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Perturbation theory of evolution inclusions on real Hilbert
spaces with quasi-variational structures for inner products

Akio Ito

Abstract. We consider an abstract Cauchy problem of an evolution inclusion with a single-
valued perturbation on a real Hilbert space. The evolution inclusion contains subdifferentials of
time-dependent, proper, lower semicontinuous, convex functions which depends on a solution
itself of the Cauchy problem. Moreover, the subdifferentials are taken with respect to inner
products, which also depend on a solution of the Cauchy problem. Such structures are sometimes
called quasi-variational structures for conver functions and inner products. The main purposes
of this paper are to show the existence of strong solutions to the Cauchy problem of an evolution
inclusion with a perturbation and to apply this result to a mass-conservative tumor invasion
model with a degenerate cross diffusion.
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1. Introduction

Throughout this paper, a time T > 0 is given and fixed. The aim of this paper is
to find a pair (u,v) satisfying that the first component u is a solution of a Cauchy
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problem (P) below:

u/(t) + av(t)(b(tvuvv(t) ?u(t)) + g(t7u(t), U(t)) > f(t)
in H(v(t)), aa.te(0,T),

v(t) = S(u;t,00vg in A, Vte]l0,T],

u(0) =up in H,

(P)

where H is a real Hilbert space with an inner product (-, )z and A is a nonempty,
closed subset of a real Banach space X with a norm ||| x. The evolution inclusion
in (P) has three mathematically interesting characteristics. The first one is that
the proper, lower semicontinuous (l.s.c., in short), convex function ¢(t, u,v) on H
depends on t € [0,T], u € C([0,T); H) and v € A. The second one is that the real
Hilbert space H(v) = H also depends on v for all v € A. Actually, for any v € A
the inner product of H is given by (-, ), instead of (-, )y in our setting. The third
one is that the subdifferential 9,¢(t, u,v) of ¢(t,u,v) on H is taken with respect
to the inner product (-,-),, that is,

z € D(4(t,u,v)) and

£ € 0pi(t,u,v;2) <:>{ (& y—2)0 < dt,u,v;y) — d(t,u,v;2), Vye H.

These structures are called quasi-variational structures for the evolution inclusion
in (P) and make it difficult and complicated to analyze (P) mathematically.

In [7], the evolution inclusion without a perturbation, i.e., the case g = 0 on
H, is considered and the existence of strong solutions of (P) on [0,7] is shown.
Moreover, the phase field model of Fix—Caginalp type with a quasi-variational
boundary condition is treated as one of the typical examples of (P) without a
perturbation. We entrust various results of evolution inclusions on H associated
with subdifferentials of time-dependent proper l.s.c. convex functions to [1, 3,
10, 11, 13, 14] and their references. Especially, in [13, 14] the following evolution
inclusion on H with a perturbation

u'(t) + Omo(t;u(t)) + g(t,u(t) > f(t) in H, aa.te(0,T),

is considered although in their settings there are not any quasi-variational struc-
tures.

On the other hand, most of nonlinear systems, which arise from physical,
chemical, biological or economic field, usually have nonlinear perturbations. From
this viewpoint, the general theory established in [7] is not sufficient to analyze such
nonlinear systems. So, the main purpose of this paper is that the results obtained
in [7] will be extended to evolution inclusions with a perturbation like one in (P)
without changing the mathematical framework in [7] as far as possible.

Now, we give the definition of strong solutions of (P) and state main theorems
in this paper.

Definition 1.1. For any time T € (0,7] we define a strong solution of (P) as
follows:
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(a) A function u: [0,T] — H is called a strong solution of (P) on [0,T] iff
u € WH2(0,T; H) satisfies the initial condition u(0) = uy in H and the
evolution inclusion

W' (t) + Oy o (t u, v(t) su(t)) + gt u(t), v(t) 3 f(1)
in H(v(t)), aa.tel0,T],

and the function v € Wh1(0,T; X) satisfies the initial condition v(0) = v
and the equality

v(t) = S(u;t,0)vg in A, Vte0,T].

In addition, there exists a constant C* > 0, which depends on T, |lug| s,
llvollx, ©(0,ug,vo;up) as well as all constants in (A1)—(A10) in Section 2,
such that the following boundedness holds:

/|| 20,750y + sup Nlu(t)||ar + sup [@(t, u,v(t);u(t)| < C*. (1.1)
0<t<T 0<t<T

(b) A function u: [0,T) — H is called a strong solution of (P) on [0, T) iff for
any 71 € (0,7T) the restriction of the function u onto the interval [0,T}] is a
strong solution of (P) on [0,T1].

Under suitable assumptions, which are exactly given in Section 2, we obtain
Theorems 1.2 and 1.3.

Theorem 1.2. There exist a time Ty € (0,T] such that the Cauchy problem (P)
has at least one strong solution u on [0, Tp].

Theorem 1.3. The Cauchy problem (P) has at least one strong solution u on
[0,T7.

In the rest of this section, we consider a mass-conservative tumor invasion
system with quasi-variational cross diffusion, denoted by (T), as one of the typical
examples of (P):

W(@t)+ V- (dy(v)VE=uVA(v)) =0 ae. in Qp:=Qx(0,T),
e pP(v;u) ae in Qr,

v/ = —avw a.e. in Qr,

w =dyAw—bw+cu a.e. in Qp,

(dy(WV)VE —uVA(w)) - v=Vw-rv=0 ae. on Xr:=Tx(0,T),
w(0) =wup, v(0)=v9, w(0)=wo ae. in £,

where ) is a bounded domain in RY (N = 1,2,3) with a smooth boundary T :=
9. One of the most interesting points in (T) is that the first nonlinear parabolic
PDE has a nonsmooth degenerate cross diffusion d,(v)V3(v;u) in general. In [8]
the system, in which the first PDE is replaced by

W(t) + V- (du(v)VE—uVAW)+€=0 ae. in Qr,
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is considered and the existence of strong solutions on [0, T7] is shown by using the
general theory establish in [7], which cannot be directly applied because of the
existence of the haptotaxis term V - uVA(v). In other words, the haptotaxis term
plays a role as a single-valued perturbation.

On the other hand, the difference between the system (T) and that in [8] is
whether a mass of an unknown function u is conservative in time or not. Actually,
the system (T) has the following mass-conservative property;

/Qu(t)dxz/ﬂuodx, vt € [0,T].

In [4, 5, 6, 9], the following system (T), with a mass-conservative property is
considered:

u'(t) + V- (du(a(2),v)VE —uVA(z)) =0 ae. in Qr,

e p(v;u) ae in Qr,

2 =d,Az+avw ae.in Qr,

(T); 8 v/ =—avw ae. in Qr,

w =dy,Aw —bw+cu a.e in Qp,

(dy(a(2),v)VE—=uVAW)) - v=Vz-v=Vw-v=0 ae. on X,
u(0) =ug, 2(0) =20, v(0)=wvy, w(0)=wp a.e. in Q.

According to the result in [9] the system (T), is expressed as an evolution inclusion
with a single-valued perturbation on V' (z,v), where Vi (z,v) is the dual space of
the Hilbert space Vy with an inner product (-, )y (., given by

Vo = {77 c HY(Q); /Qn(x)d:r = 0} , (1.2)

(21, 22) vy (2,0) = / dy(a(2),0)Vn - Vnedz, Vni,m0 € V. (1.3)
Q

Using this expression, it is shown that there exists a time Ty € (0,T] such that
(P), has at least one strong solution on [0, Tp] for the case N = 1,2,3. Moreover,
for the case N =1 the existence of strong solutions on [0, 7] is shown. Hence, the
purpose of Section 6 is to show the existence of strong solutions to (T) on [0, T] by
using the same argumentations in [8, 9] and applying the general theory obtained
in Sections 4 and 5 of this paper.

2. Assumptions

All constants C; > 0, which appear in the following argumentation, depend on T’
unless we decline in particular it. Throughout this paper, we assume that (Al)-
(A10) are satisfied.

(A1) A family {(-,-)y; v € A} of inner products of H such that the following
conditions are satisfied:
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(a) There exist constants ¢; > 0 and cg > 0 such that
alzlla < llzlle < ellzlla, Yo e A, Vze H,
where ||z, := \/(2, 2)y and ||z :== /(2, 2) &
(b) There exists a constant c¢g > 0 such that
W=7, = 1202, ] < esllor = vallxlzll5,, Voi,v2 € A, V2 € H.

Hence, for any n € WH1(0,T; X) satisfying n(t) € A for all t € [0, T] we have

t
/ (o) xdo
Vze€ H, Vs, tel0,T].

||Z||f](s)7

21120 = 1212¢)] < cs

This condition is originally proposed in [3], and revised in [7] in order to be applied
to evolution inclusions with quasi-variational structures for inner products on H.

(A2) There exists a family

{{8@t.s);0<s <t <T}; Te(0.7), aeC(0, 7 H)},
where S(i;t,s) is the operator from A into itself for all s, ¢ with 0 < s <t < T,
such that the following conditions are satisfied:

(a) Assume that a sequence {vy, }men and an element v in A satisfy v, — v in
X asm — oo. Then, for any s,¢t with 0 < s <t < T we have S(a;t, s)v,, —
S(u;t,s)vin X asm — 00

(b) Assume that a sequence {iy, }men in C([0,T]; H) satisfies
Uy — @ in C([0,T];H) as m — oo.
Then, for any element v € A and s € [0,7] we have
S ;-5 8)v — S(u;-,8)v in C([S,T];X) as  m — 00.
(¢) S(@;t,t) is the identity operator on A for all ¢ € [0, T7.
(d) We have S(@;-,0)v € W0, T; X) for all v € A.
(e) For any times T; € (0,7 and functions @; € C((0,T;); H) (i = 1,2) we
assume that there exists Ty € [0, min{7}, T>}] such that @, (t) = t2(t) in H
for all t € [0,Tp]. Then, we have

S(@iy;t,0) = S(@iz;t,0) on A, 0<Vt<Ty.

(f) S(i;t,s) = S(@;t,7)oS(@;T,s) on A for all s,t,7 € [0,T] with s < 7 < ¢.
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(2) The following equality holds for any 7 € [0, T):
S(o,u;t,s)=S(u;t+71,s+7) on A,
0<Vs<Vt<T-—r,

where o4 is a 7—shift function of u defined by

(o,0)(t) == { a(t+ 1) it tel0,T— 1],

a(T) if te(T—7,1T).

The conditions (f) and (g) in (A2) are used in order to show Theorem 1.3, but are
not necessary to show Theorem 1.2.

(A3) A class C, which consists of the families {¢(¢,4,0); 0 < t < T} of time-
dependent proper, l.s.c. convex function ¢(t,u, ) on H, is prescribed:

C:={{o(t,u,v);0<t<T};ueC(]0,T);H), veA}.

Using this class C, we denote by X" a set of families of time-dependent proper, l.s.c.
and convex functions on H given by

X ={{p(t,a,0); 0<t<T};ueC([0,T];H), v € A},

where for any @ € C([0,T]; H) the family {S(@;t,$); 0 < s <t < T} is the same
one that is given in (A2), and the functions ¢(¢, @, ¥) are defined by

o(t,a,0) = ¢(t,u,S(a;t,0)0), Vae C(0,T);H), Vo € A, Vit €[0,T].
Then, the following properties are satisfied:

(a) There exists a proper l.s.c. convex function ¢ on H such that

o(z) < p(t,a,0;2), YaeC(0,T];H), Vi € A,
vt e [0,T], Vz € H,
and for any r > 0 the level set {z € H; ||z|lg <1, |¢(2)] < r} is relatively

compact in H. In order to show Theorem 1.3 we also assume that there
exists a constant ¢* > 0 such that

lp(2)] < ¢", VzeD(p):={2€ H; p(2) <oo}, (2.1)
which is not necessary to show Theorem 1.2.

(b) Assume that for families {p(t,4;,0); 0 <t < T} € X (i = 1,2) there exists
a time T € [0,7T] such that 1, (t) = @s(t) in H for all t € [0,T]. Then, we
have

o(t, iy,0) = p(t,ip,7) on H, 0<Vt<T.
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(¢) Assume that a sequence {{p (¢, @m, Um); 0 <t < T}lnenand {p(t, 4,0); 0 <
t <T} in X satisfy the following convergence as m — oo:

(U, Om) — (@,0) in C([0,T]; H) x X.
Then, for any t € [0,T] we have the following convergence as m — oo:

in the sense of Mosco.

That is, the following properties are satisfied:

(i) For any z € D(p(t,u,v)) there exists a sequence {2z, }men in H such
that
Zm — 2z in H(S(@;t,0)0) as m — oo,

lim QD(t, ama 'ﬁm 5 Zm) = Qﬁ(t, 71; 0 ; Z)
m— 00

(ii) For any subsequence {(@m, ,0m,)}pen OF {(Um,0m)},,cy We have

o(t, 4, 7;2) < Uminf p(t, U, , Om,; 2k)
k—o0

whenever a sequence {zx }reny and an element z in H satisfy
zr — z weakly in H(S(@;t,0)0) as k — oo.

We entrust the properties of the Mosco convergence of proper l.s.c. convex
functions on a Hilbert space to [12], and omit them in this paper.

Under (A3), we have already known Lemma 2.1 below, which is obtained in [7,
Lemma 2.1] and used in Sections 3, 4 and 5 repeatedly.

Lemma 2.1. There exists a constant C1 > 0 such that the following inequalities
hold for all 4 € C([0,T]; H), v € A, t € [0,T) and z € H:

‘@(tvﬂaf}vz” < w(taﬂaf}vz) +Ch (”Z”S(ﬂ;t,())ﬁ + 1) ;

lp(2)] < p(2) + Co(lzllm + 1)

For a single-valued perturbation g, we assume that the following property is
fulfilled.

(A4) A perturbation g: [0,T] x D(p) x A — H satisfies the following properties:

(a) There exist a function ¢: A — R and a constant ¢4 > 0 such that for any
r >0 alevel set {v € A; £(v) <r}is compact in X and

lg(t, z,0)|lu < L)V ]p(2)] +cq,  VEE[O,T], Vz € D(yp),
Yu € A,

where ¢ is the same function that is given in (a) in (A3).
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(b) Assume that a sequence {@, }men and a function @ in C([0,T]; H) satisfy
Um — @ in C([0,T); H) as m — oo.
Then, for any © € A we have

g(,ﬂm,S(ﬁm,,0)6)4)‘9(7&,5'(’&,,0)6)
weakly in  L2(0,T; H) as m — oo.

In order to make a class of the initial datum (ug,vg) clear, we assume the following
condition:

(A5) A class of initial data D is defined by

D::{@ b et x; L€ DO ) forall e C(0.T) 1) }

satisfying 4(0) = u

Then, we assume (ug,vg) € D. In what follows, we simply denote by ug €
C([0,T); H) the function ug(t) = ug in H for all ¢ € [0,T] if there is no con-
fusion.

Next we fix a pair (ug,v9) € D, and define three subsets W(ug) C V(ug) C
U(ug) of C([0,T]; H) by the following ways:

@(0) =ug in H,

T
sup [|a(t)]1x + / o(i(t))dt < oo
0<t<T 0

U(w) == a e C([0,T]; H);

)

V() = {u SUuo)s s [0l + s pli(t) < oo} |

W) = {aeuwo); 1@ oz + sup [a(®) |+ sup ¢<a<t>><oo}.
0<t<T 0<t<T

Moreover, for any R > 0 we define subsets Wgr(uo) C Vr(ug) and Ugr(ug) by the
following ways:

T
Un(uo) == {u €U(uo): sup [t + / pla(t))dt < R} ,

Vi(uo) i= {aewuo); sup @]l + sup ﬂa@))sz%},
0<t<T 0<t<T

Wiluo) = {aewmo); 1@l 2 0.rum + sup [[a(8)ls + sup @(ﬁ(t))SR}~
0<t<T 0<t<T

Since we have

T
/ pli(t)dt <T sup (a(t)) < RT, Vi € Valuo),
0 0<t<T
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we get

T
sup la(t)|| & —|—/ pa(t)dt < R(T+1), Va € Vr(uop), (2.2)
0<t< 0

which implies Vr(uo) C Ur(r41)(uo). All subsets U(uo), Ur(uo), V(uo), Vr(uo),
W(ug) and Wg(ug) are independent of the function vg. But the assumptions
(A6)—(A9) depend on (ug,vo).

(A6) For any @ € U(up) the family {p(t,4,v9); 0 < t < T} € X satisfies the
following condition: for any r > 0 there exist nonnegative functions «,. (@) €
L?(0,T) and S,(@) € L*(0,T) such that the following property (%) is satisfied:

for any s,t € [0,T] and z(@, s) € D(p(s,@,vp))
with [|2(@, 8) || s(a;s,00, < 7 there exists an element
z(, s,t) € D(p(t,4,v9)) such that

(d1) =@, s,t) = 2(, s)||s(a:t,0)v

)| [

(d2) ot @, v0;2(T, s,t)) — @(s, 4,00 ; 2(, 8))]

/S Bo(@; )dr

This condition was originally proposed in [11], and given in [7] which enables us
to apply the evolution inclusions with quasi-variational structures for not only
time-dependent subdifferentials but also inner products on H.

(\/|<psuv0, z(u, s))| + 1

< (le(s, @003 2(, 5))] + 1)

Remark 2.2. For a time T € [0,T) and a function @ € C([0,T]; H) satisfying
@(0) = ug in H we define a prolongation @y € U(uo) of @ by

~ a(t) if tel0,T],

ur(t) = { a(f) it te(T,1).
From (e) in (A2) and (b) in (A3) we have

S(w;t,0) = S(us;t,0) =S(w;t,0) on A, Vte [0,7],
o(t, i, v0) = @(t,ag,v0) on H, Vtel0,T],
whenever @ € U(ug) satisfies @(t) = @g(t) in H for all t € [0,T]. Defining
a(ust) = a(igpst),  Br(a;t) = B(ug;t), Viel0,T],

we have a,.(7) € L(0,T), B,(a) € L'(0,T) and see that (x) in (A6) is satisfied.
(A7) A constant R, > 0 is given by

4 1
Rei= (14 5 ) Q0,003 00)| + s (caluoll + D} + ol + 1.



182 A. Tto

where ¢; > 0, co > 0 and C; > 0 are the same constants that are given in (a)
in (A1) and Lemma 2.1, respectively. Then, we assume that for any R > R, the
following properties are satisfied:

(a) There exists a family {Mg(r); 0 < r < oo} such that

vr >0, sup  ([lar (@) 20,0y + 18- (@) |21 0,7)) < MR(7).
@ €UR(uo)

(b) For any r > 0 and ¢ > 0 there exists a constant 6, . g > 0 such that

min{t+06, . r, T}
sup {sup / (law(@: ) + B, (it 5)
@ €UR(up) \OStI<T J¢

+][(S(@;s,0)v0) || x) dS} <e.

