∞)).

With the help of [15, Lemma 4.2/2.] (the properties on p guarantee that the
assumption (24) from [15] holds with m = p(1)−1), we deduce that

S(t) ≤ ψ−1

(∫ t

0

β(s+ T ) ds

)
, ∀t ≥ 0,

with ψ defined by (4.3) (and is meaningful because limx→0+ ψ(x) = +∞ reminding
that p(x) ≤ p(1)x, for all x ∈ [0, 1]). This estimate combined with (4.4) yields the
result.
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Let us now recall Russell’s principle that yields an exact controllability re-
sult for the evolution equation associated with the operator −A1 with controls in
L2(]0, T [;U) provided A1−IU generates a semigroup of contractions and −A1−IU
generates an exponentially stable semigroup of contractions inH, see [53, Theorem
4.1].

Theorem 4.2. Assume that A1 − IU generates a semigroup of contractions in
H and that −A1 − IU generates a semigroup of contractions S(t) in H that is
exponentially stable in the sense that there exist two positive constants C and ω
such that

‖S(t)x0‖H ≤ Ce−ωt‖x0‖H,∀x0 ∈ H. (4.6)

Then there exists T > 0 large enough, such that for any p0 ∈ H, there exists a
control K ∈ L2((0, T );U) such that the solution p ∈ C([0, T ];H) of{

∂p
∂t +A1p = K in V ′, t ∈ [0, T ],

p(T ) = p0,
(4.7)

satisfies
p(0) = 0. (4.8)

Furthermore, there exists a positive constant D > 1 depending only on T , and the
constants C and ω such that∫ T

0

‖K(t)‖2U dt+

∫ T

0

‖IUp(t)‖2U dt ≤ 2D‖p0‖2H. (4.9)

We now give the consequence of this result to our system (3.7) in three different
cases of functions αj : non-increasing with respect to t, non-decreasing with respect
to t and oscillating with respect to t. But first we give an energy estimate valid in
all cases.

Lemma 4.3. Under the assumptions of Theorem 4.2, any solution x of (3.7) with
the regularity (3.10), satisfies

E(T )≤D

 J∑
j=1

∫ T

0

∫
Xj

{|(IUx(t))j(xj)|2 + αj(t, xj)
2|gj((IUx(t))j(xj))|2} dµj(xj) dt

.
(4.10)

Proof. Let x be the unique solution of (3.7) satisfying (3.10) and consider p the
solution of problem (4.7) and (4.8) with p0 = x(T ) ∈ H with T > 0 from Theo-
rem 4.2. Owing to [53, Remark 4.2], consider a sequence

pε ∈W 1,∞([0,∞),H) ∩ L∞([0,∞),V)

of strong solution of (4.7) with final data p0ε tending to p in C([0, T ],H) as ε goes
to zero and satisfying

Kε → K in L2(]0, T [;U) as ε→ 0, (4.11)

IUpε → IUp in L2(]0, T [;U) as ε→ 0. (4.12)
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By (3.7) and (4.7) we may write

〈∂tx+A1x+B(t)x, pε〉V′,V + 〈∂tpε +A1pε −Kε, x〉V′,V = 0, for a.a. t ∈ [0, T ].

As the assumption (3.11) yields

〈A1x, pε〉V′,V + 〈A1pε, x〉V′,V = 0,

the above identity reduces to

(∂tx, pε)H + (∂tpε, x)H + 〈B(t)x, pε〉V′,V − 〈Kε, x〉V′,V = 0, for a.a. t ∈ [0, T ].

Integrating this identity for t ∈ (0, T ), we get

(x(T ), pε(T ))H − (x(0), pε(0))H +

∫ T

0

(〈B(t)x, pε〉V′,V − 〈Kε, x〉V′,V) dt = 0.

By the definitions of Kε and B(t) we arrive at

(x(T ), pε(T ))H − (x(0), pε(0))H

=

∫ T

0

(
(Kε, IUx)U −

J∑
j=1

∫
Xj

αj(t, xj)gj((IUx)j(xj)) · (IUpε)j(xj) dµj(xj)
)
dt.

Passing to the limit in ε and using the initial and final conditions on p, we obtain

2E(T )=

∫ T

0

(K, IUx)U −
J∑
j=1

∫
Xj

αj(t, xj)gj((IUx)j(xj)) · (IUp)j(xj) dµj(xj)

dt.
Cauchy-Schwarz’s inequality leads finally to

2E(T ) ≤ ‖K‖L2(0,T ;U)‖IUx‖L2(0,T ;U) (4.13)

+ ‖IUp‖L2(0,T ;U)

 J∑
j=1

∫ T

0

∫
Xj

αj(t, xj)
2|gj((IUx)j(xj))|2 dµj(xj) dt

1/2

.

Using the estimate (4.9) (recalling that p0 = x(T )), we have∫ T

0

‖K(t)‖2U dt+

∫ T

0

‖IUp(t)‖2U dt ≤ 4DE(T ).

Using this estimate in the previous one, we arrive at (4.10).

Corollary 4.4. Under the assumptions of Theorem 4.2, any solution x of (3.7)
with the regularity (3.10), satisfies

E((n+ 1)T )

≤ D
( J∑
j=1

∫ (n+1)T

nT

∫
Xj

{|(IUx(t))j(xj)|2 + αj(t, xj)
2|gj((IUx(t))j(xj))|2} dµj(xj) dt

)
,

(4.14)

for all n ∈ N.
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Proof. We apply the previous Lemma to xn (instead of x) defined by

xn(t) = x(t+ nT ),∀t ≥ 0,

that is still solution of (3.7) with the regularity (3.10), where the (nonlinear) and
time-dependent operator B is replaced by Bn(t) = B(t+nT ). The estimate (4.10)
applied to xn yields

E((n+ 1)T ) ≤ D
( J∑
j=1

∫ T

0

∫
Xj

{|(IUx(t+ nT ))j(xj)|2

+ αj(t+ nT, xj)
2|gj((IUx(t+ nT ))j(xj))|2} dµj(xj) dt

)
,

that is nothing else than (4.14) by a simple change of variable.

