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Symmetric degenerations are not in general induced by
type A degenerations

Magdalena Boos and Giovanni Cerulli Irelli

Abstract. We consider a symmetric quiver with relations. Its (symmetric) representations of a

fixed symmetric dimension vector are encoded in the (symmetric) representation varieties. The

orbits by a (symmetric) base change group action are the isomorphism classes of (symmetric)

representations. The symmetric orbits are induced by simply restricting the non-symmetric

orbits. However, when it comes to orbit closure relations, it is so far an open question under

which assumptions they are induced. In connection with Borel orbits of 2-nilpotent matrices of

classical Lie algebras, we describe an explicit example of a quiver of finite representation type

for which orbit closure relations are induced in types B and C, but not in type D.

1. Introduction

Let A = kQ/I be a symmetric quiver algebra over the field k of complex num-
bers. We fix a Q0-graded k-vector space V and denote the representation variety
of representations with underlying vector space V by R(A, V ). Inside of R(A, V )
there is a subvariety R(A, V )〈−,−〉,ε of so-called ε-representations; here ε is a sign
and 〈−,−〉 is a non-degenerate bilinear form on V (see Subsection 2.2 for the
definitions). An ε-representation is a symmetric representation which has an or-
thogonal or a symplectic structure. There are natural (symmetric) base change
actions on these varieties; their orbits correspond to isomorphism classes of (sym-
metric) representations. It is natural to ask, whether the orbits and their closures
can be translated easily between the two group actions. Concerning the orbits, it
is known ([6, Theorem 2.5], [10, Theorem 2.6], [15, Section 2.1]) that a symmetric
orbit is induced by a single non-symmetric orbit, i.e. the restriction of an orbit
O ⊆ R(A, V ) to R(A, V )〈−,−〉,ε is a symmetric orbit. The question under which
assumptions the orbit closure relations are induced by restricting in the same way,
is still open. In this article, we provide a negative answer to this question by
producing an example of a quiver algebra of finite representation type, for which
symmetric orbit closures are not induced.

This work is heavily based on our preceding article [6] where many details on
the symmetric representation theory of a symmetric quiver algebra can be found.
In particular, in said article we prove that for Q a Dynkin quiver with self-duality,
orbit closure relations are induced.
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We structure this article as follows: The setup of our Main Question 2.3 is
explained in Section 2 where aforesaid question is posed. At the same time we
recall some general knowledge on algebras with self-dualities. In Section 3, we
define several partial orders which embed our Main Question into a representation-
theoretical and homological frame. Our counterexample is described in Section 4
where we look at the so-called Seesaw algebra and define particular symmetric
representations which degenerate in type A, but not in type D. In Section 5 we
discuss the relationship between the Seesaw algebra and the Borel orbits of 2-
nilpotent elements in classical Lie algebras. In said section we also provide another
proof of our counterexample in the language of [11]. We end the paper by posing
conjectures which are likely to hold true from our current perspective on the topic.

2. Setup

Let k = C be the field of complex numbers and let Q = (Q0,Q1, s, t) be a finite
quiver, that is, an oriented graph with a finite set of vertices Q0, a finite set of edges
Q1 and two maps s, t : Q1 → Q0 which provide the orientation α : s(α) → t(α)
of the edges. Let us consider the elements of Q1 as arrows. A sequence of arrows
ω = αs · · ·α1 is called a path in Q whenever t(αi) = s(αi+1) for all i; we formally
include a path εi : i → i of length zero for each i ∈ Q0. The path algebra kQ
of Q is the k-algebra spanned as a k-vector space by the set of all paths in Q
together with the concatenation of paths as multiplication. Let R ⊆ kQ be the
2-sided ideal generated by all arrows in Q1; it is called the arrow ideal. Then
every ideal I ⊆ kQ which determines an integer s with Rs ⊆ I ⊆ R2 is called
admissible. If I is admissible, then the quotient algebra A := kQ/I is a finite-
dimensional and associative quiver algebra [3]. We denote by Rep(A) the category
of finite-dimensional A-modules.

Now assume that Q comes with a symmetry as defined in [10], that is, we
consider a tuple (Q, σ) where σ : Q → Qop is an involutive bijection of Q0 which
induces an arrow-reversing involution of Q1. The pair (Q, σ) is called a symmetric
quiver. Assume that an admissible ideal I ⊂ kQ fulfills σ(I) = I; then the pair
(kQ/I, σ) is called a symmetric quiver algebra.

2.1. Quiver representations

Let A = kQ/I be a quiver algebra. Let V = ⊕i∈Q0Vi be a finite dimensional Q0-
graded vector space of graded dimension d = dimV = (dimVi)i∈Q0

. We denote
by R(A, V ) the variety of A-representations having V as underlying vector space,
that is, its elements are collections f = (fα : Vs(α) → Vt(α))α∈Q1

of linear maps
such that fπ = 0 for every π ∈ I. Thus,

R(A, V ) ⊆ R(kQ, V ) :=
⊕

α:i→j∈Q1

Homk(Vi, Vj).