(A8) There exist a family {h(a) € WH2(0,T;H); @ € U(up)} and a constant
C5 > 0 such that

sup {Hh'(a)n%z(omw sup (it )l
ﬁel/l(uo) 0<t<T

+ sup |w(t,ﬂ,vo;h(ﬂ;t))|} < Cs.
0<t<T

Remark 2.3. The existence of the function h(@): [0,7] — H in (A8) is guaran-
teed in [7]. Actually, using [7, Proposition 2.5 and Remark 2.6], we see that for any
@ € U(up) there exists a function h(i): [0,T] — H and a constant Cy () > 0,
such that

sup ||h(@;t)|u + sup [o(t, @, vo; h(@; )| + [|h' (@)1 720 7.0y < Ca(@).
0<t<T 0<t<T

Hence, (A8) implies that the constants Cy(@) can be chosen so that they are
independent of the choice of functions @ € U(ug). Roughly speaking, there exists
a constant Cy > 0 such that

sup Colii) < Cs.
o €U (uop)

At last, we assume that the following uniform estimate is fulfilled.
(A9) There exists a constant C3 > 0 such that

sup sy ((51,000) + (@30, 0)0) I3 03 ) <
@eU(uo) \O<t<T

where £ is the same function that is given in (A4).
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For a prescribed datum f we assume that the following condition is satisfied:
(A10) f € L*(0,T; H)
At the end of this section, we show Lemma 2.4 which plays a significant role in

the Schauder fixed-point argumentation to show Theorem 1.2 under all assump-
tions (A1)—(A10).

Lemma 2.4. For any R > R* the set Vr(uop) is nonempty, convex and closed in
C([0,T); H). Moreover, Wg(ug) is nonempty, convezx and compact in C([0,T]; H).

Proof. From (a) in (A3) and (A5) we get ug € Wg(uo) C Vr(ug). Moreover, we
see from (a) in (A3) again that Vg(ug) is convex and closed in C([0,T]; H), and
Wk (ug) is convex and closed in C([0,T]; H) and weakly closed in W12(0,T; H).
Moreover, from Lemma 2.1 we get

sup lp(a(®)] < sup p(a(®)) + ( sup ||a<t>||H+1)
0<t<T 0<t<T 0<t<T

SR+Cl(R+1), VQEWR(UQ).

Applying the Ascoli-Arzela theorem, we see that Wg(ug) is relatively compact in
C([0,T); H). O

3. Auxiliary problem

In this section, for any % € U(ug) we consider a Cauchy problem (AP). with
variational structures as an auxiliary problem of (P) on [0, T:

w'(t) + Osyp(t, G, vo s w(t)) 3 f(t) — g(t, ult), v(t))
in H(o(t)), a.a.tel0,T],

o(t) = S(u;t,0)0vg in A, Vtel0,T],

w(0) =up in H.

(AP);

Then, we have the following lemma, which guarantees the existence and uniqueness
result of strong solutions to (AP); on [0, 7.

Lemma 3.1. The Cauchy problem (AP), has a unique strong solution w €
WL2(0,T; H) NU(ug).-

Proof. From (A4), (A9) and Lemma 2.1 we get the following inequality for all
te 0,1

05(t))? (le(a(t))| + ca) (3.1)
C5 {p(a(t)) + Crlla(t)|| g + C1 + ca},
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which implies g(-,%,?) € L?(0,T; H) with the following estimate:

T

98 2 0uzuan) < Cs{ | etanar (3.2)

Nl

+ T (01 sup ||’l~t(t)||H +Ch + C4> } .
0<t<T

Applying [7, Theorem 3.1], from (A10) and (3.2) we get this lemma. O

From Lemma 3.1 we can define an operator S: U (ug) — W2(0,T; H) N U (uo),
which assigns the unique strong solution w of (AP), on [0,T] to @, by

St :=w, Ya € U(ug).

We show some estimates of the solution St and {p(t, @, vo; (Sa)(t)); 0 <t < T}.
In order to do this, first of all we give the first type energy inequality in Lemma 3.2,
which is obtained in [7, Lemma 2.10].

Lemma 3.2. The following first type energy inequality holds for a.a. t € (0,T):
(Sa)(t) — h(@; )3 — 2((Sa)'(t) — B (@), (Sa)(t) — h(@;t))ae)

< es|| v ()l (S () — h(@s )3

where h(w) is the same function that is given in (A8).

<
dt

Using the first type energy inequality in Lemma 3.2, we show Lemma 3.3.

Lemma 3.3. There exists a constant Cy > 0, which depends on

T
luollar, llvollx, sup a8, / p(a(t))dt, T
0<t<T 0

such that -
sup (Db + [ l(t. v (SDO)dt < C
0

0<t<T
Hence, we have (St)(t) € D(¢(t, @,vo)) for a.a. t € [0,T] and St € Uc, (uo).
Proof. Using Lemmas 2.1 and 3.2, we see from (a) in (Al), (A8) and (3.1) that
the following inequality holds for a.a. ¢ € (0,7T):

%II(Sﬂ)(t) = h(@; )5 + 2le(t @, v0; (ST)(2))] (3-3)
(esllo"()llx +3) [(Sa)(t) — h(a: 1[5

+2C1 (II(S) () = h(@;8)llse) + [1A(@5 1) |[oce) + 1)

+¢5 (lg(t,a(t), o)1 + IF @I + 1R (@5 O)lF) + 2ot b vo; h(@s )]
(sl o’ (B)llx + C1 +3) [(Sa)(t) — h(@st)l[5) + G(1),

IN

IN
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where G € L'(0,T) is a function given by
G(t) = (IfF O + 1B (@;t)l|3) + 2C2(c2Cr + 1) +3C,

n (6203)2{<P(ﬂ(t)) +01 s a(t)ln + +}

Applying the Gronwall lemma to (3.3) and using (a) in (A1) again, we see that
the following inequality holds for all ¢ € [0, T:

S\(Sa)(t) — hlast)|3 +2 / lo(s, @ vo ; (S)(5))ds (3.4)

< (||uo—h(a;0)|30 +/T G(t)dt) exp<63 /T|€/(t)||xdt+TCl+3T>
< {2 (ool + 1030 12) / Gloyir}

X exp( / |7 (t) || xdt + (Cy + 3)T).
0
From (A8) and (A9) we get
L2 ualty + naso3) + | coar) (35)
X exp<c / | (t) || xdt + (Cy + 3)T >
0
< OO ok (Juolfy + C3 + 1101 + C)
T
+T{2C2(c2Cy + 1) +3C1 } + (0203)2{/ p(a(t))dt
0

+T (Cl sup H’l](t)”H +C1 + 04) }:| =: 04,

0<t<T

We see from (3.4), (3.5) and Remark 2.3 that the following estimates holds:

- ~ -
C C
sup ||[(Sa)(t)||m —|—/ [p(t, @, vo 5 (S)(t))|dt < (C’2 4) i Cy,
0<t<T 0 c1 2

which implies that this lemma holds. O

Using [7, Lemma 2.11] and Lemma 3.3, we get the second type energy inequal-
ity in Lemma 3.4.

Lemma 3.4. There exist constants Cs > 0 and Cg > 0, which also depend on

T
luollzr, lvollx, sup NGz, / p(a(t))dt, T
0<t<T 0
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such that the following inequality holds for a.a. t € (0,T):

%w(t, i, 003 (Sa)(t)) + (S@)'(1), (Sa)'(t) + g(t, a(t),5(t) = f(£))aee)

< Os[|f(t) — g(t,a(t), 5(1) — (S@)' (&) oy (VIe(t, @, vo s (S@)(2))] + 1)
x ac, (@3t) + Co (lo(t, @ vo 5 (ST)(1)] + 1) (Bey (@st) + [0 (8)]1x) »

where Cy is the same constant that is obtained in Lemma 3.5.
Using Lemmas 2.1, 3.2 and 3.4, we show Lemma 3.5.

Lemma 3.5. The following estimates are satisfied:

(1) There exists a constant C7 > 0, which depends on C; >0 (1 <i < 6) as well
as

(0, uo, v ;u0), [lac, (@)llr20,r), 1By (@)L o.1),

such that

1(S@)' || 20,1y + sup [[(S@)(#)[|
0<t<T

+ sup [p(t, a4, v0; (S)(¢))| < Cr.
0<t<T

Hence, we have (S@)(t) € D(¢(t,0,v0)) for allt € [0,T] and St € We, (uo).

(2) For any e € (0,1) there exist constants Cg(e) > 0, which depends on C; >
0(i=25,6) ande >0, and Cy > 0, which depends on C; >0 (i = 1,4) but
is independent of €, such that the following inequality holds for all s,t with
0<s<t<T:

o(t, @, v0; (Su)(t))
+/ (Sa)' (1), (Sa) (1) + g(7, 4(7), (7)) = f(7))s(r)dT
< (s, 1,95 (Su)(t))

+€/||su )+ g, @(r), 5(7)) — F(7)12 0 dr

+Cyle) / {o(r w0 (S8)(7)) + Co)

x (Jac, (@; )] + Boy(@s ) + [19'(7) | x) dr
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Proof. First of all, we have the following three inequalities for a.a. ¢t € (0,7T):

((SU) (t), g(t, a(t),0(t)) — f(£))a) (3.6)
> - ZII(S’&) O3 — 263 (gt a(®), sE)IE + I F @17 ,
(V0e(t,a,v05 (Sa)(#))] + Nac, (@t)  (3.7)

l5ce)
), 9()E)
+1)|ac, (@;t)|

Cs|f(t) — g(t, a(t), (1))l
< BCE (IF @O + lg(t, alt
+ (Jeo(t, @, v ; (ST)(t))|

Cs[(S@) (®)lla) (V] (t, @, vo s (ST) ()] + 1) e, (@5 t) (3.8)
< i\\(sm’(t)u%(t) +2C2 (|t i, v0 5 (S@) ()] + 1), ()]

Substituting (3.6), (3.7) and (3.8) into the second type inequality in Lemma 3.4,
we get the following inequality for a.a. t € (0,7):
1 d N
Slsay( Wi + Pt v (ST)(1)) (3.9)
< (203 + Cs +1) (Ieo(t @, v0; (ST)(1) +1)
X (lac, (@; ) + Be, (@st) + [[0'(t)] x)
+65 (G5 +2) (IFOF + gt alt), o()[1F) -
Using (a) in (A1), (3.9), Lemmas 2.1 and 3.3, we get the following inequality for
a.a. t € (0,7):
i ~\/ 2 d ~ ~
T(Say ()l + T (1,5, v0: (SB)(D) (3.10)
< Cho (Jee, (@5 8)]* + B, (@5 t) + 117 (1) || x)
x {p(t, @, 095 (Sa)(1) + Cr ([(S@) () |lory +1) +1}
+¢5 (G5 +2) (IFOIF + llg(t, ale), o(t)|1%)
< Cho (lac, (@;t)]* + Be, (@;t) + 18" (1) x) @ (t, @, v0 5 (ST)(E))
+Cu (IF Ol + llg(t, ale), o()|1F + lac, (@)
+Bey(@st) + [|7'(1)]x)
where the constants C1¢ > 0 and C7; > 0 are given by

Cho = 2C§ + CG + 1, Cq1 = 010(020104 +C1 + 1) -+ C% (Cg + 2) .

Applying the Gronwall lemma to (3.10), we get the following inequality for all
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€ [0,7T):
/ 1(Sa) () |12z + (t, @, vo : (SE) (1))
< |so<o,uo,vo;uo>|exp(cw / <|Oéc4(ﬂ;t)|2 T ety + W(t)nx)dt)
T
+cuexp(cm [ tlac @so + e @so) + 15 0)lx) ds)
T
< [ U@ + ot 660, 5O + o @02

+Be, (@st) + |7 (1) x) dt =: Cr,

which implies

lp(t, @, vo ;5 (Sa)(1)] < @(t, @, v0; (Sa)(t) +Cr ([(SD)(B)llawy +1) (311
< Cr+Ci (104 +1) =: C,

hence,
~ C%(C’7 + C~'7)
[ isay @ < G (ot a0 0]+ 6r) < AEED g9
From (3.11) and (3.12) we get the following estimate:
. _ _ A(Cr+ C -
IS8 luoirm + s Jolt. i wns (i) < | SETEE L o
0<t<T 2

which implies that (1) holds by using the estimate obtained in Lemma 3.3 together.
(2) We go back to the second type energy inequality in Lemma 3.4, and use Lemmas
2.1 and 3.3 again. Then we see that for any ¢ > 0 the following inequality holds
for a.a. t € (0,T):

jt (t, @, v0 5 (Sw)(t) + ((Su)'(£), (S)'(t) + g(t,a(t),0(t)) — f(t))oe) (3.13)
< ellf(t) — g(t. a(t), (1)) — (S@)' ()3,

C?
+( 2 +C6){ (t, @, v0; (Su)(t)) + c2C1Cy + C1 + 1}

% (Jac, (@O + By (@st) + 7' (t)l|x) -

Putting
c:

CS(E) : %

+ Cs, Cy :=cC1Cy + C1 + 1,
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and integrating (3.13) on any interval [s,t] with 0 < s < ¢ < T, we see that (2)
holds. O

In the rest of this section, we show Lemma 3.6 which plays an important role
to use the Schauder fixed-point argumentation.

Lemma 3.6. For any R > R* the operator
S: Vr(ug) — WH2([0,T]; H) N U(up)
is continuous with respect to the strong topology of C([0,T]; H). That is, we have
Sty — Su in C([0,T|;H) as m — oo
whenever a sequence {lm, tmen and an element @ in Vgr(ug) satisfy
Uy —> 0 in C([0,T);H) as m — 0. (3.14)

Proof. From the definition of & we have the following evolution inclusion:

(Stim)'(t) + 05, (1) (t, i, v0 5 (Sthm) () 3 f(£) = g(t, G (1), U (£))  (3.15)

in H(0pn(t)), aa.te(0,T),

with
O (t) = S(Gm ;t,0)vg in A, Vte[0,T], (3.16)
(St,)(0) =uo in H. (3.17)

From (b) in (A2), (b) in (A4), (3.14) and (3.16) we get the following convergences
as m — 0Q:

O — S(@;-,0)vo =0 in C([0,T); X), (3.18)
() Ty D) — g(+,@,0) weakly in  L?(0,T; H). (3.19)

First of all, we show that there exists a constant Ry > 0 such that {Si,, }men C
Wh, (up). We see from Lemma 3.3 that there exists a constant Cy(R) > 0 such
that

T
sup( sup [[(Siimn) ()11 + / w(t,am,voxsam)(t»wt) < Cu(R),

meN \0<t<T

hence, from (a) in (A3)

sup( sup (St (0 + | w<<sam><t>>dt) < Cu(R),

meN \0<t<T

which implies St,, € Uc,(r)(uo) for all m € N because of (3.17). Using (a) in
(A7) and (1) in Lemma 3.5, we see that there exists a constant Cs(R) > 0 such
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that
sup (||<sam>'||L2<o,T;H> T+ osup (St (O)]n
meN 0<t<T

+ sup |so<t,am,vo;<sam><t>>> < Oy(R),

0<t<T

hence, from (a) in (A3) again

sup (n(sam)’nm,mw sup [[(Sin)(®)lz + sup so«samxt))) < O5(R),
meN 0<t<T 0<t<T

which implies {Stm fmen C Wey(r)(uo), that is, this constant C5(R) > 0 is a
desired one as R;.

We see from Lemma 2.4 that there exist a subsequence {Stm, }ken of {StUm fmen
and an element W € Wg, (u¢) such that the following convergence holds as k — oo:

Stiy, — @ in C([0,T];H) and weakly in W'%(0,T; H), (3.20)
hence, from (3.17) and (3.20) we get
@(0) =uo in H. (3.21)
In the rest of this proof, we show @ = St. In order to do this, for any @ € U(uo)
we consider a function space £2 (i, vo) := L?(0,T; H) with an inner product given
by
T
(€18 = [ (@O.EOhndt Va6 e 0.7,
0

and a proper l.s.c. convex function ®(i,v): L*(0,T; H) — R U {oo} defined by

T
®(a,vo;5m) r=/ o(t, 4, v05m(t))dt, Ve L*(0,T;H).
0

Then, we see from (3.15) that the following inequality holds for all £ € N and all
n € L*(0,T;H):
(I)(ﬂmk,vo 78amk) + (f - (Sﬂmk)/ - g( : 7ﬂmk71~}mk)’ n— Sﬂmk)ﬁz(ﬂmk,vo) (322)
S q)(amk , Vo 777)
We see from [7, Lemma 4.6] that ® (&, ,vo) converges to ®(@,vg) in the sense
of Mosco in L£2(@,v9) as k — oo, that is, for any ¢ € D(®(@,vg)) there exists a
sequence {& }ren C L?(0,T; H) such that
& — & in L%(@,v9) as k — oo, (3.23)
klim D (U, v0;&k) = (T, v0;8). (3.24)
—00
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Substituting n = & in (3.22), we get the following inequality for all k € N:

é(ﬂmkvvo 7Sﬂmk) + (f - (Sﬂ’mk)/ - g( : 7amka1~]mk)v Sk‘ - Sﬂmk)[,z(ﬁmk ,00) (325)
S @(amkyvo ; Ek)

Using [7, Lemmas 3.4 and 4.5] and (3.14), (3.19), (3.20), (3.23), we get

O(a,vg;w) < likm inf (., vo ; Stm, ), (3.26)
—00
klggo<f - (Sﬂmk)/ - g( : aﬁmka"jmk)a gk - Sﬁmk)LQ(ﬂmk,'uo) (327)

= (f —w' - g( -, U, ﬁ)»é - w)ﬂz(ﬁ,vo)~
We take liminfy_, . in both sides of (3.25) and use (3.24), (3.26), (3.27). Then,
we get the following inequality for all £ € D(®(a)):
(f - - g( " ﬂvﬁ)ag - w)£2(ﬂ,vg) < q)(ﬂvv() ,5) - (I)(ﬂa Vo ; UNJ)7
which implies
ffwlfg('vﬂﬁﬁ) € 31:2(12,1;0)‘1)(&,”0;15)7 (328)

where 072 (4,0,) P (1, vo) is the subdifferential of ®(i,vo) with respect to the inner
product (-, -)z2(a,u,)- Applying [7, Lemmas 3.5 and 3.8], we see from (3.28) that
w satisfies the following evolution inclusion:

W'(t) + Oy p(t, G, vo 30 (t)) 2 f(t) — g(t, at), o(t)) (3:29)

in H(o(t)) aa.te(0,T).

We see from (3.18), (3.21) and (3.29) that @ is a strong solution of (AP)_ on [0, 77,
that is, @ = Si. 0

4. Proof of Theorem 1.2

In this section, we fix any number R satisfying R > R., where R, is the same
constant in (A7). We devote this section to show Theorem 1.2 by using the
Schauder fixed-point argumentation. In order to do this, for any T' € [0,7] we
define a continuous operator A(T): C([0,T]; H) — C([0,T]; H) by

(t) if te€]0,T],
(T) if te(T,T,

U
U
and prepare Lemma 4.1 below.