4.1. The non-increasing case

Theorem 4.5. In addition to the previous assumptions on gj and αj, j = 1, . . . , J ,
suppose that gj satisfies

gj(x) · x ≥ m|x|2,∀x ∈ RNj : |x| ≥ 1, (4.15)

|x|2 + |gj(x)|2 ≤ G(gj(x) · x),∀x ∈ RNj : |x| ≤ 1, (4.16)

for some positive constant m and a concave strictly increasing function G : [0,∞)→
[0,∞) such that G(0) = 0. Furthermore, we assume that for all j = 1, . . . , J and
all xj ∈ Xj , the mapping

αj(·, xj) : [0,∞)→ (0,∞) : t→ αj(t, xj) is non-increasing, (4.17)

α̃ := max
1≤j≤J

sup
xj∈Xj

αj(0, xj) <∞, (4.18)

and

α(t) = min
1≤j≤J

inf
xj∈Xj

αj(t, xj) > 0,∀t ∈ [0,∞). (4.19)

Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T ,
C, ω (from Theorem 4.2), maxj µj(Xj), α̃, M , and m) such that

E(t) ≤ ψ−1

(
Tµ

∫ t

T

α(s) ds

)
, ∀t ≥ T, (4.20)

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by
(4.3) with p = h−1, and h is defined by

h(x) = c(x+G(x)),∀x ≥ 0. (4.21)
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Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be an
arbitrary nonnegative integer. Using (4.14) and the definition of α̃, we get

E((n+ 1)T )

≤ C1

( J∑
j=1

∫ (n+1)T

nT

∫
Xj

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt
)
,

(4.22)

with C1 = Dmax{1, α̃}.
We now estimate the right-hand side of (4.22) as follows: For all j = 1, . . . , J ,

introduce

Σ+
j,n = {(x, t) ∈ Xj × (nT, (n+ 1)T ) : |(IUx)j(x, t)| > 1}, (4.23)

Σ−j,n = {(x, t) ∈ Xj × (nT, (n+ 1)T ) : |(IUx)j(x, t)| ≤ 1}, (4.24)

and split up∫ (n+1)T

nT

∫
Xj

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt = I+
j,n + I−j,n,

where

I+
j,n :=

∫
Σ+
j,n

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫
Σ−j,n

{|(IUx)j(xj)|2 + αj(t, xj)|gj((IUx)j(xj))|2} dµj(xj) dt.

For the estimation of I+
j,n, we first notice that the assumption (3.5) leads to

I+
j,n ≤

∫
Σ+
j,n

(1 + 2Mαj(t, xj))|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) and (4.18) we get

I+
j,n ≤ m

−1(1 + 2Mα̃)

∫
Σ+
j,n

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

As αj(·, xj) is non-increasing, and using (4.18)-(4.19), we have

1 ≤ αj(t, xj)

αj((n+ 1)T, xj)
≤ αj(t, xj)

α((n+ 1)T )
,∀xj ∈ Xj , t ∈ [nT, (n+ 1)T ], (4.25)

which allows to obtain

I+
j,n ≤ m

−1(1+2Mα̃)α((n+1)T )−1

∫
Σ+
j,n

αj(t, xj)(IUx)j(xj)·gj((IUx)j(xj))dµj(xj)dt.

(4.26)
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Since (3.3) and (3.4) yield

gj(x) · x ≥ 0,∀x ∈ RNj , (4.27)

and since αj(t, xj) > 0 for all t and xj ∈ Xj , we have∫
Σ+
j,n

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt (4.28)

≤
∫ (n+1)T

nT

∫
Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

≤ (E(nT )− E((n+ 1)T )),

this last estimate following from (3.14). Using this estimate in (4.26), we arrive at

I+
j,n ≤ c1α((n+ 1)T )−1(E(nT )− E((n+ 1)T )), (4.29)

for some positive constant c1 depending only on α̃, M and m.

Similarly by the assumption (4.16) and the monotonicity of G and α we have

I−j,n ≤ max{1, α̃}
∫

Σ−j,n

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt

≤ max{1, α̃}
∫ (n+1)T

nT

∫
Xj

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j,n ≤ max{1, α̃}Tµj(Xj)G

(
1

Tµj(Xj)

∫ (n+1)T

nT

∫
Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)
.

As G is strictly increasing and again using (4.25), we obtain

I−j,n ≤KG

(
1

Tµj(Xj)α((n+ 1)T )

∫ (n+1)T

nT

∫
Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj))dµj(xj)dt

)
,

where K = max{1, α̃}T maxj µj(Xj). By (3.14), we arrive at

I−j,n ≤ KG

(
E(nT )− E((n+ 1)T )

Tµj(Xj)α((n+ 1)T )

)
. (4.30)

The estimates (4.29) and (4.30) into the estimate (4.22) and the monotonicity
of G give

E((n+ 1)T ) ≤ c2
{
E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )
+G

(
E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)}
,
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for some positive constant c2 (depending on T , C, ω (from Thm. 4.2), maxj µj(Xj),
α̃, M and m), recalling that µ = minj µj(Xj). As (4.18)-(4.19) imply that
α((n+ 1)T ) ≤ α̃, this finally leads to

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ max{µT α̃, c2}
{
E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )
+G

(
E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)}
.

With c = max{µT α̃, c2}, and the definition (4.21) of h, we have found that

E(nT ) ≤ h
(
E(nT )− E((n+ 1)T )

Tµα((n+ 1)T )

)
,

which can be equivalently written as

Tµα((n+ 1)T )h−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ). (4.31)

Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the
choice β(t) = Tµα(t).

Note that the conditions (3.5) and (4.15) mean that gj is linearly bounded
at infinity; therefore, the decay rate in (4.20) is guided by the behaviour of gj
near zero and by the behavior of

∫ t
0
α(s) dx as t goes to ∞. Since we are mainly

interested in the influence of the time dependency on the decay rate, we restrict
ourselves to examples of functions gj that are linear, sublinear or superlinear near
0 (compare with subsection 3.2.1 and Example 1 of [15]).

Example 4.6. Suppose that gj satisfies (3.3) to (3.5) and (4.15) as well as

x · gj(x) ≥ c0|x|p+1, |gj(x)| ≤ C0|x|γ ,∀|x| ≤ 1, (4.32)

for some positive constants c0, C0, γ ∈ (0, 1] and p ≥ γ. Then gj satisfies (4.16)

with G(x) = x
2
q+1 and q = p+1

γ − 1 (which is ≥ 1).

If p = γ = 1 (then q = 1), that corresponds to a linear behavior of gj near 0, we
have G(x) = x and, hence, h(x) = 2cx. Therefore, under the other assumptions
of Theorem 4.5 we get the decay

E(t) ≤ KE(0)e−L
∫ t
0
α(s) ds, ∀t ≥ 0,

for some positive constants K and L, since ψ−1(t) = E(0)e−
t
2c .

On the contrary if p + 1 > 2γ (corresponding to the sublinear case if p =
2 and to the superlinear case if γ = 1 and p > 1), then we get the decay

K(E(0))
(∫ t

0
α(s) ds

)− 2γ
p+1−2γ

(since ψ−1(t) is equivalent to t
2

1−q for t large), with

K(E(0)) = K(1 + E(0)−
p+1−2γ

2γ )−
2γ

p+1−2γ , with a positive constant K.
Note that in both cases, the energy tends to zero as soon as∫ t

0

α(s) ds→∞, as t→∞.
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In particular, if α(t) = 1
(1+t)σ , with σ > 0, in both cases, we get

E(t) ≤ K(E(0))t−r,

for some r > 0 (with K(E(0)) = KE(0) in the linear case) that, in the linear case,
translates an underdamped phenomenon.