The vector d is called the dimension vector of these representations. We denote
by GL•(V ) :=

∏
i∈Q0

GL(Vi) be the group of graded automorphisms of V , then
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GL•(V ) acts on R(A, V ) by change of basis: given g = (gi)i∈Q0 ∈ GL•(V ) and
M = (Mα)α∈Q1

∈ R(A, V ) the representation g · M is defined by (g · M)α =
gt(α) ◦Mα ◦ g−1

s(α). Two representations are isomorphic if they belong to the same

GL•(V )-orbit.
Let M ∈ R(A, V ), let Bi be a k-basis of Vi for every i ∈ Q0 and let B be the

disjoint union of these sets Bi. We denote by Γ(M) := Γ(M,B) the coefficient
quiver of M with respect to the basis B [18]; this is the quiver whose vertices are
the elements of B and the arrows are defined naturally as follows: for each arrow
α ∈ Q1 and every element b ∈ Bs(α) we have

Mα(b) =
∑

c∈Bt(α)

λαb,cc

with λαb,c ∈ k, then for each λαb,c 6= 0 we draw an arrow b → c with label α in
Γ(M) [18]. Thus, the coefficient quiver reflects the coefficients corresponding to
the representation M with respect to the chosen basis B and will help us to depict
representations in a nice way in the remainder of the article. In case there are no
multiple arrows between two vertices, we label the arrows of the coefficient quiver
with the actual value of λαb,c.

We include a basic example in order to display the ideas behind our setup. We
will come back to this example throughout this section.

Example 2.1. Let Q be the one-loop quiver, that is, Q0 = {x} and Q1 = {α :
x → x}, let V = kn, and consider the admissible ideal I = (αn) ⊆ kQ. Then
R(A, V ) = N = {N ∈ kn×n | Nn = 0} equals the nilpotent cone and GL•(V ) =
GL(kn). Thus, the GL•(V )-action on R(A, V ) is the usual conjugation action, its
orbits are described by the Jordan canonical form [13], or by partitions, that is,
combinatorial objects named Young diagrams. The closure relations are known
by Gerstenhaber [12] and are given by box dropping of Young diagrams.

2.2. Symmetric quiver representations

Let A = kQ/I be a symmetric quiver algebra with respect to an anti-involution
σ. The anti-involution σ can be extended to an isomorphism σ : A → Aop of A
to its opposite algebra. This isomorphism induces an equivalence σ : Rep(A) →
Rep(Aop) of the representation categories; by composing with the standard k-
duality D = Hom(−, k) we get a self-duality {}∗ : Rep(A)→ Rep(A) on Rep(A).
With abuse of notation, for a vector space V we denote by V ∗ = Hom(V, k) its
linear dual and for a linear map f : U → V we denote by f∗ : V ∗ → U∗ its linear
dual defined by f∗(h)(u) = h(f(u)) for every h ∈ V ∗ and u ∈ U . For a Q0-graded
vector space V = ⊕i∈Q0

Vi, its twisted dual ∇V = V ∗ is the Q0-graded vector
space whose i-th component is (∇V )i = (Vσ(i))

∗. Thus, given a representation
M = (Mα) ∈ R(A, V ) its dual is the representation M∗ ∈ R(A,∇V ) given by
(M∗)α = M∗σ(α). For our purposes it is convenient to slightly modify this self-
duality as follows.

Definition 2.2. Let ∇ : Rep(A)→ Rep(A) be the functor ∇ = −{}∗. Thus
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• ∇M = −M∗ for every object M ∈ Rep(A);

• ∇h = h∗ for every morphism h.

Let us fix ε ∈ {±1} and let 〈−,−〉 : V × V → k be a non-degenerate bilinear
form which fulfills two conditions:

1. the form 〈−,−〉 is compatible with σ, i.e. 〈−,−〉|Vi×Vj = 0 if j 6= σ(i);

2. the form 〈−,−〉 is an ε-form: i.e. 〈v, w〉 = ε〈w, v〉 for every v, w ∈ V .

The pair (V, 〈−,−〉) is called an ε-quadratic space for (A, σ). We highlight some
obvious properties of (V, 〈−,−〉):

• The dimension vector of V is σ-symmetric, i.e. dσ(i) = di for every i ∈ Q0.

• There is an isomorphism of Q0-graded vector spaces Ψ : V → ∇V given by
v 7→ 〈v,−〉. We freely identify V and ∇V by Ψ.

• Every endomorphism f of V has a unique adjoint f? with respect to 〈−,−〉
defined by the condition 〈v, f(w)〉 = 〈f?(v), w〉, for all v, w,∈ V .

• Every representation M ∈ R(A, V ) can be naturally seen as an endomor-
phism of V and we denote by M? its adjoint.

We denote by G(V, 〈−,−〉) = {g ∈ GL(V )|g = (g?)−1} the group of isometries
of (V, 〈−,−〉). Thus G(V, 〈−,−〉) = Od is the orthogonal group if ε = 1 and it is
the symplectic group SPd if ε = −1, where d is the dimension of V .