Lemma 4.1. There exists a time Ty € (0,7 such that

(A(Tp) 0 S) Wi (uo)) € Wg(uo).
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Proof. Repeating the argumentation similar to the proof of Lemma 3.3, we see
from Lemma 2.4 that there exists a constant C4 > 0, which depends on R, such
that

T
sup <sup Isaa+ [ @(taﬂavo;(sm(tmdt)SC4- (4.1)

@€ Wi (uo) \Ot<T

Since from (2.2), (4.1), (a) in (A3) and Lemma 2.1 we have Wg(ug) C Vi (ug) C
Ugr11)(uo), we see from (a) in (A7) that there exists a constant Mp(Cy) > 0
such that

sup  ([lec, (@)l 20,1y + 1Bes (@) L1 0,1)) (4.2)
U EWR(uU)
< sup (lac, (@ z20.2) + 1Bes (@ r0.1)) < Mpp 1y (Ca).

[ EU&<T+1)(UD)

Repeating the argumentation similar to the proof of (1) in Lemma 3.5 and using
(4.1), (4.2), we see that there exists a constant C7 > 0, which also depends on R,
such that

sup (n(sa)’m(o,mw sup [(S@)(t) 1 (4.3)
i€ Wp(uo) 0<t<T

T+ osup so(t,a,msa)(t») <0

0<t<T

From (3.1) we get

Jsuplg(, (), 5(1) [ < CF {R+Cri(R+1)+e}. (4.4)

Using (2) in Lemma 3.5 as s = 0, we get the following inequality for all ¢ € [0, T:

<i _35)/0 1(S@) ()13 s ds + @(t, @, vo ; (ST)(L))

< (0, uo, o ; uo) +C§(3€+2)/0 (LFE + (s, als), o)1) ds

T Cy(e) / (s, 0 (S8)(s)) + Co)

% (letcs (@5 )12 + By (@58) + 117 () 1x ) s,
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hence, from Lemma 2.1, (4.3) and (4.4)

( - 36) / S HU( gds + [p(t, 1, v 5 (ST)(1))] (4.5)
< (0, 1o, vo ;u0)| + C1[[(S@)(t)|[51) + C1

+3(3 +2) / t\|f<s>||%1ds+(cQ03>2<3s+2>{R+01<R+1>+c4}t
+ Cg(&‘) {07( ) + Cg}

[ (@98 + @) + 176l ) .

Using (a) in (A1), (4.5), Lemma 2.1 and the following inequality for all ¢ € [0, T

1SB)®)lo) < / 1(5)'(5) a0y ds + l[uollace (4.6)

= /||Su oo ds + ealluolla

9 Ch (e
C’ || $)|5(s)ds STz o t + calluo||m,

we get the following inequality for all ¢ € [0, T:

\ /\

( 45> / 1(SaY (5)[12 sy ds + (i, vo 5 (Si) (8))] (4.7)
< (0, g, v )| + Cr (ealluo s +1) + (3= +2) / 1£(s)I%ds
(e2C3)2 (3¢ + 2) {R+ Ci(R+1)+ c4} n 4% (Cf1> ¢

+ Cs(e) {@(é) +cg}

x / (laaciy @59 + By @55) + 17 (5)1x ) ds

Choosing € = g9 = % and a constant Cio > 0 so that

2 21D ~ 9
cmzmax{%%, 85(coCa) (R + CL(R+1) tea} 4(@01) |

16 C1

Cs(&o) {07(R) + 09}},
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we see from (a) in (A1) and (4.7) that the following estimate holds for all ¢ € [0, T'):
c?
5[ NSO s + ot 1,03 ST (45)
t
< le(0,u0,v0;u0)| + C1 (c2lluolln +1) + 012{75 +/ (L)%
0

Hore, iy @59)F + By iy 159) + 175 x) ds
Using (a) in (A3) and the following inequality (cf. See (4.6));
s IS0 < [ 1S5 () + 5 + ol
0<s<t

we see from (4.8) that the following estimate holds for all ¢ € [0, T:

(/ |<sa>’<s>||%1ds)2 + s (ST + s P(ST)E)  (49)

I /\

1
2 [ IST s + s folos o0 ST+ § + ol + |

IA

4 1t
(1+ ) {1(0. 0,0 £10)| + Ciealfuollr + 1)} + Juollar + % + &

+0u& D 6+ o, @@
B0,y (@5 5) + (|9 (s )HX) ds+t}.

Using (b) in (A7), we see that there exists a time Ty € (0,77 such that

To 4 To o
— 1+ — 5 it 4.1
vren (o) L {1 (ocammo @
T, ~
o (@0 417 @x) @t} + [ 11@lds + 7o) < R- .
0

where R, > 0 is the same constant that is given in (A7). From (4.9) and (4.10)
we get

I((A(To) © S)a)|| L2071y + S [((A(To) o S)u) ()|

+0§1tlg o(((A(To) o S)u)(t)) < R,

which implies that (A(Tp) o S)u € Wy(uo)- O

Now we are ready for showing Theorem 1.2.
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Proof of Theorem 1.2. We apply the Schauder fixed-point theorem to the operator
A(Tp) o S from Wi (ug) into itself. Then, we see from Lemmas 2.4, 3.6 and 4.1
that the operator A(Tp) o S has at least one fixed-point u, that is, (A(Tp) o S)u =
u € Wy(ug) C Vp(uo). Because of ((A(To) o S)u)(t) = (Su)(t) = u(t) in H for all
t € [0,To], this fixed point u satisfies

W(E) + By plts wyvo; wlt)) + g0, u(t), o(8)) 3 £(0)
in H(v(t), aa.te(0,Tp),

v(t) =S(u;t,00vg in A, Vtel0,To,

u(0) =wuo in H.

In the rest of this proof, we show the boundedness (1.1) in Definition 1.1.
Using (Su)(t) = u(t) in H for all t € [0,Tp] again and (A(Tp) o S)u € Vj(ug) C
Ugr11)(uo), we have

sup [[(Su)(®)|lg + sup o((Su)(t)) (4.11)
0<t<Tp 0<t<Tp

= sup [u(t)ll;+ sup ¢ (u(t)) <R
0<t<T 0<t<T

Using the second type energy inequality in Lemma 3.4, we see from (4.11) that
there exists a constant Ci3 > 0 and Ci4 > 0, which depends on |Jug||#, ||vollx, R
and T, such that the following inequality holds for a.a. t € (0,Tp):

%w(t, u,vo 3 u(t) + (' (), u'(t) + g(t, ult), v(t) — f()ue) (4.12)

< Cusl| £(t) = g(t,ut), v(t)) = u' (®) o) (VI u,vo 5 ut))] + 1) ag(u;t)
+ Cua (lp(t, u,vo s u()] + 1) (Bg(u:t) + 0" (#)]1x) -

In order to show (1.1), we use the following estimates.
(i) From Lemma 2.1 and (A4), (A9) we get the following estimate for a.a. t €
(0, To)t

Cus|l £(t) = g(t, ult), v(t)lluge) (VI (t, u, vo 5 u(t)| + 1) g (ust)
013 (L Ol + gt u(®), v(8))l])”

*5( ot v ru(®)] + 1) o (us 1) 2
630123 (”f(t)H%-I + ||g(t, U(t)vu(t))”%{) + (|Q0(t, u, Vg ; u(t))‘ + 1) |aR(U;t)|2
{90 t,u,vo;u(t)) + Cq (”U(t)Hu(t) + 1)} |a1:3(u;t)|2

+ BCHIFOF + BCH o)} {e(u®) + Cr (Ju(t)|x + 1)}
lag(us)Po(t, u,vo5u(t)) + Cr (caRy + 1) o (u; 1) [?

+ SCHIFENF + 3CHC5{R+ CL(R+ 1)}

< lag(ust)Po(t,u,vo5u(t)) + Cs (Jag(u; ) + [ f(OIIF +1),

| /\

IN

IN

IN
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where the constant Ci5 > 0 is given by
Ci5 = Ci(caRy + 1) + 3C + 3005 {R+ C1(R+1) ).
(ii) From (A4) and (A9) we get the following estimate for a.a. ¢ € (0,Tp):
(W'(8), f(t) = g(t,u(t), v(t))w(e)
S 0y + g, u(e), o)) + £,

IN

IA

SO0y + B 160N {w(®) + Cr (o) + D} + 170,

1
< SO0+ ECH{E+ LR+ 1)} + IOl

1
< SO + Cre (IFO17 +1)
where the constant Cig > 0 is given by
Ci6 = c§C§{R+ 01(}? +1)} +1.

(iii) Repeating the argumentation similar to (i), we get the following inequality
for a.a. t € (0,Tp):

Cus || () ey (V] (t, w, vo s u(t)] + 1) o (w5 t)
)Ry + € (VI w0 )] + 1) o s )

LI D120 + 20 (e, w0 u(e)] + 1) g (us )P

IN

IN

IN

W O + 208 {0l w0 5u(0) + Cr (lu(@) ooy +1) a5

IN

W O + 20 laps; 0Pl w vo 3 u(t)

+20,C3, (CQR +1)|ag(ust)]*

(iv) From Lemma 2.1 again we get the following inequality for a.a. ¢t € (0,Tp):
Cua (ot u, w03 u(t))] + 1) (Bg(u;t) + 10" ()] x)

< Cua {p(t, v 5u(®)) + Cr (Ju®lloy +1)} (Brut) + [0/ (D))

< Cua (Bglust) + V'(#)llx) o(t, u, v 5 u(t))
+ Ci1Chy (Czﬁt’ + 1) (Brlust) + v ()] x) -

Substituting all estimates in (i)—(iv) into (4.12), we get the following inequality
for a.a. t € (0,Tp):

ot u,msu®) + I 0, (113)
< (20 + Cua 1) (Jag(; O + Blast) + 0/ (0)]1x) (8, v ()
+ O (Joglos: O + Bl ) + @) + SO +1)
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where the constant Ci7 > 0 is given by
Ci7 .= Ci5 + Cig + (2010123 + 01014) (CQR + 1)

We apply the Gronwall lemma to (4.13), and use (A7) and (A9). Then, we see
that the following inequality holds for all ¢ € [0, Tp]:

2 t
et msu(®) + 5 [ )y
< {@(OaUaUOWO)
To
+Cur [ (anlusP + Batus) + 10Ol + £ + 1) de
To
<exp (203 + Gt 1) [ (aplus0) + Balui) + 0O x) ot
0

T
< {¢(07UO>UO§UO)|+Cl7<MR(T+1)(R)+TO+/O ||f(t)|12r{dt>}

x exp ((2C% + Cua + 1){Mppy1) (R) + Cs}) =i Cs,
which implies that the following boundedness holds:
Ty 4
sup @(t, u, v ;u(t)) —|—/ |/ (t)||3dt < <2 + 1) Cis.
0<t<T, 0 551

Using Lemma 2.1, we get the boundedness (1.1), hence, u is a strong solution of
(P) on [0, Tp). O

Remark 4.2. As you see from the proof of Theorem 1.2, it is enough that (A7)
is satisfied for some constant R > R, in order to show Theorem 1.2. This result
is the same to the case without a perturbation, which is obtained in [7, Section
4]. Moreover, the boundedness of ¢ in (a) in (A3), which is given by (2.1), is not
necessary for showing Theorem 1.2.

5. Proof of Theorem 1.3

In this section, we use the argumentation similar to that in [7, Section 5]. At the
beginning of this section, we define a set Z by
Z:={(u,v,T) := (4,5(u;-,0)vy, T); 4 is a strong solution of (P) on [0, 7]}
c |J (Wh0.T;H) nU(ug)) x WH(0,T; X) x {T},
0<T<T
and induce an order relation < on Z by
(1,01, Ty) = (tig, U2, To)

iff 0<Ti<T,<T and @ =1y in WY2(0,Ty; H).
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From (A2) we have ©; = 95 in W11(0,T); X) whenever (uy,01,T1) =< (g, V2, T3).
Moreover, from Theorem 1.2 we have Z # ).

Lemma 5.1. The ordered set (£, =) is inductively ordered. That is, any linearly
ordered subset Y of Z is bounded above.

Proof. Let Y be any linearly ordered subset of Z. We define a triplet (@, 0, T) by
T = sup {T € (0,7]; (u,v,7T) € y}7
(a(t), o(t)) = (a(t),v(t)), Vtel0,T] iff (@,0,T)eY and T €[0,T).
It is clear that the triplet (ﬂ,f[},T) is uniquely determined and @ is a strong so-

lution of (P) on [O,T). From the definition of 7" we can take out a sequence
{(@m, Vm, Tin) fmen C Y such that

Tm/‘f’ as m — oo,

a;n (t) + 3@"@)%0(757 ’a?rm Vo 7ﬂWL(t)) + g(ta arn (t)a @m (t)) > f(t) (51)
in  H(0,(t), a.a. te(0,T,),
O (t) = S(tUm;t,0)vg, Yt € [0, ], (5.2)

ﬂm(O) = Uo in H.

In the following argumentation, for each m € N we define a function 4, €

C((0,T]; H) by
T (1) if tel[0,Tm
U (T) = _ _
U (T)  if € (T, T).
For any m € N we see from (e) in (A2) that the following equalities hold for all
t €10, Ty
(1) = (1) = (Sn)(1) = lt) in B s
Om(t) = Om(t) = S(tm ;t,0)vg = 0(t) in A ’

Using (a) in (A3), Theorem 1.2 and Definition 1.1, we see that there exists a
sequence {CF }men such that for any m € N the following inequality holds:

i, | 220,750y + SUD Nt ()| + sup (T (t))
0<t<T 0<t<T

< oo,z + sup Nt ()]l + sup @t i, vo 3 Gm ()] < Cr
0<t<T)n 0<t<Ty,
which implies @, € Wcx (ug) C U(uo). Hence, from (5.2) and (A8), (A9) we get

sup{|h’<am>||%z<o,T;H)+ sup (it )11 (5.4)
meN 0<t<T

+ sup |¢(t,ﬂm7vo;h(ﬂm;t))|} < Cs,
0<t<T

sup (sup K0 (1) + s ) < Co (55)

meN \0<t<T
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In the following argumentation, we consider a sequence {Stiy, }men and repeat
the similar argumentation to the derivation of (3.3). Then, we get the following
inequality for a.a. ¢ € (0,T):

DS ) (1) — Bl )12, 0 + 261 T, 0 (ST (1) (56)
e300 () x [ (Stn) () = M@ms O3, 1) + 20(t, i, v 3 (s t))
+2(f(t) = 1 (s t) — g(t, G (8), O (1)), (Stim ) (£) = h(lim3t))5,, (1)
(sl o (®)llx +2) |(Stm) () = h@m; O3 1) + 21, T, vo 5 hl(Tms )|
+ 2¢2|[g(t, i (£), Om () | [ (St ) (£) = Ptim; )15, 1)
+¢3 (PO + 17 (@ 1)) -
We see from (2.1) in (A3), (A4), (A8), (A9), (5.2), (5.3) and Lemma 2.1 that the
following inequality holds for all ¢ € [0, T:
2¢2|g(t, tm (£), O (8)) | 1 (| (Stian ) (£) — h(thm; )Ilam t) (5.7)
< 260l (0m () [[(Stimn ) () = Al 1) |5, () V|0 (@ (2)) ] + 4
< SO3N(Stm)(t) = h(@m; )3, 1) + " + ca.

Substituting (5.7) into (5.6), we get the following inequality for all m € N and a.a.
€ (0,7):

IN

IA

d N - - -

2 1(Stm)(®) = h(dm; I3,y + 20(t; @i v0 3 (St (1))
< (esllon Ol x + 365 +2) [(Stm) () — Aam; O, )

+6 (IFOF + 17 (@3 t)][7) +2C2 + 9" +ca,

hence, from Lemma 2.1 again

NS (0) ~ hans DI, )+ 2l 0 (ST) )] (5.9

< (eallon, ()]l x + 05+ 2) [[(Stm ) (8) = Plam; I3,
+ 2C1[(Stm ) (1)ll5, 1) + <5 (IF O F + 17 (@m; 1))
+2C, +2C 4+ p* + ¢y

< (call, (8)l1x + BCF +3) [(Sim)(t) = hlimi D2, o
+265Ca |t (8) 11+ 3 (1F O3 + 1 i D)%)
+ 0% 4+2C) +20 + ¢* + ¢4

< (3|9, (1)l x + 3C5 + 3) [(Sam)(8) = h(am; )12,
+ & (ILFOF + 18 (@m; 0)1F) + 2¢2C1Co
+ 0% 4+2C) +20 + ¢* + ¢4

< Cho (|57, () x + 1) |(Stm) (t) = htm; D7, (1)

+ Cao (IlF N7 + 17 (@3 O +1)
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where the constants C19 > 0 and Cyy > 0 are given by
Cig:i=c3+ C%Cg +3, Coy := C% + 2¢,C1C5 + 012 +2C, +2C5 + SD* + c4.

Applying the Gronwall lemma to (5.8), we get the following inequality for all
m € N and all t € [0,7T):

I(S0)(6) = B, )+ 2 [ 15t (ST (5) s
T
< o = Al )12, 50 Cuo [ (101 +1) s
0
T
+ Cuo / (PO + 11 s )13 + 1)
T
X exp (019 JACACIEESY ds),
0
hence, from (A8) and (A9) (cf. (5.4) and (5.5), respectively)
2 t
NS T @ +2 [ o0, (STon)(5)lds
0

< 6019(C3+T){C§ (|Juoll z + 02)2

+ 020 (”fH%P(O,T;H) + CQ + T)} + C%CQQ =: 021.