A function g satisfying all these assumptions is given by

g(x) =

{
|x|γ−1x if |x| ≤ 1,

x if |x| ≥ 1,

for some γ ∈ (0, 1]. In that case (4.32) holds for p = γ.

4.2. The non-decreasing case

Theorem 4.7. In addition to the assumptions on gj and αj , j = 1, . . . , J, from
subsection 3.1, suppose that gj satisfies (4.15) and (4.16) for some positive con-
stant m and a concave strictly increasing function G : [0,∞) → [0,∞) such that
G(0) = 0 and satisfying the additional assumption

∃δ ≥ 2, CG > 0 : β2G(x) ≤ CGG(βδx), ∀x, β ∈ (0,∞). (4.33)

Furthermore, we assume that for all j = 1, . . . , J and all xj ∈ Xj , the mapping

αj(·, xj) : [0,∞)→ (0,∞) : t→ αj(t, xj) is non-decreasing, (4.34)

and that for all t ∈ [0,∞)

α(t) = max
1≤j≤J

sup
xj∈Xj

αj(t, xj) <∞, (4.35)

and
α(0) > 0, (4.36)

so that the mapping
α : [0,∞)→ (0,∞) : t 7→ α(t)

is non-decreasing. We finally suppose that there exists c0 ∈ (0, 1] such that

c0α(t) ≤ αj(t, xj) ≤ α(t), ∀t ∈ [0,∞), xj ∈ Xj , j = 1, . . . , J. (4.37)

Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T ,
C, ω (from Theorem 4.2), maxj µj(Xj), α(0), c0, M , and m) such that

E(t) ≤ ψ−1

(
Tµc0

∫ t

T

α(s− T )α(s)−δ ds

)
, ∀t ≥ T, (4.38)

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by
(4.3) with p = h−1, and h is defined by (4.21).
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Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be an
arbitrary nonnegative integer. We estimate the right-hand side of (4.14) as follows:
Using the sets Σ+

j,n and Σ−j,n defined by (4.23) and (4.24) respectively, we split up∫ (n+1)T

nT

∫
Xj

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt = I+

j,n + I−j,n,

where

I+
j,n :=

∫
Σ+
j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫
Σ−j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt.

For the estimation of I+
j,n, we first notice that the assumptions (4.36) and (4.37)

lead to

αj(t, xj) ≤ α((n+ 1)T ),∀t ∈ [nT, (n+ 1)T ], (4.39)

c0α(0) ≤ αj(t, xj),∀t ≥ 0. (4.40)

Therefore, using the assumption (3.5) on gj , we have

I+
j,n ≤ (

1

c20α(0)2
+ 2M)α((n+ 1)T )

∫
Σ+
j,n

αj(t, xj)|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) we get

I+
j,n ≤

m−1(
1

c0α(0)
+ 2M)α((n+ 1)T )

∫
Σ+
j,n

αj(t, xj)|(IUx)j(xj) · gj((IUx)j(xj))dµj(xj)dt.

Since the estimate (4.28) remains valid, we obtain

I+
j,n ≤ c1α((n+ 1)T )(E(nT )− E((n+ 1)T )), (4.41)

for some positive constant c1 depending only on c0, α(0), M and m.
Let us go on with the estimation of I−j,n. First using (4.39)-(4.40), we may

write

I−j,n ≤ C1α((n+ 1)T )2

∫
Σ−j,n

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt,

where C1 = max{ 1
c20α(0)2

, 1}. Hence, by the assumption (4.16) and the monotonic-

ity of G and the positivity of αj , as before we have

I−j,n ≤ C1α((n+1)T )2

∫ (n+1)T

nT

∫
Xj

αj(t, xj)G((IUx)j(xj)·gj((IUx)j(xj))) dµj(xj)dt.
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Jensen’s inequality then yields

I−j,n ≤ C1α((n+ 1)T )2Tµj(Xj)

G

(
1

Tµj(Xj)

∫ (n+1)T

nT

∫
Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)
.

Now (4.36) and (4.37) yield

c0α(nT ) ≤ αj(t, xj),∀t ∈ [nT, (n+ 1)T ],

and since G is strictly increasing, we then obtain

I−j,n ≤ C2α((n+ 1)T )2

G

(
1

Tµc0α(nT )

∫ (n+1)T

nT

∫
Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)
,

where C2 = C1T maxj µj(Xj). By (3.14), we arrive at

I−j,n ≤ C2α((n+ 1)T )2G

(
E(nT )− E((n+ 1)T )

Tµc0α(nT )

)
. (4.42)

At this stage, we take advantage of the property (4.33) to conclude that

I−j,n ≤ C2G

(
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)
. (4.43)

The estimates (4.41) (as α((n+1)T ) ≤ α((n+1)T )δ

α(0)δ−2α(nT )
because α is non-decreasing

and δ ≥ 2) and (4.43) into the estimate (4.14) give

E((n+ 1)T ) ≤ c2
{
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

+G

(
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)}
,

for some positive constant c2 (depending on T , maxj µj(Xj), c0, α(0), δ, C, ω, M

and m). As the non-decreasing property of α implies that α((n+1)T )δ

α(nT ) ≥ α(0)δ−1,

this finally leads to

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ c
{
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(0)

+G

(
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(0)

)}
,



Stability properties of dissipative evolution equations 85

where c = max{ Tµc0
α(0)δ−2 , c2}. By the definition (4.21) of h, we have found that

E(nT ) ≤ h
(
α((n+ 1)T )δ(E(nT )− E((n+ 1)T ))

Tµc0α(nT )

)
,

which can be equivalently written as

Tµc0α(nT )α((n+ 1)T )−δh−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ). (4.44)

Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the
choice β(t) = Tµc0α(t− T )α(t)−δ.

Example 4.8. If gj satisfies the assumptions from Example 4.6, G is given by

G(x) = x
2
q+1 and q = p+1

γ − 1 ≥ 1; hence, it satisfies the assumption (4.33) with

CG = 1 and δ = q + 1 = p+1
γ .

If p = γ = 1 (then q = 1), that corresponds to a linear behavior of gj near
0, we have G(x) = x and, hence, h(x) = 2cx. Under the other assumptions of
Theorem 4.7 we then get the decay

E(t) ≤ KE(0)e−L
∫ t
T
α(s−T )α(s)−2 ds,∀t ≥ T,

for some positive constants K and L, since ψ−1(t) = E(0)e−
t
2c .

On the contrary if p + 1 > 2γ (corresponding to the sublinear case if p =
2 and to the superlinear case if γ = 1 and p > 1), then we get the decay

K(E(0))
(∫ t

T
α(s− T )α(s)−

p+1
γ ds

)− 2γ
p+1−2γ

(since ψ−1(t) is equivalent to t
2

1−q for

t large).
Note that in both cases, the energy tends to zero as soon as∫ t

T

α(s− T )α(s)−δ ds→∞, as t→∞.