Following [10] we say that M ∈ R(A, V ) is an ε-representation of (A, σ) with
respect to (V, 〈−,−〉) if

3. M? +M = 0.

In other words, M is an ε-representation if, interpreted as an endomorphism of
V , it lies in the Lie algebra of G(V, 〈−,−〉). A +1-representation is called or-
thogonal and a −1-representation is called symplectic. By identifying V and ∇V
via Ψ, the equation M? + M = 0 is rewritten as ∇M = M . We collect all ε-
representations in a variety R(A, V )〈−,−〉,ε = {M ∈ R(A, V )| ∇M = M} and
denote by G•(V, 〈−,−〉) := G(V, 〈−,−〉) ∩ GL•(V ) the group of graded isome-
tries of (V, 〈−,−〉). Then the action of GL•(V ) on R(A, V ) induces an action of
G•(V, 〈−,−〉) on R(A, V )〈−,−〉,ε by change of basis ([10, 6]). One first question
which suggests itself is whether or not

G•(V, 〈−,−〉) ·M = GL•(V ) ·M ∩R(A, V )〈−,−〉,ε

holds true for every M ∈ R(A, V )〈−,−〉,ε, that is, whether the orbits of the smaller
group are induced by the orbits of the bigger group. This question is answered
positively by Derksen and Weyman in [10] and with different techniques in [6].
The main question which we address in this article follows immediately:
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Question 2.3. Is it true that

G•(V, 〈−,−〉) ·M = GL•(V ) ·M ∩R(A, V )〈−,−〉,ε

for every M ∈ R(A, V )〈−,−〉,ε?

Main Question 2.3 is answered positively in [6] for Dynkin quivers. Its answer
is particularly interesting when the algebra A is representation-finite, that is, in
case there is only a finite number of GL•(V )-orbits in R(A, V ), as in Example
2.1. Our aim in this article is to give a counterexample of a representation-finite
algebra for which the answer to Main Question 2.3 is negative. This is indeed
unexpected, since our example is closely related to the fundamental Example 2.4
which does not give a counterexample.

Example 2.4. In case of Example 2.1, we fix ε to be +1 or −1 (note that n is
supposed to be even in the latter case). Let Jk be the k × k-anti-diagonal matrix
with every entry on the anti-diagonal being one and every other entry being zero.
The non-degenerate bilinear form 〈−,−〉 : V × V → k given by the matrix Jn if
ε = 1 and by

F =

[
0 Jl
−Jl 0

]

if ε = −1 fulfills conditions (1) and (2). Then G•(V, 〈−,−〉) = On if ε = 1 and
G•(V, 〈−,−〉) = SPn if ε = −1 and the G•(V, 〈−,−〉)-action on R(A, V )〈−,−〉,ε =
N ∩ LieG (here N denotes the nilpotent cone as in example 2.1) is given by or-
thogonal/symplectic conjugation. The orbits of the latter are classified by Springer
and Steinberg by so-called ε-partitions and their closures are known by Hesselink
(these results are e.g. described by Kraft and Procesi in [14]). Main Question 2.3
is answered positively.

2.3. Motivation

Example 2.1 shows that - in addition to being interesting from a quiver representation-
theoretic point of view - the answer of Main Question 2.3 has further applications
to algebraic Lie Theory. This will be worked out in more detail in Section 5.

Remark 2.5. Our setup fits into a more general context described by Magyar,
Weyman and Zelevinsky in [15]. In fact, given a complex algebraic variety X
together with an action of a group G and two involutions ρ : G→ G and ∆ : X →
X such that ∆(g · ∆x) = gρ · x, we denote the fixed point sets by Gρ ⊂ G and
X∆ ⊂ X. Assume that

(1) the group G is a subgroup of the group of invertible elements E× of a finite-
dimensional associative algebra E over k;

(2) the anti-involution of G given by g 7→ g∗ := (gρ)−1 extends to a k–linear
anti-involution f 7→ f∗ on the algebra E;
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(3) for every fixed point x ∈ X∆, its stabilizer H = StabG(x) is the group of
invertible elements of its linear span Spank(H) ⊂ E.

Then Gx∩X∆ = Gρ x holds true for all x ∈ X∆ by [15, Section 2.1]. The natural
subsequent (and open) question is

“Is it true that Gx ∩X∆ = Gρ x for every x ∈ X∆?” (2.1)

As described in [6, Subsection 2.4], R(A, V ) and R(A, V )〈−,−〉,ε can be realized as
X and X∆; and GL•(V ) and G•(V, 〈−,−〉) can be realized as G and Gρ. Thus,
our counterexample on Main Question 2.3 is also a counterexample for (2.1).

3. Ext-, deg- and hom-order

Let A be a quiver algebra, let d ∈ ZQ0

≥0 be a dimension vector and let V be a
Q0-graded complex vector space of dimension vector d.

Let M,N ∈ R(A, V ). We denote [M,N ] := dim HomA(M,N) and [M,N ]1 :=
dim Ext1

A(M,N) and define three partial orders on R(A, V ) which were first de-
scribed by Abeasis-Del Fra for quivers of Dynkin type A [1, 2], before being gen-
eralized to quiver algebras by Riedtmann [17], Bongartz [5] and Zwara [20].

• The degeneration order ≤deg is defined by

M ≤deg N :⇐⇒ N ∈ GL•(V ) ·M

• The Hom-order ≤Hom is defined by

M ≤Hom N :⇐⇒ [M,E] ≤ [N,E] for every indecomposable E.

• The Ext-order ≤Ext is defined by

∃M(1), . . . ,M(k) ∈ R(A, V ) and short exact
M ≤Ext N :⇐⇒ sequences 0→ U(i)→M(i− 1)→ V (i)→ 0 (∀i)

such that M(1) = M,M(k) = N, M(i) ' U(i)⊕ V (i).