Hence, we get the following uniform estimate:

T
sup (s (ST Ol + [ lolts oo (St )i ) < B+
meN \0<t<T 0

From (5.3) we get

sup (sup o)+ | " plan(0)dr) < G4 Y20

meN \0<¢<Tr,
hence, from (a) in (A3)

T
s 5 C. V2C
sup( sup ||t ()| g —|—/ <p(um(t))dt> < 221 + 21
meN \0<t<T 0 C1

+¢*"T =: Ry, (5.9)

which implies {@m, }men C Ur, (ug).
Next, we see from (2) in Lemma 3.5 and (5.3), (5.9) that for any € > 0 there
exist constants Caa(e) > 0 and Coz > 0 such that the following inequality holds
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for all m € N and all s, t € [0, T] with s < &:
ot Ty 00 (ST (1))
+ [ (S (), (S (7) + 9(7 (1), Ton()) — (o ey
< (5, s 00 (Siin)(5))
te / 1(Sn) (7) + g7 o (), 5a(7)) = FDIE, oy
(o) / [P(r s 00 (Sin) (7)) + Cis)
(e i 72 + Bty (s 7) + 7, (7)) dr
hence, from (A9)
Pt T 0 (S (1)) — 95, s 00 (ST () (5.10)

(1 de) / |(Stim) ()2 7

{e(7, tim, vo 5 (Stim)(7)) + Caz}
X (|ary (lm; 7)|* 4 Bry (tms; 7) + |0, ()| x) dr

) / U + 907 (), 5 (7)) dr

)/ )+ C3l + e}

— 022(6)

T

HH &l &l

<ck(2

/—\

Taking € = § and putting Caz := Ca2(§) in (5.10), we get the following inequality
for a.a. t € (0,T):

d
%H(Sﬂm) OIF,..0) + 2t m, 005 (Sihm ) (1)) (5.11)
< Co (Jam, (tm; )|2+/332(um, t) + 1195, (1)l x) (t, T, v 5 (Stim ) (t))
+ oy (|ar, (@m; 1)|* + Bry (@ms t) + 157, (0) | x + [1F 07 + 1),
where Ca4 > 0 is given by

9c5{1 + C5(¢"* + ca)}

Cay = C22093 + 1

Applying the Gronwall lemma to (5.11), we see from (5.3) that the following
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inequality holds for all ¢t € [0,7] and m € N:
1 [t _ .
3 | 168 (I, s+ (ki3 (S5 ) 1)
T
< exp(Car [ (ama i) + By st) + 15, 0)l1x) ) (0. 0,0 0)
0

T
+ Cay (/0 (IFONZ + lar, (@n; O + Bry (@ms ) + 1|7, ()1 x +1) dt) }

Since from (A7) with (5.9) and (A9) we get the following uniform estimate:

sup (o @)1 + 1, () s

+ ||7>;1L1<0,T;X>> < Mp, (Ra) + Cs = Cos.

we see from (5.5) and (5.9) that the following inequality holds for all m € N and
all ¢ € [0,7):

| _ _
3 | IS (IR, s + b0 (7)) < Cooe (12
where C1g > 0 is given by
Cop 1= 9212 {|50(0,u07vo ;uo)| + Cag (||f||2L2(o,T;H) + Cos + T)} .

The estimate (5.12) gives the following uniform estimates (cf. See (3.11) and
(3.12)):

T
s ([ 1S3V 01,
meN \J0o
+ sup [@(t, G, vo; (Sﬁm)(t)”) <3{Co + Ci(e2R2 + 1)},

0<t<T

dt

hence, from (5.3) we get

sup (na:nnmmm sup [[im(®lls + sup sowm(t))) <Ry, (5.3
meN 0<t<T 0<t<T

where R3 > 0 is given by

. V3{Ca + Ci (2Ry + 1)}

Rs:= Ry + 3{C2 + C1 (c2R2 + 1)} c1

which implies {@m }men C Wg, (uo).
Now, we see from Lemma 2.4 that there exist a subsequence {@m, }ren of
{lim }men and an element @ € Wg, (ug) such that

Uy, = (Umy )7, — @ In C([0,T;H) as k — oo. (5.14)
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Using (b) in (A2), (b) in (A4) and Lemma 3.6, we see from (5.14) that the following
convergences hold as k — co:

Om,, — S(0;,0)vg =20 in C([0,T];X), (5.15)
(T, > Uy ) — g(@1,0)  weakly in  L*(0,T; H), (5.16)
S, — Sa i C([0,T]; H). (5.17)

From (5.3), (5.14) and (5.17) we get

Sa(t) =a(t) =a(t) in H, Vtelo,T), (5.18)
a(t)=a(T) in H, Yte|T,T), (5.19)

hence,
a(t) — a(T) in H as t T (5.20)

Finally, from the definition of S and (5.14)—(5.20) we have

w(t) + Opyp(t, @, vo s a(t) 3 f(t) — g(a(t), o(t))
in H(o(t)), aa.te(0,7),

o(t) = S(@;t,0)vg in X, Vtel0,7],

(0)=wp in H,

<

with the following estimate, which is derived from (5.13), (5.14) and implies @ €
VR3 (Uo)Z

sup [[a(t)||m + sup @(a(t)) = sup |la(t)lm + sup @(u(t)) < Rs.
0<t<T 0<t<T 0<t<T 0<t<T

Repeating the argumentation similar to the proof of Lemma 3.5, we see that there
exists a constant R4 > 0 such that

@] 20 7y + SUP @) + sup [o(t, @, v03(1))] < Ra.
0<t<T 0<t<T

Hence @ is a strong solution of (P) on [0,77], that is, the triplet (@, @, T') is an upper
bound of Y. O

Now we are ready for giving a proof of Theorem 1.3.

Proof of Theorem 1.3. Applying the Zorn lemma, we see from Lemma 5.1 that
the inductively ordered set (Z, <) has at least one maximal element (u*,v*,T*).
If T* = T is shown, from the definition of (£, <) it is clear that u* is a strong
solution of (P) on [0,7]. Hence, in the rest of this proof, it is enough to show
T* =T. For this, we assume T* < T. We see from Theorem 1.2 that there exists
a constant C* > 0 such that

1) |L20,0+m) + sup  [lu*(@®)llm + sup |ot,u”,vo5u" (1) < C*.  (5.21)
0<t<T* 0<t<T*
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Now, we define a subset C*(ug,vo) C C([0,T — T*]; H) by
C*(uo, v0) == {w € C([0,T = T"]; H) ; w(0) = u*(T7)}.

In the following argumentation, for any w € C*(ug, vg) we define a function @(w) €
C([0,T}; H) by

N A7) it te0, 1,
“@“ﬂ'_{ BE—T%) if te (T%T), (5:22)

and a family of proper l.s.c. convex functions on H, denoted by {(¢,w,v); 0 <
t < T — T*} throughout this proof, by

’ll)(t, ’LZ), ’Uo) = QO(t + T*, ﬁ(ﬁ)), ’U()) (523)
= ¢(t + T*, a(w), S(a(w);t + T, 0)vy), Vte [0,T —T%].

We consider a set X*(ug,vg) given by
X*(Uo,vo) = {{w(t7@,vo); 0<t<T— T*}, w E C*(Uo,’l}o)} .

Then, we see that (B3) is satisfied instead of (A3):
(B3) The following properties are satisfied:
(a) From (a) in (A3) we get the following inequality:
SD(Z) S 1/J(t,'u~)71)0;2), Y GC*(U(]u'UO)a
YVt e [0,T —T7], Vz € H.

(b) Assume that functions wy, Wy € C*(ug,vo) satisfy wy(t) = wa(t) in H for
all t € [0, 7] for some T € [0,T — T*]. Since from (5.22) we have @( ;t) =
@(wq;t) in H for all t € [0,T*+T)], we see from (b) in (A3) that the following
equality holds:

o(t, u(1),v0) = p(t, u(w2),v0) on H, 0<Vt<T*+T,

ot + T, u(wy),v0) = @t +T*, a(ws),v9) on H,
0<Vt<T,

which implies

w(t,’(f)l,vo) = w(t,’wz,’vo) on H, 0 < Vi < T

(¢) Assume that {Wy, }men C C*(ug, vo) and w € C*(ug, vg) satisfy the following
convergence:

UN}WL—)@ in C([O,T*T*],H) as m — Q.
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We see from (c) in (A3) that for any ¢ € [0,7T] the following convergence
holds as m — oo:

@(t, w(Wm),vo) — @(t, u(w),vo) on H(S(a(w);t,0)vo)
in the sense of Mosco,

hence, for any t € [0,T — T

PY(t, Wi, vo) —> Y(t,W,v9) on  H(S(a(w);t+T*,0)vg)
in the sense of Mosco.

Defining functions f*: [0, — T*] — H and ¢* : [0, — T*] x D(¢) x A— H
by

@) =fE+T%), g @t z0v):=g(t+T*2v),

Vit € [0,T —T*], Vz € D(p), Yv € A,
we see that (B4) and (B5) below are satisfied instead of (A4) and (A5), respectively,
as well as f* € L2(0,T — T*; H), which is easily obtained from (A10):
(B4) We see from (A4) that g* satisfies the following properties:
(a) We have

lg*(t, 2z, v)|m < L(v)\/|e(2)] +ca, VE€[0,T—T7],

Vz € D(yp), Yv € A.

(b) We have the following convergence as m — co:

—>g*(7w’5(a(w)7 : +T*,0)’U0)
weakly in  L2(0,T —T*; H)

whenever a sequence {Wm, }men C C*(ug,vo) and a function w € C*(ug, vo)
satisfy

Wy — w in C(0,T—T*;H) as m — oo.
(B5) We define a class of initial data D* by
D*:={we H; we D(0,w,vg)) for all & € C*(ug, vo)}-
From (5.21) and (5.22) we get

u(T") € D(p(T, u(w), vo)) = D(¥(0,w, v0)), Vw € C(uo, vo),
hence, u(T™) € D*.

Next, we define subsets W*(ug, vo) C V*(uo,vo) C U*(ug,vg) of C*(ug,vo) by

T—T*
U (ug,v) == {'LD € C*(up,v0); sup ||lo()||g +/O e(w(t))dt < oo} ,

0<t<T—T*
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v*<uo,vo>:={weu*<uo,vo>; sup o)l +  sup @<w<t>><oo},

0<t<T-T* 0<t<T—T*
@ 20,77y +  sup @)
" N N 0<t<T—T*
W*(ug, vp) := § W € U*(ug,vp) ; ~ ,
+ sup  p(w(t)) < oo
0<t<T-T*

and for any R > 0 we define subsets W (uo, vo) C Vi (uo,vo) and UF(ug,vo) of
Z/[(UQ, UO) by

T-T*
U (uo, vo) = {u? €U (uo,v0);  sup  [lw(t)|u +/ p(w(t)dt < R } ;
0<t<T—T* 0

%(uo,vo)::{wev*(uo,vo); sup o)+ sup M(t))gfz},

0<t<T—T* 0<t<T—T*
10" |20, 0—7=m) +  sup  [J@(t)lm
0<t<T—T*

WI*%(U(),’U()) =W e W*(UO,’U()) ) + sup @(w(t)) <R
0<t<T—T*
Then, we show (B6), (B7), (B8) and (B9) instead of (A6), (A7), (A8) and (A9),
respectively:
(B6) For any {#(t,w,v9); 0 <t <T —T*} € X*(ug,v9) we consider
{p(t,a(w),vg); 0<t<T} e X,

and apply (A6) to the family {p(t, 4(@),v9); 0 < ¢t < T}. Then, we see that for
any r > 0 there exist nonnegative functions «,.(a(w)) € L*(0,T) and B, (a(w)) €
L(0,T) such that the condition (%) is satisfied, that is, for any s,t € [0, T—T*] and
2(@(@), 5+T*) € D{p(s+T*, @), vo)) with | 2(@(@), 5+T")ls(a(a: o1 0y < 7
there exists z(a(w),s + T*,t + T*) € D(p(t + T, (W), vo)) such that

(d1) flz(a(w),s + Tt + T7) = z(@(w), s + T7) | s(a(a) ; 47+ 0)v0

/S o an(@(@) ; 7)dr

+T*

< (lp(s + T*, a(w), vo ; 2(@(w), s + T*))| + 1)

t+T*
/ B, (a(@) ;7)dr].
s+T*
Defining the families {z*(w, s); 0 < s < T-T*}, {z*(w,s,t); 0 <t <T-T*} (0 <
Vs < T — T*) and functions o (W), B(w) by the following ways:
{z*(w0,8); 0< s <T —-T*}:={z(a(w),s); 0 < s <T —T*},
{z7(w,5,8); 0<t <T =T} o= {z(u(w),s + T*,t +T7); 0<t <T —T"},
0<Vs<T-—T%
aX(w;t) == ap(u(w);t+T%), Br(w;t):= pr(a(w);t+T%),
vt e [0,7 - 17,

< (VIels + T (@), vo 3 (@), s + T)| +1)
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we get o (w) € L2(0,T—T*), 85 (w) € L*(0,T—T*), and the following inequalities:

(dl)* ||Z*(U~)7S,t) 7Z*(UN)v5)||S(12(1I));t+T*,O)vg

t
/ ar(w;T)dr

(d2)* |t 0, vo ;2% (W, 8,t) — (s, W, v0 ;2" (0, 8))]

< ([¢(s, @, v0; 2" (@, 5))| + 1)

which implies that (B6) holds.
(B7) In order to do this, we define a constant R* > R, by

1

. 4
R* = <1+ Cz> {C*+CL(eC* + 1)} +C* + 7
1

where C* > 0 is the same constant that is obtained in (5.21). Then, we have

R.> (1 + ;) {p(T7, u", w03 u™(T7))| + Cr (e2llu™(T) || + 1)}

1

(T a + 7

where u* in (T, u*,vp) denotes the prolongation of u* € C([0,T"]; H) given in
Remark 2.2, and for any R > R, the following properties are satisfied:

(a) For any @ € Uj;(uo,vo) we have

sup [ 6]+ / (i 1)) dt (5.24)

= sup [u")lg+ sup [o)|u
0<t< T 0<t<T—T*

T T-T*
+/0 o(u*(t))dt +/O o(d(t))dt < R+ C*(T* +1) =: R*,

which implies @ € Ug-(ug). Using (a) in (A7), we can consider a family
{M}(r); 0 < r < oo}, which is defined by

V7’>O, ME(T) = MR*(T):MR+C*(T*+1)(T)'
Then, we see that for any r > 0 the following uniform estimates holds:

sup  ([lew(@(@))]| 20,y + 18- (@(0))l| L2 0,1))

® € Uz, (uo vo)

< sup (flew (@) 2201y + 118r (@) 2 0,7)) < Mpg=(r),
@ € Urx (uo)
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where «,(t(w)) and B, (@(w)) are the same functions that are given in (B6),
hence,

sup ([l (@) | 20,77+ + 1185 (@) || L1 (0,7—7+)) < ME(r).

W EUR(uo,v0)

(b) We see from (5.24) and (b) in (A7) that for any r > 0 and € > 0 there exists
a constant d, . g > 0 such that

min{t+d, . r, T}
sup { sup / (|aT(a;5)|2+ﬂr(ﬂ;s)
A€ Unx (uo) Lo<t<T Jy

(S (s 5, 0)wo) [x) ds} <.

hence,

min{t+6,.c r, T—T*}
/ (Ja (s )* + By (5 5)

sup { sup
W € UF, (uo,v0) \O<E<T-T* J¢t

+||(S(a(w) ;s + T, O)vo)’||x)ds} <e,
(B8) We use the family {h(@) € WH2(0,T; H); @ € U(up)}, which is given in (AS8),
and for any w € U(ug,vy) we define a function h*(w): [0, — T*] — H by
h*(ist) = h(a(w) st +T%), Vte[0,T—T
From (A8) we have

sup {nh'(a(w))%z(omm sup [[H(@(@);0)1a
w € U* (ug,vo) 0<t<T

+ sup |¢(t7ﬂ(ﬁ’)avo;h(ﬂ(w);t)|}<C'2,
0<t<T

hence,

sup { sup M@0l +  sup |l vos A (3 8)]
@ € U (uo,v0) LOKEST—T+ 0<t<T—T*

1Y @O0} <

Finally, we give (B9) and its proof. From (A9) we see that the following uniform
boundedness holds:

sup ( sup  @(Si(a(w);t+T*,0)vp)

W EU* (ug,vo) \OKt<T —T*

(S (a(a); - +T*7o>v0>'||L1<o,T_T*;X)) < ey
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Now, we consider the Cauchy problem (P)* := {(5.25) — (5.27)}:
W' (t) + Ox )Y (t, w,vo 3 w(t)) + g* (L, w(t), 2(t)) > f*(¢) (5.25)
in H(z(t), aa.te(0,T-T7),
z(t) = S(w;t,000"(T*) in A, Vte[0,T-T"], (5.26)
w(0) =u*(T*) in H. (5.27)

Applying Theorem 1.2, we see from (A1), (A2), (B3)—(B10) that there exists a time
Ti € (0,7 —T*] such that (P)" has at least one strong solution w € W*2(0,T1; H),
and there exists a constant C* > 0 such that

|| 20,050 + sup fw(t)|lg + sup |p(t,w,z(t) ;w(t)| < C*. (5.28)
0<t<Ty 0<t<Ty

Using pairs (u*, v*) and (w, ), we define a pair (u,v) € U(ug) x WHL(0, Ty +T%; X)
by

(u*(t),v*(1)) if tel0,T*],
(u(t), v(t)) = . . . \ \
(w(t —T%),2(t — T*)) it te(T*Ty+ T

Then, we easily see from (b) in (A3) that the function w satisfies not only the
following evolution inclusion for a.a. ¢ € (0,7} + T™) and the initial condition:

u'(t) + Doyt u, vo s u(t)) + g(t,u(t), o(t)) > f(t) in H(v(t)),  (5.29)
u(0) =up in H, (5.30)
but also the equality
u(t+T*) = w(t) if tel0,11],
(or-u)(t) = . (5.31)
U(T1+T*) :’LU(Tl) if te (Tl,Tl +T*]
From (e), (f) and (g) in (A2) we get the following equality for all ¢ € [0, T*]:
v(t) =v*(t) = S(u*;t,0)vg = S(u;t, 0)vg, (5.32)
and from (5.31), (5.32) for all t € (T, Ty + T":
v(t) =20t —=T") = S(w;t—T",0)v"(T")
= (S(op=u;t—=T",0)0 S(u;T*,0)) vy
=(S(u;t, T*) o S(u;T*,0))vog = S(u;t,0)vp,

which implies that v satisfies the following equality:
v(t) = S(ust,0)vo, Vte€[0,Ty+T17]. (5.33)

Finally, (5.21), (5.28)—(5.30) and (5.33) imply that  is a strong solution of (P) on
[0, T1 +T*], which is in contradiction with the maximality of the triplet (u*, v*, T*).
So, T* = T must hold. O
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6. Application

In this section, we investigate the possibility to deal with the Cauchy problem
(T):={(6.1)-(6.8)} of a mass-conservative tumor invasion model with haptotaxis
effect as one of the examples of (P).

W)+ V- (du(v)VE—uVA(v)) =0 ae in Qr:=Qx(0,7), (6.1)

€€ (OrB(v))(u) ae. in Qr,
v = —avw ae. in Qr,
0<v<a ae in Qr,
w =dyAw —bw+cu ae. in Qr,
0<w ae in Qr,
(dy(WV)VE —uVA(v))-v=Vw-rv=0 ae on Xr:=Tx(0,T),
u(0) =wug, ©v(0)=v9, w(0)=wy ae. in O, (6.8

where  is a bounded domain in RY (N = 1,2,3) with a smooth boundary
T := 09Q; v is an outer unit normal vector on I'; d and A are smooth functions from
R into itself; B(v) is a proper l.s.c. convex function on R and GRB(U) represents the
subdifferential of B(v) on R; a triplet (ug, vo, wo) is an initial datum. The original
tumor invasion model of (T) was proposed in [2], and we entrust the explanation
of this model from the biological point of view to [2].

In what follows, we fix a constant o > 0 in (6.4). First of all, for the prescribed
data in (T) we assume that the following conditions are satisfied.

(T1) A function d, : [0,a] — (0,00) is Lipschitz continuous. Moreover, there
exist constants d; > 0 and dy > 0 such that

di <dy(v) <dz, 0<Vu<a.