In particular, if α(t) = (1 + t)σ, with 0 < σ ≤ 1
δ−1 = γ

p+1−γ , in both cases, we
get

E(t) ≤ K(E(0))t−r,

for some r > 0, that, in the linear case, translates an overdamping phenomenon.

4.3. The oscillating case

Theorem 4.9. In addition to the assumptions on gj and αj , j = 1, . . . , J, from
subsection 3.1, suppose that gj satisfies (4.15) and (4.16) for some positive con-
stant m and a concave strictly increasing function G : [0,∞) → [0,∞) such that
G(0) = 0 Furthermore, we assume that there exists two positive constants α0 and
α̃ such that

α0 ≤ αj(t, xj) ≤ α̃, ∀t ∈ [0,∞), xj ∈ Xj , j = 1, . . . , J. (4.45)
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Under the assumptions of Theorem 4.2, there exists c > 0 (depending on T ,
C, ω (from Theorem 4.2), maxj µj(Xj), α̃, α0, M , and m) such that

E(t) ≤ ψ−1 (Tµα0(t− T )) ,∀t ≥ T, (4.46)

for all solution x of (3.7) satisfying (3.10), where µ = minj µj(Xj), ψ is given by
(4.3) with p = h−1, and h is defined by (4.21).

Proof. Let x be the unique solution of (3.7) satisfying (3.10) and let n be an
arbitrary nonnegative integer. Using (4.14) and the assumption (4.45), we get

E((n+1)T ) ≤ C1

( J∑
j=1

∫ (n+1)T

nT

∫
Xj

{|(IUx)j(xj)|2+|gj((IUx)j(xj))|2} dµj(xj) dt
)
,

(4.47)
with C1 = Dmax{1, α̃2}.

We now estimate the right-hand side of (4.47) as follows: Using the sets Σ+
j,n

and Σ−j,n from (4.23) and (4.24), we split up∫ (n+1)T

nT

∫
Xj

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt = I+
j,n + I−j,n,

where

I+
j,n :=

∫
Σ+
j,n

{|(IUx)j(xj)|2 + |gj((IUx)j(xj))|2} dµj(xj) dt,

I−j,n :=

∫
Σ−j,n

{|(IUx)j(xj)|2 + αj(t, xj)
2|gj((IUx)j(xj))|2} dµj(xj) dt.

For the estimation of I+
j,n, we first notice that the assumption (3.5) leads to

I+
j,n ≤ (1 + 2M)

∫
Σ+
j,n

(|(IUx)j(xj)|2 dµj(xj) dt,

and by (4.15) and (4.18) we get

I+
j,n ≤ m

−1(1 + 2M)

∫
Σ+
j,n

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

By the assumption (4.45), we directly obtain

I+
j,n ≤ m

−1(1 + 2M)α−1
0

∫
Σ+
j,n

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt.

By (4.28), we arrive at

I+
j,n ≤ m

−1(1 + 2M)α−1
0 (E(nT )− E((n+ 1)T )). (4.48)
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Similarly by the assumption (4.16) and the monotonicity of G and of α we
have

I−j,n ≤
∫ (n+1)T

nT

∫
Xj

G((IUx)j(xj) · gj((IUx)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j,n ≤ Tµj(Xj)G

(
1

Tµj(Xj)

∫ (n+1)T

nT

∫
Xj

(IUx)j(xj) · gj((IUx)j(xj)) dµj(xj)dt

)
.

As G is strictly increasing and again using (4.45), we obtain

I−j,n ≤ Tµj(Xj)G

(
1

Tµj(Xj)α0

∫ (n+1)T

nT

∫
Xj

αj(t, xj)(IUx)j(xj) · gj((IUx)j(xj))dµj(xj)dt

)
.

By (3.14), we arrive at

I−j,n ≤ Tµj(Xj)G

(
E(nT )− E((n+ 1)T )

Tµj(Xj)α0

)
. (4.49)

The estimates (4.48) and (4.49) into the estimate (4.22) and the monotonicity
of G give

E((n+ 1)T ) ≤ c2
{
E(nT )− E((n+ 1)T )

Tµα0
+G

(
E(nT )− E((n+ 1)T )

Tµα0

)}
,

for some positive constant c2 (depending on T , C, ω (from Thm. 4.2), maxj µj(Xj),
α̃, α0, M and m). Hence,

E(nT ) = E(nT )− E((n+ 1)T ) + E((n+ 1)T )

≤ max{Tµα0, c2}
{
E(nT )− E((n+ 1)T )

Tµα0
+G

(
E(nT )− E((n+ 1)T )

Tµα0

)}
.

With c = max{Tµα0, c2}, and the definition (4.21) of h, we have found that

Tµα0h
−1(E(nT )) + E((n+ 1)T ) ≤ E(nT ).

Since this estimate is valid for all n ∈ N, we conclude by Theorem 4.1 with the
choice β(t) = Tµα0.

Example 4.10. If gj satisfies the assumptions from Example 4.6, then in the
linear case (i.e., if p = γ = 1) we get the exponential decay

E(t) ≤ KE(0)e−Lt, ∀t ≥ 0,

for some positive constants K and L. On the contrary if p+ 1 > 2γ, then we get

the decay K(E(0))t−
2γ

p+1−2γ . In both cases, the decay rate is the same as the one
of the autonomous case.
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5. Illustrative examples

5.1. Second order evolution equations

Some examples given below enter in the following framework: Let H and V be two
real separable Hilbert spaces such that V is densely and continuously embedded
into H. Define the linear operator A2 from V into V ′ by

〈A2u, v〉V ′−V = (u, v)V ,∀u, v ∈ V, (5.1)

and suppose given a (nonlinear) and time-dependent mapping B2(t) from V into
V ′ as follows: We assume that V is continuously embedded into a control space
U in the form (3.1) with the same assumptions on Uj , j = 1, . . . , J . Similarly,
we suppose given mappings gj and αj satisfying the same assumptions than in
subsection 3.1. We then define the (nonlinear) operator B2(t) from V into V ′ by

〈B2(t)u, v〉 =

J∑
j=1

∫
Xj

αj(t, x)gj((JUu)j(xj)) · (JUv)j(xj) dµj(xj),∀u, v ∈ V, (5.2)

where JU denotes the embedding from V to U (hence, (JUu)j is the jth component
of JUu).

With these data, we consider the second order evolution equation
d2u

dt2
(t) +A2u(t) +B2(t)

du

dt
(t) = 0 in H, t ≥ 0,

u(0) = u0,
du

dt
(0) = u1.

(5.3)

This system is reduced to the first order system (3.7) using the standard ar-
gument of reduction of order: setting H = V ×H, V = V × V with their natural
inner products,

x = (u, v)>,

with v = du
dt and introducing the operators

A1x = (−v,A2u)>, B(t)x = (0, B2(t)v)>. (5.4)

Note that B(t) is indeed in the form (3.6) with IU (u, v)> = JUv, for all (u, v)> ∈
V × V .