It is known by [5, Lemma 1.1] (first implication) and [17, Proposition 2.1]
(second implication) that

M ≤Ext N +3 M ≤deg N +3 M ≤Hom N.

If A is a representation-finite algebra, then Zwara [20, Corollary of Theorem
1] shows

M ≤deg N ks +3 M ≤Hom N.

If furthermore all indecomposables are rigid, i.e. [E,E]1 = 0 for all indecompos-
ables E, then all three orders coincide [20, Theorem 2]. In particular, they are
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equivalent for Dynkin quivers. Note that the result on Dynkin quivers also fol-
lows from work of Bongartz; he shows that all three partial orders coincide for
representation-directed algebras [5, Proposition 3.2,Corollary 4.2].

Following [6], we introduce symmetric versions of ≤deg and ≤Ext now. Thus,
we assume A to be a symmetric quiver algebra, let ε be +1 or −1 and let 〈−,−〉 be
a bilinear form as in the Section 2. Then we consider the following partial orders
on R(A, V )〈−,−〉,ε: let M,N ∈ R(A, V )〈−,−〉,ε.

• The symmetric degeneration order ≤εdeg is defined by

M ≤εdeg N :⇐⇒ N ∈ GL•(V, 〈−,−〉) ·M.

• The symmetric Ext-order ≤εExt is defined by

∃M(1), . . . ,M(k) ∈ R(A, V )〈−,−〉,ε and s.e.s.
M ≤εExt N :⇐⇒ 0→ U(i)→M(i− 1)→ V (i)→ 0 (∀i) such that

M(1) = M,M(k) = N,U(i) is isotropic in M(i− 1),
and M(i) ' U(i)⊕∇U(i)⊕ U(i)⊥/U(i).

(Here U(i)⊥ denotes the orthogonal subspace of U(i) in M(i).) It is known by [6,
Corollary 3.3] and by the fact that GL•(V, 〈−,−〉) ⊆ GL•(V ) is a subgroup that

M ≤εExt N
+3 M ≤εdeg N

+3 M ≤deg N ( +3 M ≤Hom N).

Question 3.1. Does ≤εdeg
ks +3 ≤deg hold true on R(A, V )〈−,−〉,ε?

From our considerations before, it is clear that Main Question 2.3 and Main
Question 3.1 coincide; we can thus answer either of them.

4. The Seesaw algebra

Let n ∈ {2l, 2l+1} be an integer and let A = An = kQ/I be the symmetric quiver
algebra given by the symmetric quiver

Q : 1
a1 // 2

a2 // · · ·
al−1 // l

al // ω

γ=γ∗

ZZ
a∗l // l∗

a∗l−1 // · · ·
a∗2 // 2∗

a∗1 // 1∗

where σ(i) = i∗ for i ∈ Q0 ∪ Q1 and by the admissible ideal I = (γ2, a∗l al). We
call it the Seesaw algebra. We consider the symmetric dimension vector

d := (di)i = (1, 2, . . . , l − 1, l, n, l, l − 1, . . . , 2, 1) (4.1)

Let 〈−,−〉 be a bilinear ε-form on V as in Section 2. In order to be able to
work in coordinates (and to depict our representations nicely), let us fix a basis
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Bs = {v(s)
k | 1 ≤ k ≤ i} of each Vs where s ∈ {i, i∗} and Bω := {v(ω)

k , v
(ω∗)
k | 1 ≤

k ≤ l} or Bω := {v(ω)
k , v

(ω∗)
k | 1 ≤ k ≤ l} ∪ {v} of Vω, such that on the basis

elements the form is zero unless

〈v(i)
k , v

(i∗)
k 〉 = 1, 〈v(i∗)

k , v
(i)
k 〉 = ε, 〈v(ω)

k , v
(ω∗)
k 〉 = 1 or 〈v(ω∗)

k , v
(ω)
k 〉 = ε.

Let M = (Mβ)β∈Q1 and N = (Nβ)β∈Q1 be two representations. Here, Mai =
Nai , are the standard embeddings into the first i copies of k, Mai∗ = Nai∗ equals
minus the standard projection of the last i copies of k onto ki. Furthermore, Mγ

sends v
(ω)
1 to v

(ω∗)
l , v

(ω)
l to −εv(ω∗)

1 and Nγ sends v
(ω)
1 to v

(ω)
l , v

(ω∗)
l to −v(ω∗)

1 and
every other basis element is mapped to zero by Mγ and Nγ . We depict them by
their coefficient quivers for n = 2l = 4.

v
(1)
1

1 // v(2)
1

1 // v(ω)
1

1

||
Γ(M) = v

(2)
2

1 // v(ω)
2

−ε
&&
v

(ω∗)
2 −1

// v(2∗)
2

v
(ω∗)
1 −1

// v(2∗)
1 −1

// v(1∗)
1

v
(1)
1

1 // v(2)
1

1 // v(ω)
1

1uu
Γ(N) = v

(2)
2

1 // v(ω)
2

v
(ω∗)
2 −1

//
−1 ((

v
(2∗)
2

v
(ω∗)
1 −1

// v(2∗)
1 −1

// v(1∗)
1

Then the relations M2
γ = N2

γ = 0 = πl ◦ ιl are fulfilled and M,N ∈ R(A, V )〈−,−〉,ε.
In order to approach our counterexample, we compute the stabilizer and orbit di-
mensions in the following lemma. For simplicity of notation, we put G := GL•(V ),
R := R(A, V ), G(ε) := G•(V, 〈−,−〉) and R(ε) = R(A, V )〈−,−〉,ε.