(T2) A family {3(v); 0 < v < a} of proper, nonnegative, Ls.c., convex functions
B(v) on R satisfies the following conditions:
(

a) There exists a constant u* > 0 such that
D(B(v)) = {F eR; 3(@;?) < oo} =[0,u*], 0<Vv<a.
(b) There exists a constant 87 > 0 such that

0 < |B(vsre) — Blwim)| < Bilra — 1,
Vv € [0,a], Vri,re €[0,u*].
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(¢) The family of epigraphs {epif3(v); 0 < v < a} is Lipschitz continuous in
the following sense: there exists a constant 85 > 0 such that the following
inequality holds for all vy, vy € [0, af:

max {5 (epi@(vﬁ,epiﬁ(m)) 0 (epiB(vz),epiB(vl))}

< B3lvr — val,
where for any v € [0, ] the set epiB(U) is the epigraph of B(v) given by

epi B(v) := {(r1,a1) € R?; B(v;r1) < a1},

and for any subsets A, B of R? a nonnegative number §(A, B) is the semidis-
tance between A and B defined by

5(A,B):= sup { inf ||(r1’a1)_(7'27a2)||uq<2}.
(r1,a1) € A \(r2,02) € B

As the typical examples, we give the following ones, where Example 6.1 is proposed
in [8].
Example 6.1. For each v € [0, o] we define a proper, nonnegative, l.s.c., convex

function S(v) by

. rvt2 if rel0,u*],
B(v;r) = ) .
00, if re(—00,0)U (u*,00).

Example 6.2. Fixing a constant 79 > 0, for each v € [0, ] we define a proper,
nonnegative, lL.s.c., convex function 5(v) by

2

r
2 T if € 07 *7
bwir =4 a—vtyw (0,0
00, if re(—o00,0)U (u*,o00).
Then, we have (a) in (T2) and
A N r2 — 2 2u*
0< Boir) — Boir| = A2l <20 g,

a—v+v% Y
0 <Wo<a, Vry,r € [0,u"],

which implies that (b) in (T2) is satisfied. In the rest of this part, we show (c¢) in
(T2). For this, without losing generality, we assume 0 < v; < vo < a. Then, we
get B(vy ;1) < B(ve;r) for all r € R, hence, epi f(ve) C epiS(vy), which implies

) (epiﬁ(vg),epiﬁ(v1)> =0. (6.9)
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Now, for any r € [0, u*] we define a number r* € [0, r] by

. [a— U2+
=TTy —————.
a— v+

Using the mean-value theorem, we see that there exist numbers 6; € [0,1] and
02 € [0, 1] such that

1 1
_ (6.10)
a—v2+7% Qa—vU1+Y
- Vg — U1 <1)2—’l)1
{Or(a—va) + (1 =0)(a—v1) +7}2 ~ 25
and
Vo —uvr+9 — Vo —v2+ 7 (6.11)

V2 — U1 < Vo — U1
2\/92 a—v)+(1—0)(a—v)+7 270

From (6.10) and (6.11) we get the following inequality for all (r, B(vy ; 7)), which
are points on the boundary of epi (v1):

inf (r, Bvr ;7)) = (ra, a2)||p
(r2,a2) € €pi B(v2)
S min 6”27 U]_,),’I"—?”*}

= min
{<@U2+70 a—v1+7%

min , vy — 1),
{73 270} v

which implies

1 2 Ya—utyp-va-wntyn
’ va—=nvi+7

IN

2

) (epiB(vl),epiB(vg)) < mln{:o , ;Yéo} - (vg — 7). (6.12)

We see from (6.9) and (6.12) that (c) in (T2) is satisfied.

On the other hand, unfortunately, for the singular case 7y = 0; that is, for
each v € [0, )

7“2

Boir)={ a=p I rele]
00, if re(—00,0)U (u*,oc0).
and for v =«
. 0, if r=0,
Blasr) '_{ oo, if reR\{0}.

it is clear that (T2) is not satisfied.
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Moreover, we assume that the following conditions are satisfied:
(T3) A function X\: R — R is in C?—function. We define a constant C\ > 0 by

= N N ()| < Cy.
Ca Olgggal (r)] + Oglggal (r)] < Cy

(T4) a >0, b>0, ¢> 0 and dy, > 0 are constants.
(T5) We define a subset A, C W1°(Q) by

A, = {17 ceWwh>®(Q);0<9<a ae in Q} c Ccf),
and a subset D C L™(Q) x A, by
D= {(ﬂ,f)) € L>(0) x Ay ; / B(0;a)dr < oo}.
Q
Then, for any (4, ) € D we have
0<u<a ae in Q.
Moreover, we define a subset A,, C W1>°(Q) by
Ay ={weW">(Q);0<® ae in Q} CCQ).

We assume (ug, vo, wo) € D X A,,.

6.1. Real Hilbert spaces V; and V*

In order to treat the system (T) as an evolution inclusion with quasi-variational
structures, it is essential that a real Hilbert space V := H'(Q) with an inner
product (-,-)y given by

(z1,22)v = / Vz1 - Vzadr + (/ zldx> </ zgdx> , Vz1,20 €V,
Q Q Q

is considered. Actually, because of the result in [15, Appendix], we see that the
inner product (-,-)v is equivalent to the usual inner product (-,-)#1(q), which is
given by
(Zl,ZQ)Hl(Q) = / V2 - szdx—F/ z1z9dx, V21,29 € Hl(Q)
Q Q

Moreover, we consider a closed subspace V; of V defined by (1.2) whose inner
product is given by

(20,1, 20,2)vy = (20,1, 202)v = / Vzo,1 - Vzoedr, Vz1,202 € V.
Q

We denote by V* the dual space of V, V the dual space of Vp, (-, )y« y the
duality pair between V* and V| and (-, '>V0*,Vo the duality pair between V| and
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Vo. Owing to the Gelfand triplets V C L?(2) C V* and Vi C (L3(R))o C V', we
have the following equalities:

(", 2)v=v = (2%, 2)12(q), V2" € L*(Q), Vz €V, (6.13)

<Z§,20>V0*,V0 = (ZS’ZO)(LQ(Q))W VZS S (LQ(Q))O, Vz € Vo, (614)
where (L2(2))o is a closed subspace of L?(Q2) given by

(L3(Q))o := {z € L*(Q); /Qz*dx = o},

(26,1, 20 2) 220 = (201,20 2)L2(2), V2015202 € (L2(Q)o-

Moreover, we consider a projection operator P : L?(Q) — (L?(£2))o defined by
1
Pz:=z— —/ zdx, Vze L*(Q). (6.15)
9 Jo

In this subsection, we prepare some properties of real Hilbert spaces V' and V*
in order to treat a mass conservative property of (T) under the framework of evo-
lution inclusions on real Hilbert spaces.

First of all, we define a function ¢ : V* —— R by
<(Z*) = <Z*a 1>V*,Vs vz S V*a

which is surjective, i.e., ((V*) = R. Using the function ¢, we consider an equiva-
lence relation ~ on V*, which is defined by

2y ~z5 ifand only if ((27) =((23), ie., (21,D)v-v ={(z5,1)v+yv.

For any ¢ € R we put W*(¢) := {z* € V*; (z*,1)y+ v = c}. Using the Gelfand
triplet (6.13), we see that Lemma 6.3 holds.

Lemma 6.3. We have W*(c1) N W*(c2) = ) whenever ¢1 # co and
ve=|J W (o).
ceR

Moreover, for any c € R the equivalent class W*(c) is convex and weakly closed in
V*, and satisfies the following relation:

W*(c) = {zs + ﬁc| eV 25 e W*(O)} . (6.16)

Proof. Since it is easy to show that W*(c) is convex and weakly closed in V*,
we omit their proofs and only show (6.16). For any 2§ € W*(0) we consider
2+ a7 € V" Using (6.13) as a7 € L*(Q) and z =1 € V, we get

c c
z*—l—,1> =<Z*71>v*,v+<71> =,
< O ey 0 Q" /v v
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which implies 2§ + 57 € W*(c), hence,
{z;; + WC' eV e W*(O)} W (o).

Next, we use (6.13) again. Then, for any z* € W*(c¢) we get

C C
Z*_771 :<Z*71>V*7V_<71> :05
< €2 >V*,V 0/ ve v

which implies z* — & € W*(0). So, we have

c c c
Z=z"—-—= |+ -—= € z*-i—eV*;z*eW*(O)}7
( IQI) 1€ {O 1€ 0
that is,
<

w*(0) C {ZS—F Q) eV, ZS},

Hence, we see that (6.16) holds. O

Next, for any z* € W*(0) we define a function zj : Vo — R by
ES(ZO) = <Z*,Zo>v*7v, Vzo € Vj. (617)
Then, we have Lemma 6.4

Lemma 6.4. For any z* € W*(0) we have z§ € V' and

1E5lve = 2% lv-,  ¥a* € W (0). (6.18)
Moreover, the operator m : W*(0) — V", which is defined by wz* = Z§, is
injective.
Proof. Tt is clear that Z§ is linear on Vj. Because of ||zo]|v, = ||z0]|v for all zg € Vp,
we get

126 (z0)] < llzgllv-ll20llve, V20 € Vo,

which implies that Z; is bounded on Vy, that is, z§ € V', and the following
inequality holds:

v, Vz*e W*(0). (6.19)
Moreover, from (6.17) we get the following equality:

1Z6llve < 112"

(m2*, 20)vie vo = (2", 20)v= v, V2o € Vo. (6.20)

We see from (6.15) and (6.20) that the following equality holds for all z € V:

1
<Z*,PZ>V*,V + (/ ZdlC) <Z*,1>V*}V
12 Jo

|

|<z*7Z>V*,V| = (621)

= [(72], P2)vy wo| < Im2* [l P2l < w2l N2l
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which implies that the following inequality holds:

12%llv < {lwz"]

vy, V2R e WH(0). (6.22)
Hence, we see from (6.19) and (6.22) that (6.18) holds.

Next, for 27, z5 € W*(0) we assume 7z} = mz3 on Vj. Going back to (6.21),
we see that the following equality holds for all z € V:

* * 1 *
(21, 2)v=v = (21, Pz)y~yv + (|Q| /Q zda:) (27, D= v (6.23)
= (w21, Pz)vg v, = (723, P2)vs v,

1
= tns5 P + (7 [ 2) G5t
1
= (2], P2)v+v + (|Q|/QZdI> (21, v+ v = (23, 2)v= v,

which implies 2 = 25 on V*. 0

From Lemma 6.4 we can identify W*(0)(C V*) with m(W*(0))(C V'), and get
W*(0) N L2() = (L*(Q))o, (6.24)

<Z(>Jk7ZO>VO*,V0 = <Z€,Zo>v*,v, VZE'; S VV*(O)7 Vzo € Vo. (625)
For any ¢ € R we define an operator P : W*(¢) — V* by

Pzt =z"— Vz* e W*(c).

c
|’
Then, we have Lemma 6.5, which gives us some properties of the operator P}.

Lemma 6.5. For any ¢ € R the operator P} is injective and PX(W*(c)) =

c

W=*(0) C V§. Moreover, the operator PX: W*(c) — W*(0) and its inverse

(P*)=L: W*(0) — W*(c) are continuous with respect to the strong topologies
of Vi and V*, respectively.

Proof. As the direct consequence of Lemmas 6.3 and 6.4, we get PX(W*(c)) =
W*(0) C V. At first, we show that the operator P’ is injective. In order to do

c

this, we assume PXzj = PXz3 on V. From (6.13), (6.24) and (6.25) we get

* * % c * %
(et )y = <Pc gt |Q|> — (P ) vy (6.26)
V=V

= (Pr21, 20)vg vo = (Pr 21, 20) vy vy = (Pi23, 20)ve v

C
= <PC*Z>2k + Q,Zo> = <Z§,Zo>v*7v, Vzo € Vp.
1] VeV
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Using the equalities (2, 1)y« y = (23,1)v+ v = ¢, we see from (6.23) and (6.26)
that the following equality holds for all z € V:

1
(21, 2)v=,v = (2], Pz)v+v + <|Q| / Zdﬂ?) (21, Dv-v
1
= (23, Pz)y+~ v + (|Q| / zdm) (25, Dy v = (25, 2) v+ v,

which implies 27 = 25 in V*. Hence the operator P} is injective.
Next, we show that the operator Pf: W*(¢) — W*(0) is continuous with
respect to the strong topology of V*. In order to do this, we consider a sequence

{2z }men € W*(c) and a function z* € W*(c) satisfying
zr,— 2" in V¥ as m — oo.

Since we have 2, —z* € W*(0), we see from Lemma 6.4 that the following equality
holds:

1Pz — P22

Vo = ||Z;1_Z*|Vo* = ”Z;z_Z*HV*v Vn €N, (6'27)

which implies P}zy, — PXz* in V" as m — oo.

Finally, we show that the operator (P})~!: W*(0) — W*(c) is continuous

c
with respect to the strong topology of V. We consider a sequence {Zf)k,m}meN C

W*(0) and a function z§ € W*(0) satisfying
Zom — 20 In Vg as m — oo.

Since we have (P;) 'z, — (P¥)~'z5 € W*(0), we see from (6.27) that the fol-

o= (o ) - (),

lowing equality holds:
= [|20,m — 2llvg, Vn €N,

1(P2) ™ 2 — (PO 25

which implies (Pf)~ !z

c

— (PH)712f in V* as m — oc. O

0,m

From Lemmas 6.4 and 6.5 (cf. (6.24) and (6.25)) we have
P (W () NI2(Q) = (IX(Q))s, VeeR,

<P:Z*,Zo>vo*,vo = <Z*7ZO>V*,V7 Ve € R, Vz* € W*(c), Vzo € V.

From Lemmas 6.3-6.5, we get Proposition 6.6, which is obtained in [9, Lemma
1.1].
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Proposition 6.6. For any z* € V* there exists a constant ¢ € R, which is uniquely
determined, such that z* € W*(c) and the following equality holds for all z € V:

* * % c
(2%, 2)v=v = (P}z vPZ>V0*,V0 + 7|Q| /dez
%k 1 *
= <Pcz 7P2>V0*’V0 + @ del' <Z ’1>V*7V‘

6.2. Quasi-variational inner products on V;

In order to induce a quasi-variational structure of inner products of V', for any
v € A, we denote by Vj(v) a real Hilbert space Vj with an inner product

(20,1, 20,2) vy (v) *= / dy(v)V20,1 - Vzoedr, Vzo1,202 € Vo,
Q

and by Vi (v) a real Hilbert space Vj whose inner product is given by
(25,1 202)v () = (20,1, Fo(0) 25 0)vip ver V200,200 €V

where Fy(v): Vo(v) — Vi is the duality map. Using (T1), we get Lemma 6.7
which implies that (A1) is satisfied. We entrust its proof to [9, Lemmas 3.1 and
3.2] and omit it in this paper.

Lemma 6.7. The following properties are satisfied:

(a) There exist constants ¢ > 0 and é > 0 such that

allzllvy <llzollvy @ < ellizllvg, Vo e Ay, Vzg € Vi

(b) There exists a constant és > 0 such that the following inequality holds:

2 2 ~
Vi(v) © 251 Vo*(U2)| < &l — UQHc(ﬁ) |75 \2/0*(1,2);

Yy, va € Ay, V25 € V5.

[1125]

Using the family {(-,")vs); v € A,} and a function ¥ € wbti(0,T;C(Q)),
we consider a family of quasi-variational inner product of V', which is given by
{¢)ve@wey; 0 <t < T}, and see from (b) in Lemma 6.7 that the following
inequality holds for all s, t € [0, T7:

t
/ 17 ()| de

At the end of this subsection, we give Lemma 6.8, which gives the relation between
the duality maps F(0) and Fy(D).

1251 %/0*(13@)) - |\23H%/0*(5(s))| <3 HZSH%/O*(ﬁ(s))'

Lemma 6.8. For any © € A, the following equality holds for all z1, zo € V:

(F@)z1, 22)v-.v = (Fo(®) o P)z1, P}y v + (/Q o dx) (/Q 2 dx) .
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Proof. For any z1, zo € V we have

(F(f))zl,zQ)V*y:/Qdu(ﬁ)Vzl~V22dx+ </Q o dm) </Q 22dx>
- /Q A, (5)V P21 - VP2 da + ( /Q 4 da:) ( /Q zgdx>
— (Fo(5) 0 P)21, Poa)ys vy + ( [ = dx) ( [ = dx).

Hence, we see that this lemma holds. O

6.3. Evolution system on A, x A,

First of all, we denote by B : R — R the indicator function on the compact
interval [0, ], that is,

B) ::{ 0 it re0,al,

00 if re(—00,0)U(a,00),

which is proper, nonnegative, l.s.c. and convex on R. From (a) in (T2) we have
the following inequality:

2 —a? < B(r) < PBvir), VreR, Vvel0,al (6.28)

Using the function 3, we define a function ¢ : V* —s R U {oo} by

/QB(Z*)CI.’L' =0,

(") = it e D(p) = {5 e 1) f) e L)), (629
oo, if z* GV*\D( ),
In what follows, we denote by ¢y > 0 the constant
co = / ug dz. (6.30)
Q
From (T5) we have
0< = <o (6.31)
|Q|
For any T € (0,T] we define a nonempty, closed and convex subset V(co,T) of
C([0,T};V*) by

o ey () € W),
V(co, T) == {uGC([OvT]vV) o (ii(t) =0 for all t € [0, 7] }

and for any @ € V(co,T) we define a family {S(@;t,s); 0 < s <t < T} by the
following way:

S(a;t,s)(v,w) := (S1(a,w;t, s)v,Sx(u;t, s)w), V(o,0)€ A, X Ay, (6.32)
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where Sy (4, w;t,s)v and Se(;t, s)w are defined by
t
S1(l,w;t,s)v:= Vexp <a/ Sg(ﬂ;t,cr)lbdo) , (6.33)
t
Sy (i 5t, ) := et dud=blp 4 c/ et=o) A=) 5 (5 do. (6.34)

Remark 6.9. We see that the pair (0(t), w(t)) := S(@;t,s)(0,W) is a unique

strong solution to the following Cauchy problem on [s,T], which is a system de-
scribing the dynamics of MDE and ECM in tumor invasion model:

U = avW, ae. in Qx(s,T),
Wy = dyp AW — bw + cii, ae. in Qx(s,T),
Vw-v =0, a.e. on I x (s,T),
o(s) =0, a.e. in €,
w(s) = w, a.e. in Q.

Moreover, we have
0<o(z,t) <o), 0<w(x), Y(x,t)eQx][sT].

Then, we obtain Lemmas 6.10 and 6.11 in [8, Section 2], which implies that
(A2) holds.

Lemma 6.10. There exist constants Ky > 0, which depends on |||y, (qy, and
Ky > 0, which depends on ||0||w1,(q) and ||@|lw1. ), such that the following
uniform estimates hold:

sup { sup ( sup~||52(ﬁ;t, s)tDHWLoo(Q))} < Ky,

@€ V(co,T) \0<s<T \s<t<T

sup { sup <sup ||vsl<a,w;t,s>a||<mm>>w)}<K2(T+1)7 (6.35)

@€ V(co,T) \0<s<T \s<t<T
sup { sup~< sup ||(Sl(ﬂ,1b;t,s)ﬁ)’||c(9)>} < aakKj.
@€ V(co,T) Lo<s<T \ s<t<T

We see from Remark 6.9 and Lemma 6.10 that for any T € (0,7] and @ €
V(co, T) the operator S(i;t,s): A, x Ay — A, X Ay, is well-defined for all s, ¢
with 0 <s<t<T.