With this definition, we see that x is solution of (3.7), assuming that u exists
and is sufficiently regular. But in its full generality, the domain of AB(t) is time-
dependent; so, again we distinguish between two cases.

Before going on, let us notice that the above operator A1 trivially satisfies
(3.11) due to (5.1). Consequently the (nonlinear) operator AB(t) = A1x + B(t)
corresponding to (5.4) satisfies all assumptions of subsection 3.1.

Let us finally remark that Theorem 6.1 of [53] shows that A1−IU and −A1−IU
generates a C0-semigroup of contractions in H.
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5.1.1. The bounded case

Theorem 5.1. In addition to the above assumptions, if we assume that H is
continuously embedded into the control space U , then for all (u0, u1) ∈ D(A2)× V
problem (5.3) has a unique solution u ∈ C([0,∞), V ) ∩ C1([0,∞), H) such that
its second derivative u′′(t) = −A2u(t)− B2(t)u′(t) exists and is continuous in H,
except at a countable number of points t.

Proof. We show that AB(t) = A1x + B(t) satisfies the assumptions of Theorem
3.2. First as H = V × H, it is clearly embedded into U as H ↪→ U and that
D(AB(t)) = D(A2) × V . Hence, it suffices to show that there exists a positive
real number λ such that R(λI+AB(t)) = H. But this properties is proved in [53,
Theorem 6.1] for λ = 1. We then conclude by Theorem 3.2 that for any (u0, u1) ∈
D(A2) × V , there exists a unique solution x of (3.7) with the properties (3.10).
We now come back to the original system by noticing that x(t) = (u(t), v(t))>

satisfies
(u′(t), v′(t))> = (v(t),−A2u(t)−B2(t)v(t))>,∀t ≥ 0.

Hence, u ∈ C1([0,∞), H), v = u′ and the second components of the above identity
yields u′′(t) = −A2u(t)−B2(t)u′(t).

The proof is complete.

5.1.2. The unbounded case

Here in order to avoid the time-dependency of the domain of AB(t), we suppose
that the mappings αj satisfy (3.19) for some α ∈ C([0,∞), (0,∞)). In such a
case, the operator B2(t) defined in (5.4) will be in the form B(t) = α(t)B1, where
B1(u, v)> = (0, B2v)>, with (compare with (3.20))

〈B2u, v〉 =

J∑
j=1

∫
Xj

gj((JUu)j(xj)) · (JUv)j(xj) dµj(xj),∀u, v ∈ V. (5.5)

Under the previous assumptions on A2 and B2, with the help of Theorem 3.3
we can prove the next existence result for problem (5.3).

Theorem 5.2. In addition to the above assumptions, we assume that the mappings
αj satisfy (3.19) for some α ∈ C1([0,∞), (0,∞) such that α′ is locally Lipschitz.
Then for all (u0, u1) ∈ V × V such that A2u0 + α(0)B2u1 ∈ H, problem (5.3) has
a unique solution u ∈ C([0,∞), V ) ∩C1([0,∞), H) such that its second derivative
u′′(t) = −A2u(t)−α(t)B2u

′(t) exists and is continuous in H, except at a countable
number of points t.

Proof. We first recall that x = (u, v)> is solution of (3.7) with A1 and B(t) from
(5.4) (and B2(t) = α(t)B2) if and only if

u′(t) = v(t),

v′(t) = −A2u(t)− α(t)v(t).
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We now perform the following change of unknowns (assuming that u, v exist and
are sufficiently regular)

ũ(t) = α(t)−1u(t), ṽ(t) = v(t). (5.6)

Then setting x̃ = (ũ(t), ṽ(t))>, we see that it satisfies

x̃′ =

(
−α(t)−2α′(t)u(t) + α(t)−1v(t)
−(A2u(t) + α(t)B2v(t))

)
=

(
α(t)−1(−α′(t)ũ(t) + ṽ(t)
−α(t)(A2ũ(t) +B2ṽ(t))

)
.

(5.7)
This means that as operator D(t) ∈ L(H), we here choose

D(t)(u, v)> = (α(t)−1u, v)>,∀(u, v)> ∈ V ×H. (5.8)

From the previous identity (5.7), we see that the assumption (3.22) holds with

D̃(t)(u, v)> = (u, α(t)v)>,∀(u, v)> ∈ V ×H. (5.9)

From the assumptions on α and their definitions, we readily check that all other
assumptions from Theorem 3.3 on D and D̃ are satisfied. Finally Theorem 6.1 of
[53] (since B2 defined above satisfies the assumption of this Theorem) guarantees
that A1 +B1 is maximal monotone and has a dense domain in H. In conclusion,
by Theorem 3.3, if (u0, u1) ∈ D(AB(0)) (or equivalently if (u0, u1) ∈ V × V is
such that A2u0 + α(0)B2u1 ∈ H), there exists a unique solution x of (3.7) with
the properties (3.10).

In the remainder of this section Ω is a bounded domain of Rn, n ≥ 1 with a
Lipschitz boundary Γ. Some restrictions will be specified later on when they will
be necessary. We further denote by ν the unit outward normal vector along Γ.

5.2. Nonlinear and nonautonomous stabilization of the wave equation

5.2.1. Interior damping

Consider the wave equation with interior damping and Dirichlet boundary condi-
tion 

∂2
t u−∆u+ σ

∑J
j=1 αj(t, ·)gj(∂tu) = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ := Γ×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

(5.10)

where σ is a non-negative function that belongs to L∞(Ω) such that that there
exists a positive constant σ0 such that

σ ≥ σ0 on O, (5.11)
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for some open and non empty subset O of the support Xσ of σ. For all j = 1, . . . , J ,
the functions αj and gj satisfy the assumptions of subsection 3.1 with Uj = L2(Xj),
Xj being an open and non empty subset of Xσ such that

Xj ∩Xk = ∅, for j 6= k, and ∪Jj=1 X̄j = Xσ. (5.12)

The stability of this problem in the autonomous case, namely for αj = 1, was
extensively studied in the litterature, let us cite the papers [22, 33, 42, 45, 49, 65]
and the references cited there. Both papers are restricted to some particular
choices of σ and gj leading to some exponential or polynomial decay rates of
the energy of the solution of (5.10). On the contrary the nonautonomous case is
less considered in the literature and with the exception of [51] all papers concern
interior damping acting on the whole domain (i.e. σ = 1), see [15, 24, 46, 47, 48,
50, 52, 62]. Using the results of the previous section, and under the assumption
that the autonomous linear system is exponentially stable, we obtain new decay
results for a large class of functions gj and αj .

The first point is that problem (5.10) enters in the framework of problem (5.3)
from subsection 5.1 once we take

H = L2(Ω),

V = H1
0 (Ω),

(u, v)V =

∫
Ω

∇u · ∇v dx,∀u, v ∈ V,

〈B2(t)u, v〉V ′−V =

J∑
j=1

∫
Xj

αj(t, x)σ(x)fj(u(x))v(x) dx,∀u, v ∈ V.