Lemma 4.1.

dimG dim StabG(M) dim StabG(N)

Type A 2(
∑l
i=1 i

2) + n2 (2l-1)(l-2)+3 (2l-1)(l-2)+4

dimG(ε) dim StabG(ε)(M) dim StabG(ε)(N)
Type B 1

2 (dimG− n) l(l-2)+2 l(l-2)+3
Type C 1

2 (dimG+ n) l(l-2)+1 l(l-2)+2
Type D 1

2 (dimG− n) (l-1)(l-2)+2 (l-1)(l-2)+2

Proof. The stabilizer dimension can e.g. be calculated by basic methods of linear
algebra when going over to Borel-orbits of 2-nilpotent matrices as explained in
Section 5. Another option is a calculation of their endomorphism spaces [7] or
of certain Crawley Boevey triples [9] (since A is a string algebra). The dimen-
sion formulas can then be read off, since dimG.X = dimG − dim StabG(X) and
dimG(ε).X = dimG(ε)− dim StabG(ε)(X) for X = M,N .
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Let us fix n = 2l for now, let V = ⊕i∈Q0Vi = ⊕i∈Q0kdi and fix ε = 1 (that
is, we work in orthogonal type D). The following proposition gives the claimed
counterexample.

Proposition 4.2. For n = 2l, i.e. in type D, M and N gives a negative answer
to Main Question 3.1, which means

1. N ∈ GM , i.e. M ≤deg N .

2. N /∈ G(1) ·M , i.e. M �εdeg N .

Proof. The representation M corresponds to the so-called oriented link pattern
(i.e. an oriented graph defined in [8] representing the part of the coefficient quiver
which describes the loop γ at vertex ω)

•
1
•
2 · · · •l •

l∗ · · · •2∗
•
1∗

!! !!

and the representation N corresponds to

•
1
•
2 · · · •l •

l∗ · · · •2∗
•
1∗

## ##
.

As shown in [8, Theorem 4.6], there is a minimal degeneration from M to
N . Note that, even though the quiver examined in [8] is different from Q, the
fact that in both setups degenerations correspond to Borel-orbit closure relations
of 2-nilpotent matrices (see [8, Lemma 3.2] and Section 5) makes sure that the
description of the degeneration order given in [8] is valid.

By part (3) of Lemma 4.1 the symmetric orbits G(1) ·M and G(1) · N have
the same codimension in X(1). This implies part (2).

Proposition 4.2 leads to negative answers for Main Question 2.3 and Main
Question 3.1 for the Seesaw algebra and thus we have the following corollary.

Corollary 4.3. Given a symmetric quiver algebra of finite representation type,
the equivalence ≤deg⇐⇒≤εdeg is not in general true in R(A, V )〈−,−〉,ε.

5. Connection with Borel orbits

The (symmetric) representation theory of the Seesaw algebra can be translated to
a particular Lie-theoretic setup in a related, but more involved way as in Example
2.4. In this section we recall this connection worked out in [7].

5.1. Borel orbits induced by type A

Let n = 2l or n = 2l + 1 be a positive integer and let us consider the complex
vector space U = kn. Let ε be 1 or −1 and let 〈−,−〉U be a non-degenerate and
bilinear ε-form on U . Given a linear endomorphism f of U we denote by f t its
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adjoint with respect to this form. The general linear group GL(kn) is endowed
with the involution ρ given by gρ = (gt)−1 and we denote by G(ε) = GL(kn)ρ the
set of fixed points. Thus G(ε) is the symmetry group of (U, 〈−,−〉U ) and it hence
coincides with the orthogonal group On if ε = 1 and with the symplectic group
SPn if ε = −1.

We denote by N (2) the subset of Lie(GL(kn)) of 2-nilpotent n×n matrices. We
denote by ∆ : N (2) → N (2) the involution given by ∆(A) = −At and denote by
N (2)(ε) = (N (2))∆ the set of fixed points. We then see that N (2)(ε) ⊂ Lie(G(ε)).

Let us fix a maximal isotropic flag U1 ⊂ · · · ⊂ Ul ⊂ U of U , i.e. dim Ui = i for
all i and Ul is a totally isotropic subspace of maximal dimension. This gives rise to
a complete flag F• = U1 ⊂ · · · ⊂ Ul ⊆ U⊥l ⊂ U⊥l−1 ⊂ · · ·U⊥1 ⊂ U . Let B ⊂ GL(kn)

be the stabilizer of F• in GL(kn). Given b ∈ B, v ∈ Ui and w ∈ U⊥i =: Un−i we
have

〈bρ(v), w〉U = 〈v, b−1w〉U = 0

and hence we see that bρ stabilizes the flag F•. We conclude that ρ(B) = B. We
denote by B(ε) = Bρ the set of fixed points. It is well-known that B(ε) ⊂ G(ε) is
a Borel subgroup of G(ε) since it is the stabilizer in G(ε) of a maximal isotropic
flag [16, Section 4.1].