Lemma 6.11. We consider a family
{{S(ust,s);0<s<t<T}; Te(0,T], weV(co,T)},

where S(i;t,s) (0 < s <t <T)is the same operator that is defined by (6.32)-
(6.34). Then, the following properties (a)-(g) are satisfied:
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(a) Assume that a sequence {(Um, Um, Wm)tmen and a triplet (i, v, W)
in V(co, T) x A, X Ay, satisfy

G
in C([0,T;V*) x C(Q) x L*() as m — oo.
Then, for any s € [0,T) we have

S(ﬂm;’vs)(vmvwm) ( 7598 )(67@) in C([S,T],C(ﬁ))
x (C[s, T L2(Q)) N L2 (s, T; H' (1))

(b) Assume that a sequence {lim ymen and a function @ in V(co, T) satisfy

U — @ i C([0,T);V*) as m — oc.

Then, for any s € [0,T] we have

St 5+, 8)(0, w) — S(a;-,s)(0,w) in 0([7 T};C(Q) N H'(2))
x (C([s, T): L*() N L2 (s, T5 H(42))).

(c) S(@;t,t) is the identity operator on A, X Ay for all t € [0,T).

(d) Si(t,;-,0)0 € WHL0,T;C(Q)) for all (v,%) € Ay X Ay.

(¢) For any times T; € (0, T] and functions ; € V(co, T; [;) (i = 1,2) we assume
that there exists a time Ty € [0, min{Ty, Tb}] such that @1 (t) = ts(t) in V*
for allt €0, To). Then, we have S(iy ;t,0) = S(ia;t,0) on A, X Ay, for all
t €10, To].

(f) S(ﬂ~ s)=S(u;t, 7)o S(i;T,8) on Ay X Ay for all s,t,7 with 0 < s <7 <
t<T.

(9) The following equality holds for any T € [T, T):

S(orust,s) =St +71,s+7) on Ay X Ay,
0<Vs<Wt<T-—r.

Remark 6.12. Strictly speaking, Lemma 6.5 is not the same to (A2). Actually,
a function @ in Lemma 6.5 is in V(cg,T), not in C([0,T]; V*) \ V(co,T) in (A2).
This difference arises from the boundedness

sup_||S2(@;t, 0)d|| o) < o0,
0<t<T

which is only obtained for the case @ € V(co, T), not the case @ € C([0,T]; V*) \

V(Co,T).
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Moreover, we get Lemma 6.13, which is a direct consequence of (6.33) and
Remark 6.9.

Lemma 6.13. For any (i, 9,w) € V(co, T) x Ay, x Ay, we have

0 < (S1(a,w;ta,s)0)(x) < (S1(t,w;t,s)0)(x) <«
VeeQ, 0<Vs <Vt <Vt <T.

6.4. Quasi-variational convex functions on V;

Using the function ¢ given by (6.29), we define a function ¢.,: V5 — R U {o0}
by

. +-2) =0, if z € D(py),
Py (29) = ( |Q|) 0 € D(ges) (6.36)
00, if 2} € Vy\ D(pe)s

where the effective domain D(p,,) of ., is given by
¥ [eS) ok c
Dg) = {3 € (CHO NI 0. 50) +

Moreover, for each (a,v,w) € V(co,T) X A, x A, satisfying (@(0),v) € D, where
D is given in (T5), we define a function ., (¢, 4,0, W) := e, (@ ; S1 (@, W ;t,0)0) :
Vg — RU {oo} by

¢ 0, W;zZ) = o 6.37
Peo b 80,103 %) if 2* € D(pe,(t,u, w)), (6.37)
oo, if 2z*eV*\ D(p(ta

where the effective domain D(¢., (¢, @, 0,w)) of @, (t, @, 0, W) is defined by

D(pe, (t, 0, 0,0)) := {2* € (L*(2)o N L=(Q);

Next, we define a set X' by

i€ V(co,T), (0,1) € Ay X Ay, }

= {{@co(t7ﬁ757w)§ OStST} ; (~(0)71~}) eD

For the functions ¢., and @, (¢, @, 0,w) we have Lemma 6.14, which is obtained
in [9, Lemma 3.3] and implies that (a) and (b) in (A3) are satisfied.
Lemma 6.14. The following properties hold:

(a) The function @, is proper, nonnegative, l.s.c. and convex on V.
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(b) For any family {pe,(t, 0, 0,w); 0 <t <T} € X the function e, (t, 0,0, W)
is proper, nonnegative, l.s.c. and convex on Vj (S1(a,w ;t,0)0).

(c) For any family {@e, (t,0,0,0); 0 <t <T} € X we have
Veo (20) < oo (t, U, 0,05 25), 0<Vt<T, (6.38)
and D(pe, (t,4,w,0)) = D(pe,) for allt € [0,T].

(d) For any r > 0 the level set {z§ € Vi |25
in V.

Ve <1, e (25) <1} ois compact

T} € X (i =1,2) there

(e) Assume that for families {@eo (0, 0,0); 0 <t < 2
:ﬂ() on V* for all t € [0,T).

exists a time T € [0,T] such that i (t)
Then, we have

oo (t, U1, D, W) = P, (¢, U2, 0,W) on Vg, 0<Vt<T.
Proof. (a) Using the argumentation similar to that of (b), we can show (a). Hence,
we omit this proof and entrust it to (b).
(b) First of all, we see from (T2) that ¢, (¢, &, ¥, W) is nonnegative and convex on
Vo (Si(a,w;t 0) ). Using (a) in (T2) and (T5), we have

0<a(0)<a ae in Q
hence, from (b) in (T2)
0 < B(S1(a,w;t,0)0;6(0)) < Bia(0) < aBi ae. in Q,
which implies

(0) — %‘ € D(poy (t, 1, 5,0)), 0<Vt<T.

So we see that ¢, (t, @, 0, W) is proper. Moreover, in order to show that ¢, (¢, @, 0, W)
is Ls.c. on V§ (S1(@,w;t,0)0), we show that for any a > 0 a level set below

K(Sl(ﬂ;w§t70)6;a) = {ZS € VO*(Sl(ﬂaw;ta O)T})a @co(taﬁaﬁ ’lZ) E)k) < a}7

is closed in Vi (S1 (@, w ;t,0)0). For this, we consider a proper, nonnegative, weakly
sequentially Ls.c. and convex function (¢, @, 9,w) : L*(Q) — R U {oo}, which is
defined by

w(tvaaf}aw;Z*) = if z*¢ D(’(f) t 11,
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First of all, we note that the following equality holds:
Y, U, 0,0 ;5 2%) = e, (t, U, 0,0 ; P 2"), V2" € W¥(co) N L*(Q). (6.39)

We consider a sequence {zj ,, }nen and a function 25 in V5" (51 (@, w;t,0)0) satisfy-
ing
2o, — 2o in Vg (Si(@,w;t,0)0) as n — oo.

Since {2, }nen is bounded in (L?(£2))o, without losing generality we may assume
that the following convergence holds:

2o — 2o weakly in (L3(Q))o as n — oo,

hence,

% 2+ 2 weakly in L2(Q) as n — oo. (6.40)

it

*
ZO,n +

Using (6.39) and (6.40), we have

S Co L U €0
= tLu,0,W; 20 + — | <liminfy | t,4,0,7; 2
o 5+ o) <t s )
.o ~ o~ - * Co s . O
= lgr_l)gfapm (t,u,v,w;PcU (Zo,n + Q|)> = llnrr_l>loréf<p00 (Lu,v,w,zo’n) <a,

0;a), that is, K(S1(@,w;t,0)0;a) is closed in
0, w) is Ls.c. on V5 (S1(4,w;t,0)0).
36) and (6.37) that (6.38) holds. Moreover,

which implies 2§ € K(S1(@,w;t,0)
Vi (S1(a,w;t,0)0). Hence, ¢, (t, 4,
(c) We see from (6.28), (6.29), (6.
(6.38) implies

0
U

D(@CD(t?a?ﬂ7w)) CD(@Co)y OSVtST
Conversely, since for any z§ € D(p.,) we have

0<z8(1:)—|—|%)|§04, a.e. T € Q,

we see from (a) and (b) in (T2) that the following inequality holds for all ¢ € [0, T'|:

0= 5 (81t 73,009 0):5500) + 1

< B | #5(x) + |C((2)|) <aff, ae x€,
hence, we have ¢, (t, 4, w, ) < af7|Q| for all t € [0,T]. So we get

D(pe,) € D(pey(t,0,0,@)), 0<VE<T.
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(d) Since @¢, is ls.c. on Vj, we see that for any r > 0 the level set {zf €
Vo' lzgllve < ryowee(25) < r}is closed in Vi as well as bounded in (L*(2))o
because of the following inequality, which is derived from (6.28):

120/l (L2 @) < V' +a?[Q.
Hence the level set {z5 € Vi"; |lzgllvy <7, 9e(25) < 7} is compact in V.
(e) This property is a direct consequence of (e) in Lemma 6.10 and omit its proof

here. O

Remark 6.15. From (c) in Lemma 6.14 the family {D(p, (¢, %, ,0)); 0 < ¢ <
T} of the effective domains of ¢, (¢, %, 0, w) is independent of ¢ € [0,7] and a
choice of {p.,(¢,4,0,0); 0 <t < T} € X. Roughly speaking, in our setting the
effective domains do not change in time. Although this condition may decrease
the mathematical interest, the mass conservative property does not allow us to
move the effective domains in time.

Next, we show Lemma 6.16, which implies that the condition (c) in (A3) is
satisfied.

Lemma 6.16. Assume that a sequence {@ey(t, Um, Um, W) ; 0 <t < Thnen and
{@eo (t, 0, 0,0); 0 <t < T} in X satisfy the following convergence as m — 0o:

(T y By W) — (@, 0,@) in C([0,T]; V*) x C(Q) x L*(Q).
Then, for any t € [0,T) we have the following convergence as m — oo:

Geo (ty Uiy Dy Wi ) — P (t, Uy U, 0)  on Vi (S1(@, w;¢,0)0)
in the strong sense of Mosco.

That is, the following properties are satisfied:
(i) For any z5 € D(pe,(t, 1,0, w)) there exists a sequence {24 ,, }men in L>(S2)
with

Zom — 2 i L¥(Q) as m — oo,

: ~ ~ AL _ ~o~ s K
li @co(tyunlalumawm7zo,m) - QDCO(t,U7U7U)7ZO).
m—00

(i) For any subsequence {(Tm,, Vmy,, Wiy )} pen OF {(Tm, Omy Wm) },,en we have
Peo (b, U, 0,0 5 25) < Hminf e (¢, Uy, Dy, > Winy, 5 20 1)
k— o0
whenever a sequence {zg ;. tken and a function 25 in Vi* satisfy

2o — 2o weakly in Vi (Si(@,w;t,0)0) as k — oo,
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Proof. We use the argumentation similar to that of [8, Proposition 4.2] and [9,
Lemma 4.1].
(i) First of all, we note that the following property holds:

{5+ 12 € 12(@): 5 € Dl .00, | € D (11,5,0))

We see that for any z§ € D(p, (¢, 4, 0,w)) there exists a sequence {z% }men C
L*>(Q) such that

zr — 25+ % in L*®(Q) as m — oo, (6.41)
lgn V(b Uy Oy Ui 5 20) = Peg (, Uy U, W5 27) - (6.42)

Then, we see from (6.41) that the following convergence holds:

lim ¢, =cy, where ¢y, ::/zfnd:c, VYm € N. (6.43)
Q

m—r oo

Using the following inequality:

(P, ) (@) — 25 ()] <

(5 )|+
) [ e

we see from (6.41) and (6.43) that the following convergence holds:

*
Cm ’I’TL

—zy in L™®(Q) as m — oo. (6.44)
Moreover, from (T2) we get the following inequality:
|©co (b, T, Dy Wi 3 P 205) — Qo (b, T, B, 05 25) | (6.45)

C

IN

’w (t,ﬁm,ﬁm71])m 5 Pc*mzm + |£)|> - w(ta ﬂm,@m7 wm ) Z:n)’

+ |¢(tv Uy Uy Wiy Z;kn) — Peo (t, Uy U, W ZS)|

5 - . ~ Cm €0
< S £.0)0: * _ M —
= Aﬂ( 1(Umawm7 ? )Uvzm |Q| + |Q|)
A (Ui, Uy Wi 5 Z,) — Py (8,0, 0,05 25) |
< Bilem = col + [W(E, i, U Win 3 2) — oo (0, 0,05 25) |

Using (6.42), (6.43) and (6.45), we get

hm Geo (b Uy Vyyy Wi 3 P 2,) = Qe (E,1, 0,105 25). (6.46)
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Putting z5 ,,, := P72z, we see from (6.44) and (6.46) that the sequence {zg ,,, }men
is a desired one.
(ii) Since @e, (t, @, U, W) is weakly sequentially l.s.c. on V(S (4, ;t,0)0), we have

Geo (b, Uy U, W5 25) < hmmf Geo (b, Uy U, W5 25 1) (6.47)

)

For the case K3 := liminfy_,o @e, (¢, 4, 0,0 ; za"k) < 0o we can take out a subse-
quence of {z§7k}keN, which is denoted by the same notation here, such that

lim @, (t,4,0,%; 25 ;) = K3. (6.48)

k—o0

For any k € N we define a subset Q(t) C Q by
Qp(t) =<2 €Q;

Using (a) in (T2), we see that there exists a sequence {z} }ren C L™(Q2) such that
the following inequalities hold for all kK € N and x € Q(¢):

* * Co
o zi(z) < 20 4(w) + o

o B((Si(a,w;t,0)0)(x,t); 25 (x) < B <(Sl(ﬂ7u~};t50)17)('r t);20,(7) + &) ’
(zOk m) —ZZ(.’IJ)
< B3 (S (fimy» Wy 51,0, ) (2, 8) = (S1 (@, 3, 0)0) (1))

B <(Sl (I&zWLkaIlek i T, O)ﬂmk)(z, t) ; ZS,k(x) + |§20|)

(St o>a><x,t>;z;:<x>>]
< ﬂ; |(Sl(amk7wmk;t’0){)mk) (J?,t) - (Sl(ﬂ,ﬁ);t,())f}) (x’t)| .

Hence, from (b) in (T2) we get the following inequality for all z € Qg (t):
0<p <(Sl(ﬂ, W;t,0)0) (w,t) ;5 20 () + |c£|> (6.49)

—B ((51 (@, Wiy, 51, 0)0m, ) (2,2) 5 29, (2) + |?2)|)
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- B((Sl(ﬂ, w;t,0)0)(z,1) ; 2 (x))
< ﬁ; |(Sl(amk7wmk;ta O)ﬁmk) (.li,t) - (Sl(ﬂvw;ta 0)6) (x’t)|

5 (360t + ) - @)
< (ﬂi‘+B;)‘(Sl(umk?wmk;t70)@mk)( ) (Sl(ﬁ w; 0)6) (l',t)|.

Since from (a) in Lemma 6.10 we have the convergence

S1 (T, > Winy, 3 t5,0) 0 — S1(@,0;t,0)0 in C(Q) as m — oo,
the inequality (6.49) implies the following convergence:

Co

lim {B ((sl(a,w;w) )@, t) 525, (2) + |Q> (6.50)

k=20 Ju(t)
-3 ((Sl(amk,wmk 1, 0) ) (@, 1) 5 200 (2) + f&) } dz = 0.
Moreover, we have
Peo (S1(my s Winy 3 £, 0) T 5 25 1) (6.51)

/ BQ&@m@mmmmomw%M> )m
Qi () €]

Y

- /QB<(Sl(ﬂ,w;t,O)fD) (1) ; 20 (x )+|ng|) du
_/Qk(t) {B (S1(a@,w;t,0)d) (:c,t);zé,k(w)ﬂm)

_B ((51 (T Wiy, 58, 0)0m,,) (1) 5 25 5 () + (&) } dx.

Taking liminfy_,~ in both sides of (6.51) and using (6.47), (6.48), (6.50), we get
likm inf e, (£, Umy, s Vs Wiy s 20 1) = Kz > ey (10, 0,05 7).
—00

Next, we consider the case liminfy_, oo @e, (t, @, W, W; 2§ ) = co. For this case, we
assume
— i 3 77 7 7 . X
Ky = hkn_1>1nf Peo (ts Uy, s Oy, Wiy 3 20 ) < 00.
o0

Then, we take out a subsequence of {(tm,, Wiy Vmy, 25 ) }ren, Which is denoted
by the same notation here, such that

. ~ ~ ~ *
Ky = lim @c, (t, Umy Dy Winy, 5 20 1)
k—o0
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Repeating the argumentation similar to the case lim infy_, o @c, (£, @, 0,7 ; z(’)*k) <
00, we get (6.51). So, we take liminfy_, o in both sides of (6.51), and get the
following inequality:

which contradicts with liminfy e @e, (t, %, 0, ;25 ) = oo. Hence, (ii) is com-
pletely shown. O

Next, for the initial datum (ug, ve,wo) in (T5), we define subsets V(ug) and
W(ug) of V(co,T) by

V(ug) :={t € V(co,T); u(0) = ug},

W(UO) = {’EL S V(UQ) ) ||ﬂ/||L2(O,T;V*) < OO} .
Then, we have Lemma 6.17 which implies that (A6) is satisfied and is obtained in
[9, Lemma 4.2].

Lemma 6.17. The property (x) holds for all i € V(uo) and {¢c, (t, @, vo,wp); 0 <
t<T}eX:

there exists a constant Ks > 0 such that the following property
is satisfied: for any s € [0,T] and z§(@,s) € D(pe, (s, @, vy, wo))
(%) | we have
|peq (t, @, vo, wo 5 25 (1, 5)) — Peq (8, 1, vo, wo 5 25 (1, 5))|
< Ks[|S1(a, wo 51, 0)vo — S1(@,wo ;3 5,0)vol oy, 0 <VE<T.
Proof. In the following proof, for the simplicity we put o(t) := S1 (@, wo ;t,0)vg in
Wheo(Q) for all t € [0,7]. Using the argumentation similar to the proof of [8,

Proposition 4.2], we show this lemma. For any z{(d, s) € D(@e, (s, T, vy, wp)) we
define a subset (s, t) of Q by

B(@(I,S);ZS(ﬁ,S;w)+|C£|>
Qq(s,t):=qx€Q; .
> 3 (ﬁ(m,t);zé(ﬂ,s;x) + |£|)

For any = € Q4(s,t) we have

* ([~ c ~ * ([~ c s A~
<zo(u,s;x) + ﬁ,ﬂ (v(s);zo(u,s;x) + |§(2)|>> € epi f(0(z, t)).
Using [8, Lemma 7.3] and (T2), we see that there exists a point

(2" (5,32, B0, )3 2" (i, 5, 52))) € 0 (epi B(0(z,5)))
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which is uniquely determined, such that

Co

o Z(@,s,t;x) Szé(ﬂ,s;x)—&-@,

o B(i(x,s); 2" (i, s,t;)) §B<5(xvs)%23(ﬂys;x)+g|>,

€o

<zg(a,s;x)+|§;|,3 (’D(x,t);za‘(ﬂ,s;x)+m|>) (6.52)

_ (5*(?17 s,t;x), B(o(x,s); 2 (a, $,t§$)))

R2
= inf <z§(d,s;x)+co,
(r1,a1) € epi B(5(z,5)) €

B (ﬁ(x,t) i 25(Uy s52) + |C£|)) — (r1,a1)
< 8 (epi B(5(a. 1)), epi B(i(x.5))) < B3l6(a,t) = (a,5)].