Let us notice that the inner product (·, ·)V induces a norm on V equivalent to
the usual one due to Poincaré inequality. Furthermore, the condition (3.5) allows
to show that B2(t) is well-defined from V to V ′.

As L2(Ω) is clearly embedded into U =
∏J
j=1 L

2(Xj) (that is clearly identical

with L2(Xσ)), the assumptions of Theorem 5.1 are satisfied and therefore, there
exists a unique solution u of (5.10) such that (u, u′)> satisfies (3.10).

In order to deduce some stability results for our system (5.10) with the help of
Theorem 4.5 we need that −A1 − IU generates an exponentially stable semigroup
in H, with the control space U = L2(Xσ). This property is equivalent to the
exponential decay of the solution of the autonous and linear problem

∂2
t u−∆u+ σ∂tu = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ,

u(0) = u0, ∂tu(0) = u1 in Ω.

(5.13)

Note that the exponential stability of (5.13) holds in many different situations,
see [22, 65] in the case of a C2 boundary and O being a neighborhood of

Γ+ := {x ∈ Γ : (x− x0) · ν(x) > 0}, (5.14)
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for some x0 ∈ Rn, or [42] in the case of a domain Ω with an analytical boundary,
σ smooth and O satisfying a geometrical control condition. Note that in the case
d = 1, this assumption is valid as soon as O contains an open interval of Ω, see [22,
Exemple 1]. Moreover, if the linear damping acts on the whole domain, namely
if σ = 1 in (5.13) a simple spectral analysis shows that (5.13) is exponentially
stable without any assumption on the regularity of the boundary of Ω. In all these
situations, if gj and αj satisfy the additional assumptions of Theorem 4.5, 4.7 or
4.9, then the energy of our system will satisfy (4.20), (4.38) or (4.46). This allows
to recover and extend some results from [62, 52, 50, 24, 15, 46, 47, 48]. Particular
cases not covered by the previous references are the case when we have only a local
damping, namely Xσ 6= Ω̄, and/or a factor α(t) piecewise variables, for instance

αj(t, x) = αj(t),∀x ∈ Xj .

5.2.2. Boundary damping

Consider the wave equation with a boundary damping



∂2
t u−∆u = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ0 := Γ0×]0,+∞[,

∂νu+ au+ α(t)k(x)g(∂tu) = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

(5.15)

where Γ0 is an open subset of Γ, Γ1 = Γ \ Γ̄0, a, k ∈ L∞(Γ1) are two non negative
real-valued functions. The function g is a non-decreasing continuous function
from R into itself such that g(0) = 0 and satisfying (3.5), while the function
α ∈ C1([0,∞; (0,∞)) and α′ is locally Lipschitz.

For the sake of simplicity we suppose that

either Γ0 is not empty or a 6≡ 0. (5.16)

As previously, the stability of this problem in the autonomous case, namely
for α = 1, was extensively studied in the litterature, let us cite the papers [4, 11,
12, 30, 31, 34, 36, 38, 41, 64, 66] and the references cited there. Both papers are
restricted to some particular choices of Γ0, a, and g leading to some exponential
or polynomial decay rates of the energy of the solution of (5.10). On the other
hand to the best of our knowledge the nonautonomous case is only considered in
[51]. Using the results of the previous section, and under the assumption that the
autonomous linear system is exponentially stable, we obtain new decay results for
a large class of functions g and α.

As before problem (5.15) enters in the framework of problem (5.3) from sub-
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section 5.1 once we take:

H = L2(Ω),

V = {v ∈ H1(Ω)|v = 0 on Γ0},

(u, v)V =

∫
Ω

∇u · ∇v dx+

∫
Γ1

au · v dσ,∀u, v ∈ V,

U = L2(Γ1),

〈B2(t)u, v〉V ′−V = α(t)

∫
Γ1

k(x)g(u(x))v(x) dσ(x),∀u, v ∈ V.

Let us remark that the assumption (5.16) implies that the inner product (·, ·)V
induces a norm on V equivalent to the usual one, while our condition (3.5) implies
that B2(t) is well-defined.

We readily check that these assumptions guarantee that B2(t) fulfils all the
assumptions of Theorem 5.2; hence, (5.15) has a unique solution u such that
(u, u′)> satisfies (3.10).

In order to take advantage of Theorem 4.5 we need that −A1 − IU generates
an exponentially stable semigroup in H. For this particular example this property
is equivalent to the exponential decay of the solution of the autonous and linear
problem 

∂2
t u−∆u = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ0 := Γ0×]0,+∞[,

∂νu+ au+ k∂tu = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω.

(5.17)

The exponential stability of (5.17) was obtained in many different situations,
let us quote [12, 11], where a = 0, k ∈ L∞(Γ1) such that

k ≥ k0 on Γ1, (5.18)

for some positive constant k0 and under the assumptions that

m · ν ≤ 0 on Γ0, (5.19)

m · ν ≥ γ > 0 on Γ1, (5.20)

where γ is a positive constant and m is the standard multiplier defined by

m(x) = x− x0,∀x ∈ Rn, (5.21)

for some point x0 ∈ Rn.
This result was generalized in [38, 64] to a more general class of multipliers

m ∈ C2(Ω̄) for which the matrix (∂jmi+∂imj)1≤i,j≤n is uniformly positive definite
in Ω̄ but still under the assumptions a = 0, k ∈ L∞(Γ1) satisfying (5.18) and the
geometrical constraints (5.19)-(5.20).
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Let us observe that conditions (5.19)-(5.20) force to have

Γ̄0 ∩ Γ̄1 = ∅. (5.22)

This constraint has been removed in [41] since condition (5.20) has been removed,
while the other conditions from [38, 64] remain. Alternatively, in [36, 39], the
choice k = mν (with m in the form (5.21) and then as in [38, 64]) allows to replace
the condition (5.20) by

m · ν > 0 on Γ1,

under the conditions a = 0 and Γ0 non empty, see also [30, 49] for the case a 6≡ 0.

Let us finally notice that microlocal analysis arguments from [4] allow to sup-
press the condition (5.19) if Γ is analytic, the condition (5.22) holds, a and k are
smooth, and Γ1 satisfies the geometrical control condition that it must meet each
ray in a nondiffractive point.

Since in [51], it is assumed that a = 0, k = 1, that (5.19)-(5.20) hold with m in
the form (5.21) and that (5.22) holds, Theorems 4.5, 4.7 and 4.9 allow to improve
significantly the result from [51] by obtaining different decay rates of the solution
of system (5.15) with appropriated choices of α and g using the above mentioned
results about the exponential decay of system (5.17).