The general linear group GL(kn) acts on N (2) by conjugation and thus induces
an action of the Borel subgroup B. The following compatibility relation holds: for
every A ∈ N (2) and b ∈ B

∆(b ·∆(A)) = bρ ·A.

It follows that the group of fixed points B(ε) acts on the set of fixed points N (2)(ε).
It is straightforward to check that the theorem of Magyar-Weyman-Zelevinsky
recalled in Remark 2.5 applies to the pair (B,N (2)) (here E is the algebra of the
n × n matrices x with the property that xUi ⊆ Ui for every i) and thus we get
that for every fixed point A ∈ N (2)(ε)

B ·A ∩N (2)(ε) = B(ε) ·A.

Definition 5.1. We say that the orbit-closure relation of B(ε) on N (2)(ε) is
induced by type A if for every A ∈ N (2)(ε) the following holds

B ·A ∩N (2)(ε) = B(ε) ·A.

In [7] it is shown that the problem of determining if the orbit-closure relation of
B(ε) on N (2)(ε) is induced by type A is related to the Main Question 3.1. Before
recalling this, we notice that in [8] combinatorial invariants associated to oriented
link patterns (namely pi and qi,j) are defined and it is shown that they describe
the orbit closure relations in type A completely. In case of a positive answer to
Main Question 3.1, we therefore know that these invariants provide a handy way
to explicitly describe B(ε)-orbit closure relations.

Let us briefly recall the construction of [7], for convenience of the reader.
We consider the Seesaw algebra An endowed with the symmetry σ. The ε-form
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〈−,−〉U on U descends to a non-degenerate ε-form on Ui⊕U/(U⊥i ) for every i. We

consider the vector space V = U ⊕
⊕l

i=1(Ui ⊕ U/(U⊥i )) and define a Q0-grading
on it by putting Vω = U , Vi = Ui and Vi∗ = U/(U⊥i ), for i = 1, · · · l. We see
that the ε-form on U induces an ε-form 〈−,−〉 in V and the pair (V, 〈−,−〉) is an
ε-quadratic space for (An, σ) (see Section 2.2 for the definition). Let us consider
the representation variety R(A, V ) and its subvariety R(A, V )〈−,−〉,ε of symmetric
representations. Let B = An/(γ) and let M0 ∈ R(B, V ) be the representation
given as follows:

U1
� � j1 // U2

� � j2 // · · · �
�jl−1// Ul

� � jl // U
−pl// // V/(U⊥l )

−pl−1// // · · ·
−p2// // V/(U⊥2 )

−p1// // V/(U⊥1 )

where ji : Ui → Ui+1 denotes the inclusion and pi : U/(U⊥i+1) → V/(U⊥i ) the
induced surjection for i = 1, . . . , l. The main property of M0 is that its sta-
bilizer in GL•(V ) is isomorphic to B. Moreover, M0 is also symmetric, i.e.
M0 ∈ R(B, V )〈−,−〉,ε and the stabilizer ofM0 in the symmetry group G•(V, 〈−,−〉)
is isomorphic to B(ε). The quotient map of algebras An → B induces the mor-
phisms of affine varieties π : R(A, V •) → R(B, V •) and π(ε) : R(A, V •)〈−,−〉,ε →
R(B, V •)〈−,−〉,ε which forget the loop. We notice that π is GL•(V )-equivariant
and π(ε) is G•(V, 〈−,−〉)-equivariant. Let Y = GL•(V ) ·M0 denote the orbit of
M0 and let Y (ε) = G•(V, 〈−,−〉) ·M0 denote the orbit of M0 by the symmetry
group. Let X = π−1(Y ) and X(ε) = π−1(Y (ε)). We denote by p : X → Y and
p(ε) : X(ε) → Y (ε) the restriction maps. By construction, p−1(M0) = N (2) and
p(ε)−1(M0) = N (2)(ε). As shown in [8, Lemma 3.2] and [7, Lemma 4.4], one
can apply [8, Theorem 3.1] in this situation (see [19]), and get isomorphisms of
complex varieties:

X ' GL•(V )×B N (2) and X(ε) ' G•(V, 〈−,−〉)×B(ε) N (2)(ε).

Moreover, again by [8, Theorem 3.1], the embedding j : N (2) ⊂ X and the em-
bedding j(ε) : N (2)(ε) ⊂ X(ε) send orbits to orbits and orbit closures to orbit
closures which means that for every A ∈ N (2) and A(ε) ∈ N (2)(ε)

j(B ·A) = GL•(V ) · j(A); j(ε)(B(ε) ·A(ε)) = G•(V, 〈−,−〉) · j(ε)(A(ε));(5.1)

j(B ·A) = GL•(V ) · j(A); j(ε)(B(ε) ·A(ε)) = G•(V, 〈−,−〉) · j(ε)(A(ε)).(5.2)

In particular, for every M ∈ π−1(M0)

StabG(M) ' StabB(Mγ). (5.3)

We notice that the restriction of j to N (2)(ε) ⊂ N (2) is j(ε). Using this compat-
ibility and the fact that j is injective, (5.1) and (5.2) imply at once the following
equivalence: for every A(ε) ∈ N (2)(ε) we have

B(ε) ·A(ε) = B ·A(ε) ∩N (2)(ε)
KS

��
G•(V, 〈−,−〉) · j(ε)(A(ε)) = GL•(V ) · j(A(ε)) ∩ j(N (2)(ε))
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which is the claim we wanted to prove. As a consequence of the discussion of this
section, Proposition 4.2 implies that

Corollary 5.2. Borel orbit closures of type D (meaning ε = 1 and n even) are
not induced by type A.