R2

From (T2) and (6.52) we get

b (#ts) (@5 4 ) 8 (senisstasio 1y ) 659

C

(zé‘(ﬁ,s;x) + ﬁ,@ (ﬁ(m,t);zé‘(ﬂ,s;a:) + |CS;|))

S ‘

_ (5*(@7 s,tia), B(0(x, s); 2 (@ s, t; x)))

R2

"

<Zg(ﬁ’55x) + ﬁ’ﬁ (ﬁ(I,S);ZS(is;x) + I(S:'(l)>>

_ (5*(@75,,5;3;),,3(6(33,8);2*(?1,8775;33)))

R2

< Bilo(z,t) — o(x, )| + {(zo + |§2°|> - z*(fu&t;w)}

i ‘B (36095585300 + 0 ) = 5 (o,0) 5" 50t:0)

< B3lotet) ~ o)l + 51+ D { (554 ) - @sntio}
< (B + B2 + Doz, t) — o(x, 5)|.
Next, we consider the case x € 2\ Q;(s,t). Then, we have

Co Co

B (ﬁ(w,S);ZS(ﬂ,s;x) + QI) <p (6(x,t);z3(a,s;x)+ Ql) .



Perturbation theory of evolution inclusions 231

Using [8, Lemma 7.3] again, we see that there exists a point

(2" (a,s,t;z), B(0(x,t);2"(4,8,t;2))) €0 (epiﬁ(@(%t))) ,

which is uniquely determined, such that

<o
1’

° B(ﬁ(m,t) ;2% (@, s,t5x)) < B <5($7t);28(ﬂ,s;m) + |C§;J> ’

o Z¥(4,s,t;x) < z5(0,s;x) +

Co

(sia.s50)+ B (sG55 + 13

-

R2

* ([~ €0
‘(ZO(U7511‘) + @7

= inf
(r2,a2) € epi B(o(,t))

b (otes)izitasio) + 5 ) ) = ()
< 6 (epi B(0(x. ), epi Blo(x, 1)) < B[6(a.t) — B(a, )]

R2

Repeating the argumentation similar to that of the case Q4 (s,t), we get

B (17(3:, t);z5(a, s52) + |§20|) -B (17(33, s);zp(a, s5x) + &;) (6.54)
< (Br + B3 + Doz, t) — o(z, 5)].
Hence, we see from (6.53) and (6.54) that the condition (x) holds. O

At the end of this subsection, we give Lemma 6.18, which implies that (A9) is
satisfied.

Lemma 6.18. There exists a constant Kg > 0 such that

sup ( SUp ¥e, (tﬁ,Uo,wo;O)) < K.

i € V(ug) \OKILT
Proof. For any @ € V(ug), from (T2) and (6.31) we get
A . . - Co cof}y
Ogﬂ (Sl(uawOat170)v0)($vt)v@ < |Q| s a.a.a:EQ, O§Vt§T7

which implies

¢(t,ﬂ,vg,wo; ) = e, (t, U, v0,w0;0) < cofy, 0<VE<T.

o
jtl

Hence, we see that this lemma holds. O
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6.5. Haptotaxis term as perturbation on Vj

For any (2§,v) € D(p.,) x A, we define a perturbation g(zg,v): Vo — R by

(9(5,2)) (20) = /

<z3 + CO> VW) -Vzdz, Vzye V.
Q

€2

Then, we get Lemma 6.19, which implies that (a) in (A4) and (A9) are satisfied.
Lemma 6.19. For any (z5,v) € D(pe,) X A, we have g(z§,v) € Vi and there
exist a nonnegative function £ on A, and a constant K; > 0 such that for any

r > 0 the level set {v € Ay, ; €(v) < r} is compact in C(Q) and the following
inequality holds:

1920, )llvy < (V) #ey(25) + K7z, Y(z5,v) € D(pey) X Ay

Moreover, there exists a constant Kg > 0, which depends on ||vollyw1.0(q) and
llwo|lw1.(qy, such that

T
sup ( sup E(Sl(ﬁ,wo,t,O)vo) + / H(S(’LNL, wWo ;t,O)'U())/”C(Q))dt> S Kg.
@€ V(ug) \0Zt<T 0

Proof. Since the perturbation g(z§,v) is linear, we only show that g(z§,v) is
bounded on Vj. We see from (T3) that the following inequality holds for all
zo € Vo:

* * €o
1(9(25,v))(20)| < CAl|VV| (oo~ ||20 + Tl |20l v »
90l 22 ()
which implies g(z,v) € V§ and
* * Co
lgCzg, )l < Callvliw @) (|20 + 17 : (6.55)
2] L2(q)
Moreover, using the following inequality:
2 < B(r)+a?, VreR,
we get
2
¢
2+ o < 9oy (25) + 20, V5 € D(pe,)- (6.56)
9l L2 (o

From (6.55) and (6.56) we get

19(z5, V) llvy < Callvllwe @)1/ Peo (25) + 29

We see that the function £(v) := Cy||v||w1.=(q) and the constant K7 := o?|Q| are
desired ones. O

Next, we show Lemma 6.20, which implies that (b) in (A4) holds.
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Lemma 6.20. Assume that a sequence {ln, }men and a function @ in V(ug) satisfy

i — @ in C([0,T];V*) (6.57)
and * —weakly in L*(Q x (0,T)) as m — oo.

Then, for any (0,w) € A, X A,, we have the following convergence as m — 0o:

(P T, S1(tim, w5+, 0)0) — g (P2 @, S1(t, w5 -, 0)0) (6.58)
*x —weakly in  L*(0,T; V)
Proof. We assume that (6.57) is satisfied, and throughout this proof we put

O (t) := S1(Um,w;t,0)0 and 0(t) := S1(@,w;t,0)0 for all ¢ € [0,T] and m € N.
For any & € L'(0,T; V) we have

3
<Y Wi, (6.59)

i=1

/OT (/ (i (VM@ (0) = 2O VA@D)] - vsu)dw) it

where ¥, ; (i = 1,2,3) are given by

)

T
U,y = /O ( 0\ (vm(t))—/\(v(t))}um(t)Vv(t)~V§(t)dx) dt

Q
Vo= ' ([ ¥ owpanoviot - o) - Vews) at |
T

Uy e /0 ( /Q (it (1) —ﬂ(t)}X(fz(t))Vﬁ(t)~V§(t)d:c) dt

Substituting the following estimates into (6.59), which arise from (6.35);

Wyt < aCyKy(T + 1) {/OT (/Q vg(t)|dx> dt}

x ( sup ||, (t) —5(15)”0(9))’

0<t<T

T
o < ally (/ f(t)lvodt> < sup ||0m (t) —ﬁ(t)lHl(m) ;
0 0<t<T

Wpn3 = ’@m — 0, N(B(1)) V() - VE) Lo (x(0,1)), 11 (2% (0,1))

)

and using the convergences in (a) and (b) in Lemma 6.11, we get (6.58). O

6.6. Evolution inclusion with quasi-variational structures on Vj

In this subsection, we consider the Cauchy problem (E):={(6.60)—(6.63)} of an
evolution inclusion with quasi-variational structures as one of the examples of (P):

u(t) € W*(co) NL=(Q), Vte[0,T], (6.60)
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(P:Ou)l () + Ovr (w()) o (E> s wo,v0 ;3 P u(t)) + g (Phu(t),v(t)) 30 (6.61)
in V§(v(t)), a.a. t € (0,T),
(v(t),w(t)) = S(u;t,0)(vo,wo) in A, xA,, Vtel0,T], (6.62)
u(0) =up in V™. (6.63)
First of all, for the Cauchy problem (E) we show Theorem 6.22. In order to show
Theorem 6.22, for any R > 0 satisfying

2¢, (0, wo, vo ; P ug)

~2 b
51

R?>> R, =

where ¢; > 0 is the same constant that is obtained in Lemma 6.7, we prepare
subsets Vg (ug) and Wg(ug) of V(ug) defined by

Vi(uo) = {aewuo); sup [[u(®)]lv- SR},
0<t<T

WR(U()) = {a S V(UO) H ||u/||L2(07T;V*) < R} .
Then, we have Lemma 6.21.

Lemma 6.21. For any R > R, the set Wg(ug) is nonempty, convex and compact
in C([0,T); V*).

Proof. Since we easily see that Wg(ug) is nonempty and convex, we only show
that Wg(uo) is compact in C([0,T];V*). Because of the compact imbedding
L2(Q) C V*, we see that Wg(ug) is relatively compact in C([0,T]; V*) by using
the Ascoli-Arzela theorem. In the following argumentation, we show that Wg(uo)
is closed in C([0,77;V*). For this, we consider a sequence {z }men C Wg(uo)
and a function z* € C([0,T]; V*) satisfying the following convergence as m — oo:

in C([0,T];V*)
— 2" weakly in = WH2([0,T]; V™) (6.64)
x —weakly in  L>°(0,T; L*>(Q)).

hence, from (6.27) in the proof of Lemma 6.5 we have
Pl 2z, — Prz" in C(0,T;Vy) as m — oo, (6.65)
Because ¢, is nonnegative and l.s.c. on V", from (6.65) we get
Ye, (PL2"(t)) =0, Vte[0,T]. (6.66)

Hence, from (6.64) and (6.66) we have z* € Wg(up), so, Wgr(ug) is closed in
C([0,T]; V*). O

Using the argumentation similar to that in Section 4, we show Theorem 6.22,
which guarantees the existence of strong local-in-time solutions to (E).
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Theorem 6.22. There ezists a time Ty € (0,7 such that the Cauchy problem
(E) has at least one strong solution u on [0, Tp] satisfying (6.60)—(6.62) as T = Ty
and (6.63). Moreover, there exists a constant Kg > 0 such that

||u/||L2(O,To;V*) + <Su<pT Peo (tau7 Vo, Wo 3 P:O’U,(t)) < Ko,
o<t

>1o

which implies that the double obstacle conditions are satisfied:
0<u(z,t)<a, Vtel0,Ty], a.a. z€
Proof. For each @ € V(ug) we consider the following auxiliary problem (AE):

2'(t) + Ovg w1y p(t, @y vo, wo 5 2(1)) 5 —g (P a(t), o(t))
in V@), aa.te(0,T),

(0(t),w(t)) = S(a;t,0)(vo,wp) in Ay x Ay,

2(0) = PXug in V.

(AE)

Owing to Lemmas 6.3-6.21, we can apply [7, Theorem 3.1] and see that (AE)
has one and only one strong solution z(a) € W12(0,T;Vy). Fixing a constant
R > R, and using the solution z(@) to (AE), we define an operator S: Wgr(ug) —
W12(0,T; V*) by

Co

(Sa)(t) := (Pa)~'2(ast) = z(ast) + ok 0<Vt<T, YaecWg(u). (6.67)

Repeating the argumentation similar to Lemma 3.6 and using Lemma 6.5, we
see that the operator S is continuous with respect to the strong topology of

C([0,T); V*).

Next, we use the energy inequalities which are obtained in Lemmas 3.2 and 3.4.
At first, from the first energy type inequality in Lemma 3.2 and (b) in Lemma 6.7
we get the following inequality:

d . - -
%HZ(U ; t)”%/o*(ﬁ(t)) —2(2(@31), 2(@3 ) v ae))
< 53“{/@)”0(5)”2(&;t)H%/o*(ﬁ(t))a a.a. t € (0,7),

hence, from Lemmas 6.10 and 6.19

d . - -
—||z(u : t)||%/*(1~) (1)) T 20, (¢, @, vo, wo 5 2(@ 1)) (6.68)
< - 2( (P* u 0 )) ’Z(ﬂ;t))vo*(g(t)) +53||77/(t)||c(§)”z(ﬂ§t) 20*
<9¢ (@(t))HZ(U;t) 7 Wl o l12@s )1, @)
K3
<

- 1 -
(C:ﬂaKl + 2) 2@ D)1V @ + =



236 A. Tto

Applying the Gronwall lemma to (6.68), we see that there exists a constant K19 > 0
such that

T
5(t)) + / Peg (t, ’L~L, Vo, Wo ; Z(ﬂ ] t))dt < K10~ (669)

sup_|[|2(a@;¢)]f7
0<t<T

Secondly, we use the second type energy inequality in Lemma 3.4. Then, we see
from Lemma 6.17 and (6.69) that there exists a constant K7; > 0 such that the
following inequality holds for a.a. ¢t € (0,T):

d . . . - .~ -
@9060 <t7 Uu, Vo, Wo Z(U ; t)) + (Z/(U’?t)’ Z(“’?t) + g (Pcou(t)’ U(t)))vo*(f)(t))
< K1 {peo (t, @, v0,wo 5 2(@5t)) + 1} ([[0'(8) ]| oy + 1)

hence, from Lemmas 6.10 and 6.19

1 . d - -
,||z/(u ; t)||%/*(5(t)) + 7 Peo (t, @, vo,wo; 2(T;t)) (6.70)

Hg (Pra(t),o(t )HV *(5(1))
+K11{%0c0(t,u7v07w0; (@; >+1}(||77/<)||c§)+1)

- 3K2
< K1 (aaKy + 1)pe, (t, @, v0, wo 5 2(05t)) + 78 + K1 (aaKy + 1).

I /\

Applying the Gronwall lemma to (6.70), we see that there exists a constant K12 > 0
such that

HZ/<'1])||L2(O,T;VO*) + OiltlET Peo (t, U, Vo, Wy ; Z(’ﬂ, ; t)) < Ko, (671)

which implies
Yo (2(w;t)) =0, Vte[0,T).

Using (6.70) and (6.71), we see that the following inequality holds for all ¢ € [0, T'):

t 0, uo, vo, wo ; P u Kist K5t
/nz'(a;s)n%*dss 2pey (Ortto, v, w0 Fyto) 15— R+ 2,
0 0 & c1 1

where ¢; is the same constant that is obtained in Lemma 6.7 and K3 > 0 is a
constant given by

3K}
K13 = Kll(Klg + 1)((1&K1 + 1) + T
Choosing a time T > 0 so that
K13Ty
)

51

< R?-R.,
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/ s

Now, for any z§ € C([0,T]; V") we define a function Az§ by

we have

Vedt < R?. (6.72)

&) i te[0,Ty),
(T()) if te (To,T]

zZ

zZ

(Az)(t) := {

Ox O%

From (6.67) we get the following equalities:
Pr (Ao S)u)(t) = A (P (Su)(t) = Az(i;t), vVt e [0,T], (6.73)
[(AoSa)' ()l = [l (Pe,(

Hence, we see from (6.72)—

AoS)a) () llvy = (Az(@))' )llvgy, VEte[0,T]. (6.74)
6.74) that the following equality and boundedness hold:

(
(
Peo (Pr, (Ao S)u)(t)) =0, vt e[0,T],

2 2
2.dt < R?,

T
/0 (A 0 8)a)' (1))

which imply (AoS )@ € Wg(ug). Since the operator AoS is continuous with respect
to the strong topology of C([0,T];V*) and from Lemma 6.21 the set Wg(uo) is
nonempty, convex and compact in C([0,7T]; V*), we see that the operator Ao S
has at least one fixed point u, that is,

(AoS)u=wu, Vte|0,T], hence, z(ust) = Pru(t), Vte|0,Tp.

by applying the Schauder fixed-point theorem. Then, we see that the restriction
on [0,7Tp] of the function u, which is the fixed point of A o S, is a strong solution
to (E) on [0, Tp). O

In the rest of this section, we show the existence of strong solutions of (E) on
[0,T7.
Theorem 6.23. The Cauchy problem (E) has at least one strong solution u on
[0,T7].

Proof. In order to show this theorem, we use the same notation and repeat the
argumentation similar to that in Section 5. We define a set Z, which is nonempty
because of Theorem 6.22, by

@ is a strong solution of (E) on [0, 7] and
Z:={ (u,0,w,T); (0(t),w(t)) =S5(u;t,0)(vo,wo) in Ay X Ay
for all t € [0,
c U w0, T;v7) x WhH(0,T;C(Q)) x C([0, T]; L*(2) x {T},

0<T<T
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and induce an order relation < on Z by

(1,01, w1, Th) =< (g, V2, Wa, Th)
if and only if Ty <Th and @ =iy in WH2(0,Ty; V*).

Then, we see that the ordered set (£, =) is inductively ordered. Actually, we let
Y be any linearly ordered subset of Z and define a quadruple (4, 9,w,T) by

T = sup {T € (0,1]; (w,0,w,T) € V},

(a(t),o(t), w(t)) = (a(t), v(t),w(t)) in V*x A, x Ay, Vtel[0,T]
whenever we have (u,v,w,T) € Y.

We easily see that the triplet (4, lzD,T) is uniquely determined. Now, we can
take out a sequence {(Um, Tm, Wm, Tm) tmen C Y satisfying

T T as m— oo,
(P i) (1) + Oy (0,0 () oo (E Ty Vo, wo Pc"‘oﬂm(t))_+ 9 (P5am(t), 5, (1) 0
in V5(0m(t), aa.te(0,Ty),
(O (t), Wi () = S(Um ;,0)(vg, wp) in A, x Ay, Vte[0,T],
Um(0) =ug in V™.
Using Theorem 6.22, we see that there exists a sequence {K,} C (0,00) such that

Nl r2(0. 20 v) + SUD P (t; T, Vo, wo 5 Prt T (1)) < Ky,
0<t<Tm

Hence, we have
e (Porim(t)) =0, Vte [0,T,,], Vm €N, (6.75)

which implies that there exists a constant K14 > 0, which is independent of m € N,
such that

sup( sup ||t (t)]

ve | < Ky (6.76)
meN \ 0<t<Ty,
because of the double constraints condition (cf. (6.75)):
0<tm(x,t)<a, Vte[0,T,], aa xc, VmecN.