5.2.3. Pointwise interior damping

In this subsection, we consider the large time behavior of the solution of a ho-
mogenous string equation with a homogenous Dirichlet boundary condition at the
left end, a Neuman boundary condition at the right end, and subject to a time-
dependent and nonlinear pointwise interior actuator. More precisely, we condider
the problem


∂2
t u− ∂2

xu+ α(t)g(∂tu) δξ = 0 in (0, π)× R,
u(0, t) = ∂xu(π, t) = 0, t > 0,

u(·, 0) = u0, ∂tu(·, 0) = u1 in (0, π),

(5.23)

where ξ is a fixed point of (0, π), the functions g is a non-decreasing continuous
function from R into itself such that g(0) = 0 and satisfying (3.5), and the function
α ∈ C1([0,∞; (0,∞)) is such that α′ is locally Lipschitz.

The stability of this problem in the autonomous and linear case, namely for
α = g = 1 was considered in [2] (see also [3]), and to the best of our knowledge, the
case of a nonautonomous and nonlinear pointwise damping has not been analyzed.

Let us notice that problem (5.23) enters in the framework of problem (5.3)
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from subsection 5.1 once we take:

H = L2(0, π),

V = {v ∈ H1(0, π)|v(0) = 0},

(u, v)V =

∫ π

0

uxvx dx,∀u, v ∈ V,

U = R,
〈B2(t)u, v〉V ′−V = α(t)g(u(ξ))v(ξ),∀u, v ∈ V.

These assumptions guarantee that B2(t) fulfils all the assumptions of Theorem
5.2; hence, (5.23) has a unique solution u such that (u, u′)> satisfies (3.10).

As Theorem 1.2 of [2] guarantees the exponential decay of the solution of (5.23)
with α = g = 1 if ξ

π = p
q with p ∈ N∗ odd and q ∈ N∗, we can apply Theorem 4.5,

4.7 or 4.9 to obtain different decay rates of the solution of system (5.23) under this
assumption on ξ and if α and g satisfy the additional assumptions from Theorem
4.5, 4.7 or 4.9.

5.3. Nonlinear and nonautonomous stabilization of the elastodynamic
system

With the notation of the above subsubsection 5.2.2, we consider the following
elastodynamic system:

∂2
t u−∇σ(u) + σ

∑J
j=1 αj(t, ·)gj(∂tu) = 0 in Q,

u = 0 on Σ0,

σ(u) · ν + au+ kg(∂tu) = 0 on Σ1,

u(0) = u0, ∂tu(0) = u1 in Ω.

(5.24)

As usual u(x, t) is the displacement field at the point x ∈ Ω at time t and σ(u) =
(σij(u))ni,j=1 is the stress tensor given by (here and in the sequel we shall use the
summation convention for repeated indices)

σij(u) = aijklεkl(u),

where ε(u) = (εij(u))ni,j=1 is the strain tensor given by

εij(u) =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

),

and the tensor (aijkl)i,j,k,l=1,...,n is made of W 1,∞(Ω) entries such that

aijkl = ajikl = aklij ,

and satisfying the ellipticity condition

aijklεijεkl ≥ αεijεij ,
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for every symmetric tensor (εij) and some α > 0. Hereabove and below ∇σ(u) is
the vector field defined by

∇σ(u) = (∂jσij(u))ni=1.

Finally a and k are two nonnegative real numbers. As before we assume that

gj = 0,∀j = 1, . . . , J or Γ1 = ∅. (5.25)

This last assumption means that we stabilizate our system either by a boundary
feedback or by an internal feedback with only Dirichlet boundary conditions. In
case of a boundary damping, we also suppose that (5.16) holds.

In case of an internal feedback, as in subsubsection 5.2.1, σ is a non-negative
function that belongs to L∞(Ω) satisfying (5.11) for some open and non empty
subset O of the the support Xσ of σ. For all j = 1, . . . , J , the functions αj and gj
satisfy the assumptions of subsection 3.1 with Uj = L2(Xj)

n, Xj being an open
and non empty subset of Xσ such that (5.12) holds.

In case of a boundary feedback, the functions α and g satisfy the assump-
tions of subsection 3.1 with U = L2(Γ1)n and we suppose, moreover, that α ∈
C1([0,∞; (0,∞)) is such that α′ is locally Lipschitz.

The stability of the system (5.24) was considered in [1, 8, 19, 20, 21, 23, 37, 63]
in the autonomous case under some particular hypotheses on Γ0, Γ1, a, gj and
g leading to exponential or polynomial decay of the energy of the solution of
(5.24). The nonautonomous case with internal feedback and for the Lamé system
(corresponding to n = 3 and to the choice aijkl = λδijδkl+µ(δikδjl+δilδjk), where
λ and µ are positive constants, called Lamé parameters) was treated in [6, 7].

As in the above subsection, problem (5.24) may be expressed in the form (5.3)
from subsection 5.1 with the choices:

H = L2(Ω)n,

V = {v ∈ H1(Ω)n|v = 0 on Γ0},

(u, v)V =

∫
Ω

σij(u)εij(v) dx+ a

∫
Γ1

u · v dσ,∀u, v ∈ V,

and

〈B2(t)u, v〉V ′−V =

J∑
j=1

∫
Xj

αj(t, x)σ(x)fj(u(x)) · v(x) dx,∀u, v ∈ V,

in case of an interior damping and

〈B2(t)u, v〉V ′−V = α(t)

∫
Γ1

g(u) · v dσ, ∀u, v ∈ V,

otherwise.
In the case of an interior damping (resp. boundary damping), all the assump-

tions of Theorem 5.1 (resp. Theorem 5.2) are satisfied and therefore, we have a
unique solution u of (5.24) such that (u, u′)> satisfies (3.10).



Stability properties of dissipative evolution equations 97

For stability results concerning (5.24), we need to check that −A1 − IU gen-
erates an exponentially stable semigroup in V ×H, where the control space U is
defined by

U = L2(Xσ)n if Γ1 = ∅,
U = L2(Γ1)n if gj = 0,∀j = 1, . . . , J.

As before, this is equivalent to the exponential decay of the autonomous and linear
system (5.24), i.e. corresponding to Γ1 = ∅, αj = 1 and gj(s) = s in the first case
and to gj = 0, α = 1 and g(s) = s in the second case.

In the first case (i. e., Γ1 = ∅), this exponential decay was proved in [21,
Theorem 1.1] (see also [19] for the case Xσ = Ω) under the assumption that O
is a neighborhood of Γ+ defined by (5.14). Hence, in the setting of one of these
papers, under the additional assumptions on αj and gj from Theorem 4.5, 4.7
or 4.9, different decay rates of the solution of system (5.24) (with Γ1 = ∅) are
available.

In the second case (i.e., gj = 0, for all j = 1, . . . , J), the exponential decay
of the autonomous and linear system (5.24) was proved in [1, 8, 23, 37] under
some geometric assumptions. In the setting of one of these papers, we then obtain
different decay rates of the solution of system (5.24) (with gj = 0, for all j =
1, . . . , J) if g and α satisfy the assumptions from Theorem 4.5, 4.7 or 4.9.