Example 5.3. Let (n, ε) be either (5, 1), (4,−1) or (4, 1). Figure 1 shows the
B-orbits and their closures inside N (2)(ε) and Figure 2 shows the B(ε)-orbits and
their closures inside N (2)(ε). We see that in type B and C, i.e. (n, ε) = (5, 1) and
(n, ε) = (4,−1), Borel orbit closures are induced by type A. This can be proved
by using the symmetric Ext-ordering and by constructing explicit curves in the
symmetric representation varieties. This example was partially worked out with
the help of Francesco Esposito and Giovanna Carnovale during a research visit of
the second-named author in Padova.
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Figure 1: B-orbits and their closures inside N (2)(ε)

5.2. Interpretation of Proposition 4.2 in terms of root systems

In view of the connection with the Borel orbits, Proposition 4.2 can be proved
using the results of [11]. We are grateful to Paolo Papi for sharing this with us.
We fix l ≥ 4 and n = 2l. We consider the vector space U = kn with standard basis
(e1, . . . , en) endowed with the symmetric bilinear form given by 〈ei, en+1−j〉 = δi,j
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Figure 2: B(ε)-orbits and their closures inside N (2)(ε)

for all i, j = 1, . . . , n. For simplicity of notation, for an index i = 1, . . . , l we denote
by i∗ = n+1−i so that so that 〈ei, ej∗〉 = δi,j = 〈ej∗ , ei〉 and 〈ei, ej〉 = 〈ei∗ , ej∗〉 = 0
for all i, j = 1, . . . , l. Given g ∈ GL(kn) we denote by gt the adjoint of g with
respect to the given form. The orthogonal group O(2l) is the group of fixed
points for the involution ρ of GL(kn) given by g 7→ gρ = (gt)−1; it consists of
two connected components, consisting of matrices of determinant ±1. The special
orthogonal group SO(2l) is the connected component of the identity and it is
a Lie group of type Dl. The standard flag F• = U1 ⊂ · · · ⊂ Un = U given
by Ui = Span(e1, · · · , ei) is a maximal isotropic flag with respect to the chosen
bilinear form and we denote by B its stabilizer in GL(kn). We notice that B is
ρ-invariant and we denote by B(1) ⊂ B the Borel subgroup of O(2l) consisting of
ρ-fixed points.

We denote by Eij the 2l×2l matrix having 1 at place (i, j) and zero elsewhere.
The adjoint of Eij with respect to the fixed bilinear form is Ej∗i∗ and thus the
involution ∆ sends Eij to −Ej∗i∗ . Let Mγ = El∗1 − E1∗l and Nγ = El1 − E1∗l∗ .
We see that Mγ and Nγ are fixed by ∆ and thus are contained in the Lie algebra of
SO(2l). Let Pll∗ be the elementary matrix obtained by permuting the rows l and
l∗ of the identity matrix. This matrix is contained in O(2l) and it has determinant
−1. It acts as an outer automorphism of SO(2l). Moreover, Pll∗Ui = Ui for i 6= l
and Pl,l∗Ul = Span(e1, . . . , el−1, el∗) = U ′l . We notice that for every b ∈ B(1),
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bU ′l = U ′l (this is not true for b ∈ B). Putting these observations together we get
the following (well-known) fact: for every b ∈ B(1)

Pll∗bPll∗ ∈ B(1). (5.4)

This means that Pll∗ stabilizes B(1) (but not B). Moreover

Pll∗ ·Mγ = Pll∗MγPll∗ = Nγ . (5.5)

Putting together (5.4) and (5.5) we get

B(1) ·Mγ = Pll∗ B(1)Pll∗ ·Mγ = Pll∗ B(1) ·Nγ

and thus the B(1)-orbits of Mγ and Nγ are isomorphic and hence their closures
have the same dimension. This implies the second part of Proposition 4.2.

To get the first part of Proposition 4.2 (type A situation) we denote by εi = Eii
and we consider the Cartan subalgebra h ⊂ sln of traceless diagonal matrices
with basis (ε1 − ε2, . . . , εl − εl∗ , . . . , ε2∗ − ε1∗) and the corresponding root space
decomposition g = sln = h⊕

⊕
α∈Φ gα. Here we choose the simple roots naturally

as α1, . . . , αl = αl∗ , . . . , α1∗ of Φ so that αi corresponds to εi − εi+1 and αi∗

corresponds to ε(i+1)∗ − εi∗ for i = 1, . . . , l. The Dynkin diagram is

◦
α1

◦
α2

◦
αl−1

◦
αl=αl∗

◦
α(l−1)∗

◦
α2∗ α1∗

◦

The remaining roots are ±αij where αij = αi+ · · ·+αj for 1 ≤ i ≤ j ≤ n−1 (with
the convention that αn−i := αi∗ for i = 1, . . . , l) and Φ is a root system of type
An−1. Obviously, gαi(j−1)

= Span(Eij) and g−αi(j−1)
= Span(Eji). We denote by

xα the generator Eij of gα. Thus,

Mγ = x−α1l
− x−αl∗1∗ Nγ = x−α1(l−1)

− x−α(l−1)∗1∗ .