For any m € N we consider a sequence {Um, }men C V(ug) defined by

(t) it tel0,T,],

U (t) == (ﬂm)Tm(t){ a:(fm) if te(T,T),
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and consider the Cauchy problem (E), := {(6.77) — (6.79)}:

Zn(8) + 0 (5 (1)) Peo (E Ty 00, W 5 Zm (1)) 3 —g (Pl (1), U (t))  (6.77)
in Vy5(o(t)), aa. t € (0,7T),

(O (8), Wi () = S(Um ;¢,0)(vg, wp) in A, X Ay, Vte[0,T], (6.78)

Zm(0) = Prug in Vg, (6.79)

We see from Lemma 6.5 that there exists a constant K5 > 0, which depends on
llvollw1. 2y and |Jwol[w1.0 (), such that the following uniform estimate holds:

sup{ sup (||1Em(t)||W1,oc(Q) + [V () || (o0 (2)) ¥ (6.80)
meN Lo<e<T

. |a:n<t>||c<m)} < Kus.

Using Lemma 3.4, we see from Lemmas 6.10 and 6.17 that there exists a constant
K16 > 0, which depend on [[uollv;s, [|[vollw.ec (@) and [Jwol|w1. (), such that the
following inequality holds for all m € N and a.a. ¢t € (0,7):

d . - - . .~ .
%@co (t; Um,, Vo, Wo 5 zm(t» + (Z;n(t)?zin(t) +9 (Pcoum(t)7vm(t)))VO*(f)m(t))
S KIG {SOCO (taﬂ/ma Vo, Wo 5 Zm(t>) + 1} ’

hence, from Lemma 6.14

1, . d _ N
§||Z;n(t)| %/;(ﬁm(t)) + g Peo (, U, vo, wo ; Zm (1))

3¢2 5 - - -
< 2 g (0), B )5 + K L (1m0, 100 (1)) + 1)
K16 {(pC() (t7 am7 Vo, Wo 5 2m(t)) + 1}

02 2
# 22 (s 0(0n(0) e (P (0) + 7}

2 \o<i<T

IN

Using (1) in Lemma 6.14 and (6.75), we get the following inequality for a.a. t €
(0,7):

d . . 1,
7 Peo (t, Tm, vo, wo ; Zm (t)) + 5\\%(0”%@*(%@)) (6.81)

< KlG‘pco (t, Uy, V0, WO 3 gm(t)) + K7,
where the constant K7 > 0 is given by

32K K2

K7 := 5
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Applying the Gronwall lemma to (6.81), we get the following uniform estimates:

sup (510, e O, v 00 1)) (6.52)
meN \0<t<T
. p K17\ ker
S Peo (Oau()aUO»wOvPcOuO) + =€ )
K
P, 2 e K7 | kr
sup 120, (E) |5 dt < = { @eo (0,10, v, wo ; Phug) + —— e . (6.83)
meN Jo 0 & Kie
From (6.75), (6.76), (6.82), (6.83) and the following equality
VmeN, Zn(t)=Plun(t) in Vi(om), Vtel0,Tml, (6.84)

we get the following uniform estimate:

sup {Hﬂ;nHLz(O,T;V*) + sup ¢, (Pc*odm(t))}
0<t<T

me

2 K
S \/02 {SDC() (0,U()7'UO7U)() 5 PC*OUO) + [{17} 6K16T7

1 16

which implies that the sequence {Um, fmen is relatively compact in C([0,T]; V*)
and bounded in W2(0,T;V*). Hence, we see that there exist a subsequence
{fim, tken Of {@mmen and an element @ € C([0,T);V*) N WH2(0,T;V*) such
that
Um, — @ in C([0,T];V*) and (6.85)
weakly in - W'2(0,T;V*) as k — oo,
hence,
Sty, — St in C([0,T);Vy) as k— 0. (6.86)
From (6.84), (6.85) and (6.86) we get the following equality:
(a(t),o(t),w(t)) = (a(t), 5(t),D(t)) on Vi x Ay x Ay, Vte[0,T), (6.87)
=1z in C([0,T];Vy). (6.88)
We see from (6.87) and (6.88) that the function @ is a strong solution of (E) below
on [0,77:
(P @) (t) + By sy (G, vo, wo ; Pra(t)) + g (Pra(t), o(t) 20
in Vg(o(t)), a.a. te(0,T),
(5(t), w(t)) = S(@;t,0)(vo, wo) in Ay x Ay, Vte[0,T],
w(0) =uo in V.

Hence we see that the triplet (4, o, w, T) is an upper bound of ).

Finally, we can easily show Theorem 6.22 by repeating the argumentation
similar to the proof of Theorem 1.3 and omit it in this proof. O
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6.7. Mass-conservative tumor invasion model

At the beginning of this subsection, we give the definition of strong solutions to
(T) on [0,T].

Definition 6.24. A triplet (u,v,w) is called a strong solution to (T) on [0, 7] if
and only if the following conditions are satisfied:

(1) we WH2(0,T; V)N L>(0,T; L?()) with u(0) = ug in V*, and there exists
a function € L?(0,7T;V) such that for any 2 € V and a.a. t € (0,T) the
following variational equality holds with the quasi-variational double obstacle
condition (6.90):

(W' (), 2)ve v+ (Flo@®)n(t),2)v-v — (/Q n(t) dx) (/Q zdx) (6.89)
. /Qu(t)V)\(v(t)) Ve dx,

nepw();u() aa xze, Vielo,T]. (6.90)
(2) v e C([0,T);C(Q) N V)N WL(0,T; L>=(Q)), and it is expressed by
v(z,t) = (S(u,wo ;t,0)vo)(x,t)

¢
= vo(x) exp (/ w(x,s)ds) , V(z,t) € Qx[0,T].

0
(3) we Wh2(0,T; L2(Q2)) N L>=(0,T; WH°(£)), and it is expressed by

¢
w(t) = etldwB by, 4 c/ et dwl=b)y (sVds, Vt e [0,T).
0

Next, we give Theorem 6.23, which is given in [9, Theorem 1.3].

Theorem 6.25. A triplet (u,v,w) is a strong solution to (T) on [0,T] if and only
if it satisfies (1) instead of (1), which is stated below, and (2), (3) in Definition
0.24:

(1) u(t) € W*(co) for allt € [0,T], which is called a mass conservative property
of (T) in this paper and enables us to consider Pxu instead of u. Then,
Prue Wh2(0,T; Vg ) N L (0,T5 (L*(2))o) with P} u(0) = e uo in Vg and
there exists a function n € L?(0,T;V) such that for any 2o € Vo and a.a.
t € (0,T) the following quasi-variational equality holds with (6.90):

((Pau) (£): 20y, v, + (Fo(v(t)) © P)n(t), 20) vy, v (6.91)

= (g (Pxu(t),v(t)) ’ZO>VO*,V0 '
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Proof. Let a triplet (u,v,w) be a strong solution to (T) on [0,7]. Substituting
z=1€V in (6.89), we get
d

(W), )y v = = u(t)dt =0, a.a.te (0,T), (6.92)
Q

hence,

(wlt) Vv = |

Q
which implies u(t) € W*(cp) for all t € [0,T]. Moreover, we see from Proposi-
tion 6.6 and (6.92) that for any zg € V; and all ¢ € [0,T] we have

W (t), z0) v v = (W' (t), 20)ve vy = ((Pru)’ (t)’20>v0*,v0'

Hence, we see from Lemma 6.8 that (6.91) holds.

u(t) dtz/uo dx =co, Vte]0,T),
Q

Conversely, we assume that (1)’ holds. Then, we see from Lemma 6.8 and
(6.91) that the following equality holds for all z € V and a.a. t € (0,7):

(Pu?) (0,72}, + (F 0000, 2w = ([ n(0yae) ([ 2a) 099

= (g(u(t), v(t), P=)v: vy = / w(B)VAW()) - V2 da.

Because of u(t) € W*(co) for all ¢ € [0,T], we have u(s) — u(t) € W*(0) for all
s,t € [0,T]. Using Proposition 6.6 and (6.25), we see that the following equality
holds for all z € V:

(u(s) —u(t), z)v=v = (u(s) —u(t), PZ>V0*,V0 (6.94)
= (Piu(s) — P u(t), PZ>VO*,V0‘
Dividing the both sides of (6.94) by (¢ — s) and taking the limit s — ¢, we get

(W' (t),2)v=v = <(Pc*ou)’ (t)’PZ>VO*,V0’ a.a. t € (0,T), (6.95)

e (1), 2)ve | < || (Peg) )]y 1Pl

< [[(Pru) ()]

Vs

v z|lvy, aa.te(0,T),
which implies
[ @llv- < [|(Pu)" )]

hence, u' € W12(0,T;V*). Finally, we see from (6.93) and (6.95) that (6.89)
holds. O

e A t e (0,7),
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Concerning the relation between (E) and (T), we show Theorem 6.26 at first.

Theorem 6.26. Let a triplet (u,v,w) be a strong solution to (T) on [0,T]. Then,
the function u is a strong solution to (E) on [0,T].

Before giving the proof of Theorem 6.26, we prepare Lemma 6.27.

Lemma 6.27. Assume that 2§ € D(pq, (7)) and there exists a function n € V
such that

n(z) € B (ﬁ(w) ;20 (x) + |c£|> , aax €. (6.96)
Then, we have (Fo(0) o P)n € 6\/0*(5)@00 (03 25).

Proof. From (6.96) we have

n(a:){r<zs+|§2‘]>}gﬁ<@;r>é(a;z3+f&), (6.97)
VreR, a.a.ze€l

Hence, we see from (6.97) that the following inequality holds for all yg € D(¢pc, (0)):

An(yé—zé)dmﬁ[)ﬁ(ﬁ;yé—l—g) dm—/ﬂﬁ(ﬁ;za‘—i—a) dx. (6.98)

Moreover, we have

[ ntwi =)o = [ = z5)Pude = (5 =5 Pl ey, (699)
= (W0 — 20, Py vy, = (Fo(0) © P) 1,95 — 25) ;-
Hence, from (6.98) and (6.99) we get
(Fo(@) 0 PY1 3 — 26)vs < 9eol08) — $ea(23)s Vi € Di{soea (1)),
which implies (Fo(0) o P) 1 € Oy (5) ey (U5 25)- O
Using Lemma 6.27, we show Theorem 6.26.

Proof of Theorem 6.26. We let a triplet (u,v,w) a strong solution to (T) on [0, 7.
From Theorem 6.25 we have P} u(t) € D(pc,(t,u,vo, wo)) for all t € (0,T) and

C

the following equality holds for all z§ € V and a.a. ¢t € (0,T):
((Payu) (), Fy H(0(t)25 )y, + ((Foo() o PYu(t), Fy H(0(t))25 )y
= (g (Pult).v(0) , Fy 0(0)25) ..
hence,
(Po)' (1):28) v oy + (E00(0)) © Ph(e). 28 ooy
= (9 (PLu(). v(1)) . 28) v o -
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with
nEﬁ(v(t);P* ()+|Q|> aa. .z €, Viel0,T).
Using Lemma 6.27, we get the following inclusion for a.a. ¢ € (0,7T):
(Fo(v(t)) o P)n(t) = — (Pau)’ (t) + g (P u(t), v(t))
€ v (v(t)) Peo (s 1, v0, wo 5 Pl u(t)) .

Hence, we see that the function w is a strong solution to (E) on [0, 7. O

In the rest of this subsection, we find the condition under which strong solutions
to (E) on [0,T] also become strong solutions to (T) on [0,7]. In order to do
this, for v € A, we define a proper, nonnegative, l.s.c. and convex function
p(v): V¥ — RU{oo} by

/sz dx

p(0;2%) = if z* e D(p(p) == {2* € L¥(Q); B(5;7) € L)},
oo, if z* e V*\ D(p(®)).

Since we can show that the function ¢(?) is l.s.c. on V* by using the argumentation
similar to ¢.,(?) in Lemma 6.10, we omit its proof here.

Next, we consider conjugate functions ¢} : Vo — RU {oo} and ¢ : V +—
R U {00}, which are defined by (6.100) and (6.101), respectively, and investigate
the relation between ., (0) and ¢(?):

SOZO (/D ; ZO) ‘= sup {<y8’ ZU>V0*,V0 — Peq (ﬁvyg) ; yé € ‘/0*} ,  Vzg € W, (6100)

O (0;2) =sup {(y*, 2)v~v —@(0;y*); ¥y €V}, VzeV. (6.101)
Then, we have Lemma 6.28.
Lemma 6.28. The following inequality holds for all z € V:

* [~ * [~ G
i (03 Pz) < o (v;z)—‘ﬁo| dex.

Proof. From (6.101) we have

(", 2)v- v —p(0;y") < *(0;2), Vy* € D(p(D)). (6.102)

From Proposition 6.6 and (6.102) the following inequality holds for all y* €
D(p()) N W*(co):

(P2 " P2y i + M/zdm ( |Q> <oM:2). (6.103)
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Since we have D(pc,(0)) = P (D(¢(0)) N W*(co))), we see from (6.103) that the
following inequality holds for all ¥} € D(p¢,(0)):

* ~ * Co * [~
(Wo: Pz)vg e —wco(v;yo)Jr@/dewS ©*(;2). (6.104)

We see from (6.101) and (6.104) that this lemma holds. O
Next, we show Proposition 6.29.

Proposition 6.29. Assume that the following equality holds for all m € V and
veEA,:

* [~ %/~ C
r, (0 Pn) = 9" (057) — 6‘ ndz. (6.105)

Then, the following conditions (a) and (b) are equivalent.

(a) z* € D(p(0)) N W*(co) and there exists a function z € V such that the
following equality holds:

O (052) +(0;2") = (2", 2) L2()- (6.106)

(b) z5 € D(pe, (D)) and there exists a function z € V' such that the following
equality holds:

G (03 P2) + 9oy (5:28) = (28 P2) (1262, (6.107)

Proof. We assume that (a) holds. Using (6.106) and substituting the following

equality;

Co
2t =P+ o

we have the following equality:

cp*(v;z)—l—go(v Pr 2"+ ) (P* ¥ ) )
€] |Q| L2(Q)

hence, from (6.105)

Co

gazo(@;Pz)—i—gpcO(v;Pc*oz*)—(P* * |Q| ) zdx

L2(Q) |Q|
= (P:OZ*7Z)L2(Q) = (PC*OZ*,PZ)(L%Q))U-

Hence, we see that P} z* € D(p.,(7)) is a required one as z in (b).
Conversely, we assume that (b) holds. Using (6.107) and considering the fol-

lowing function

Co

a (6.108)

*
2¥=z5+
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we have z* € D(p(0)) N W*(co) and

Pro (U3 P2) + e, (17;2*—60> = (z*—CO,Pz) .
1 191 @@

We see from (6.105) that the following equality holds:

ot (5:P2) + ooy ( _ m') — (532) + (532

Co Co
= z¥— — ) (Pz dw—i——/zdm
G- s g |

« Co 1 > Co «
= 25— — z—— [ zdx |de + — | zdxr = (2", 2)12(Q)-
L) Gl Q Jo 2= e

Hence, we see that the function z* given by (6.108) is a required one in (a). O

Using [8, Proposition 3.5] and [9, Lemma 3.5], we have Corollary 6.30 to Propo-
sition 6.29.

Corollary 6.30. Assume that (6.105) holds for all z € V. Then, the following
three conditions (c), (d) and (e) are equivalent.

(c) z* € D(p(®)) N W*(co) and there exists a function z € V' such that

z(z) € p(v(z); 2% (x)) a.a. €.

(d) z* € D(p(0)) NW*(co) and there exists a function z € V such that F(0)z €
Ov=@)p(V;27).
(e) 25 € D(pe,(0)) and there exists a function z € V' such that (Fo(0) o P)z €
g (5)Peo (U5 25)-
Proof. We entrust the proof of (¢) < (d) to [8, Proposition 3.5] and [9, Lemma
3.5], and omit it in this proof. We only show (d) < (e).

We assume that (d) holds. Because of F(0)z € dy-(5)0(0;2"), we see that the
following equality holds:

@ (052) +@(0;27) = (25, F(0)2)y=(5) = (2", 2) vy = (27, 2) 2()-  (6.109)
As you see from the proof of (a) = (b) in Proposition 6.29, we see from (6.109)
that the following equality holds:
91 P2) 4 0oy (05 P2 = (P22, P2 uocan, (6.110)
= <P;0Z*,PZ>VU*,VO = (PC*()Z*’ (Fo(ﬁ) (¢] P)Z)VO*(,D)

We see that (6.110) implies (Fo(0) o P)z € Oy (5)Pe, (0 Poy2*). That is, Py 2" €
D(pc, (D)) is a required one as zj, hence, we see that (e) holds .
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Conversely, we assume that (e) holds. Because of (Fy(9)oP)z € Oy (5)Pey (75 25)s
we see that the following equality holds:

P20 (05 P2) + 0y (U5 25) = (25, (Fo(0) 0 P)2)vg () (6.111)
= <ZS’PZ>VO*7V0 = (ZS,PZ)(Lz(Q))U.

As you see from the proof of (b) = (a) in Proposition 6.29 again, we see from
(6.111) that the following equality holds:

* [~ ~ * Co * Co
P (0;2) + ¢ (U;Zo +> = (Zo +,z>
€2 10"/ L2
Cp Co ~
={(zp+:,2 = z*Jr,F(v)z) ,
< Y] >V*,V ( Y] V(@)

which implies

F(v)z € Oy (17;28 + |C£|> .

That is, the following function

+@ € D(p(9)) N W*(co)

is a required one as z*, hence, we see that (d) holds. O]

Finally, we obtain Theorem 6.23 as a result of Theorem 6.22, Proposition 6.29
and Corollary 6.30.

Theorem 6.31. Assume that (6.105) holds for alln € V* and © € A,. Then,
the triplet (u,v,w) is a strong solution to (T) on [0,T] if a function u is a strong
solution to (E) on [0,T].

Proof. We assume that a function w is a strong solution to (E) on [0,T]. From
(6.61) we have

- (Pc*ou)l (t) — g (Pr, v(t)) € s (u(t)) Peo (t,u,v0, wo ; P2 u(t)),
1n VO( (t)), a.a.te(0,71).

We have P} u(t) € D(@c,(t,u, v, wp)) for a.a. ¢t € (0,T) and see from Corollary
6.30 that there exists a function € L?(0,T; V) such that the following equality
holds for a.a. ¢t € (0,T):

(Fo(u(t)) o P)n(t) = — (Piu) (t) — g (PXu(t), v(t))
€ Ovs (u()Peo (B u,v0,w0) ;s Pru(t)) in Vi (u(t).

Hence, we see that (6.91) in Theorem 6.25 is satisfied. Using Corollary 6.30, we
get

u(t) € D(p(v(t)) NW*(co), n€ B(t);u(t)) aa ze, Vtel0,T].

Hence, we see that the triplet (u, v, w) is a strong solution to (T) on [0, T]. O
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Remark 6.32. From Theorems 6.26 and 6.31 we see that the initial-boundary
value problem (T) of mass-conservative tumor invasion model is equivalent to the
Cauchy problem (E) of an evolution inclusion with quasi-variational structures
under the condition (6.105). In order to show (6.105), from Lemma 6.28 it is
enough to show that the following inequality holds for all n € V and © € A,:

* (-~ * ([~ ¢
e (05 P) > (v;n)—m/ﬂnd%
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