5.4. Nonlinear and nonautonomous stabilization of Maxwell’s equations

We consider Maxwell’s equations in Ω ⊂ R3 with a smooth boundary with ei-
ther a nonlinear and nonautonomous internal feedback or a nonlinear and nonau-
tonomous boundary feedback. To the best of our knowledge, the analysis of
Maxwell’s system with nonautonomous and nonlinear damping has not been ana-
lyzed.

To clarify the presentation, we treat these two cases separately.

5.4.1. Interior damping

Here we consider the problem

ε∂E∂t − curlH + σ
∑J
j=1 αj(t, ·)gj(E) = 0 in Q,

µ∂H∂t + curlE = 0 in Q,
div (µH) = 0 in Q,
E × ν = 0, H · ν = 0 on Σ := Γ×]0,+∞[,
E(0) = E0, H(0) = H0 in Ω.

(5.26)

As usual ε and µ are real, positive functions of class C1(Ω̄), while σ is a non-
negative function that belongs to L∞(Ω) satisfying (5.11) for some open and non
empty subset O of the the support Xσ of σ. For all j = 1, . . . , J , the functions αj
and gj satisfy the assumptions of subsection 3.1 with Uj = L2(Xj)

3, Xj being an
open subset of Ω such that (5.12) holds.
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The stability of this system was studied in [57, 58, 61] with a linear and au-
tonomous feedback gj(E) = E and αj = 1, where some exponential decay re-
sults were obtained under some constraints on ε, µ and σ. The nonlinear and
autonomous case was treated in [53].

Contrary to the above examples this system is not a second order system but
it enters in the setting of (3.7) once we set

H = L2(Ω)3 × Ĵ(Ω, µ),

Ĵ(Ω, µ) = {H ∈ L2(Ω)3 : div(µH) = 0 in Ω, H · ν = 0 on Γ},

((E,H), (E′, H ′))H =

∫
Ω

(εE · E′ + µH ·H ′) dx,∀(E,H), (E′, H ′) ∈ H,

V = V × Ĵ(Ω, µ),

V = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3, E × ν = 0 on Γ},

〈A1(E,H), (E′, H ′)〉 =

∫
Ω

(curlE ·H ′ −H · curlE′) dx,∀(E,H), (E′, H ′) ∈ V,

〈B(t)(E,H), (E′, H ′)〉 =

J∑
j=1

∫
Ω

αj(t, x)gj(E) · E′ dx, ∀(E,H), (E′, H ′) ∈ V.

As H is continuously embedded into U = L2(Ω)3 × {0} (with IU (E,H)> =
(E, 0)>), AB(t) = A1 + B(t) satisfies (3.16). Furthermore, one readily checks (as
in [16, §3]) that A1 +B(t) is maximal monotone for the inner product (·, ·)H, since
the bilinear form ∫

Ω

(µ−1 curlE · curlE′ + εE · E′) dx

is clearly coercive on V . Hence, by Theorem 5.1 system (5.26) has a unique solution
(E,H)> of (5.26) satisfying (3.10).

As before ±A1 − IU generates an exponentially stable semigroup in H if and
only if system (5.26) with a linear and autonomous feedback is exponentially stable.
As Theorems 5.1 and 5.5 of [61] (resp. Theorem 4.1 of [57] and Remark 5.2 of
[58]) imply that such an exponential stability holds if ε and µ are constant (resp.
sufficiently smooth) and under some conditions on O, we may conclude some
decays of the solution of (5.26) in the setting of one of these papers, as soon as gj
and αj satisfy the additional assumptions from Theorem 4.5, 4.7 or 4.9.

5.4.2. Boundary damping

Let us go on with Maxwell’s equations with a nonlinear and nonautonous boundary
feedback

ε∂E∂t − curlH = 0 in Q := Γ×]0,+∞[,

µ∂H∂t + curlE = 0 in Q,

div (εE) = div (µH) = 0 in Q,

H × ν + α(t)g(E × ν)× ν = 0 on Σ := Γ×]0,+∞[,

E(0) = E0, H(0) = H0 in Ω,

(5.27)
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where the functions α and g satisfy the assumptions of subsection 3.1 with U =
L2(Γ)3 and α ∈ C1([0,∞; (0,∞)) is such that α′ is locally Lipschitz.

The autonomous case was studied in [5, 16, 25, 32, 34, 55, 56, 61], where
different decay rates are avalaible under different conditions on ε, µ and Γ and
appropriated assumptions on g.

Let us now show that (5.27) enters in the framework of subsection 3.3 if we
take (see [55, §2])

H = J(Ω, ε)× J(Ω, µ),

J(Ω, µ) = {H ∈ L2(Ω)3 : div(µH) = 0 in Ω},

((E,H), (E′, H ′))H =

∫
Ω

(εE · E′ + µH ·H ′) dx,

V = V × J(Ω, µ),∀(E,H), (E′, H ′) ∈ H,
V = {E ∈ J(Ω, ε) : curlE ∈ L2(Ω)3, E × ν ∈ L2(Γ)3},
U = L2(Γ)3,

〈A1(E,H), (E′, H ′)〉 =

∫
Ω

(curlE ·H ′ −H · curlE′) dx,∀(E,H), (E′, H ′) ∈ V,

B(t) = α(t)B1,

〈B1(E,H), (E′, H ′)〉 =

∫
Γ

g(E × ν) · (E′ × ν) dσ(x),∀(E,H), (E′, H ′) ∈ V.

Note first that B(t) is well-defined with the embedding IU (E,H)> = E ×
ν, while by its definition A1 directly satisfies (3.11). Hence, all assumptions of
subsection 3.1 are satisfied. Now in order to apply Theorem 3.3, for all t ≥ 0, we
introduce the bounded linear operators D(t) and D̃ from H into itself by

D(t)(E,H)> = (E,α(t)−1H)>, D̃(t)(E,H)> = (α(t)E,H)>

that, due to the assumptions on α, satisfy the requested regularity assumptions and
the condition (3.21) from Theorem 3.3. Furthermore, simple calculations shows
that (3.22) holds. As Lemma 2.3 of [55] guarantees that the domain of A1 + B1

is dense in H and Lemma 2.3 of [55] shows that A1 +B1 is maximal monotone in
H, we can apply Theorem 3.3 to obtain the well posedness of problem (5.27).

Here again ±A1 − IU generates an exponentially stable semigroup in H if and
only if system (5.27) with a linear and autonomous feedback is exponentially stable.
Such a stability property was obtained in many papers, let us quote [25, 32, 34, 61].
Hence, if system (5.27) with a linear and autonomous feedback is exponentially
stable and if additionally α and g satisfy the additional assumptions from Theorem
4.5, 4.7 or 4.9, we may conclude some decays of the solution of (5.27).
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