We consider the strongly orthogonal sets of roots (see [11])M andN corresponding
to Mγ and Nγ respectively:

M = (−α1l,−αl∗1∗) N = (−α1(l−1),−α(l−1)∗1∗)

and their affine analogue considered in [11]

M̂ = (−α1l − δ,−αl∗1∗ − δ) N̂ = (−α1(l−1) − δ,−α(l−1)∗1∗ − δ)

where δ denotes the minimal positive imaginary root of the affine root system of
type An−1. Following [11] we consider the corresponding elements of the affine
Weyl group

σM̂ = σ−α1l−δσ−αl∗1∗−δ σN̂ = σ−α1(l−1)−δσ−α(l−1)∗1∗−δ

where σα denotes the reflection through the affine root α. Let us denote si = σαi
the simple reflection through the simple root αi. Since sl(−α1(l−1)−δ) = −α1l−δ
and sl(−α(l−1)∗1∗ − δ) = −αl∗1∗ − δ, we get

slσN̂ sl = σ
M̂
. (5.6)
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dim StabB(Mγ) dimB.Mγ dim StabB(Nγ) dimB.Nγ
Type A (2l-1)(l-2)+3 6(l-1)+1 (2l-1)(l-2)+4 6(l-1)
Type B l(l-2)+2 3(l-1)+1 l(l-2)+3 3(l-1)
Type C l(l-2)+1 3(l-1)+2 l(l-2)+2 3(l-1)+1
Type D (l-1)(l-2)+2 3(l-1)-1 (l-1)(l-2)+2 3(l-1)-1

Table 1: Dimension of the Borel orbits and stabilizers

To compute the lenghts `(σ
M̂

) and `(σN̂ ) we use [11, Theorem 1] and Lemma 4.1:
from [11, Theorem 1] we get

`(σ
M̂

) = 2dimB ·Mγ − |M|, `(σN̂ ) = 2dimB ·Nγ − |N |.

By Lemma 4.1, (5.3) and the fact that dimB = l(2l + 1) we get:

dimB ·Mγ = 6(l − 1) + 1, dimB ·Nγ = 6(l − 1)

from which it follows that

`(σ
M̂

) = 12(l − 1), `(σN̂ ) = 12(l − 1)− 2 = `(σ
M̂

)− 2.

Thus, (5.6) shows that σN̂ is a (reduced) subexpression of a reduced expression
for σM̂, hence σN̂ < σM̂ in the Bruhat order. By [11, Theorem 1] this implies

that BN ⊂ BM which is another proof of the first part of Proposition 4.2.

Remark 5.4. The matrices Mγ and Nγ belong to the Lie algebra of SO(2l) but
also of SP(2l) and (by adding a row and a column of zeros) of SO(2l + 1). Thus
one can compute the dimensions of the orbits of those two elements for the Borel
B of the different groups of type A, B, C and D. They are shown in Table 1,
which can be calculated in a similar manner as in Lemma 4.1. It is worth noticing
that in types A, B and C, BNγ ⊂ BMγ , but not in type D.

It is interesting to reinterprete the B(1)-orbits of M and N in terms of root
systems. Let us consider the following elements of the root lattice ZΦ

β1 = α1 + α1∗ , β2 = α2 + α2∗ , · · · , βl−1 = αl−1 + αl+1, βl = αl−1 + αl+1 + 2αl.

It is straightforward to check that (β1, · · · , βl) form a a set of simple roots for a
root system of type Dl and the corresponding Dynkin diagram is

◦
◦
β1

◦
β2

◦
βl−2

βl−1

βl
◦

With respect to this root system, M and N become root vectors:

M = xβ1+β2+···+βl−2+βl−1
, N = xβ1+β2+···+βl−2+βl



148 M. Boos and G. Cerulli Irelli

which can be represented in the Dynkin diagram as follows:

◦
◦

M

N

β1

◦
β2

◦
βl−2

βl−1

βl
◦

In particular, one sees that the outer automorphism Pll∗ of SO(2l) provides an
isomorphism between the two B(1)-orbits of M and N which therefore have the
same dimension.

6. Conjectures

We have shown that Main Question 3.1 is not in general true. Under which
circumstances it is (not) true, however, is still an open question.

Conjecture 6.1. Let A be the Seesaw algebra. Main Question 3.1 has a posi-
tive answer restricted to any irreducible component of the symmetric representa-
tion variety R(A, V )〈−,−〉,ε. In other words if I is an irreducible component of
R(A, V )〈−,−〉,ε and M,N ∈ I then M ≤εdeg N

ks +3M ≤deg N .

In type C the symmetric representation varieties are irreducible, whereas in
type B we are not sure at the moment. In type D there are two dense orbits.

Conjecture 6.2. In type C, Borel orbit closures are induced by type A.

This conjecture is also motivated by [4, Corollary 8.4.9].
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