
Rend. Mat. Appl. (7).
Volume 43 (2022), 251–266

RENDICONTI DI MATEMATICA
E DELLE SUE APPLICAZIONI

Connected components of moduli spaces of irreducible
holomorphic symplectic manifolds of Kummer type

Claudio Onorati

Abstract. In this paper we determine the number of connected components of moduli spaces of

both marked and polarised irreducible holomorphic symplectic manifolds deformation equivalent

to generalised Kummer varieties.

1. Introduction

An irreducible holomorphic symplectic manifold X is a simply connected compact
Kähler manifold with an everywhere nondegenerate holomorphic 2-form that is
unique up to constant. They are seen as higher dimensional analogous to K3 sur-
faces, that are the lowest dimensional example, and with which they share a lot of
properties. The existence of the nondegenerate form implies that the dimension
is even. For any n ≥ 2, Beauville constructed two families of irreducible holomor-
phic symplectic manifolds of dimension 2n, which are not deformation equivalent
each other ([2]). These families are constructed starting from Hilbert schemes of
points on K3 and abelian surfaces, and are respectively called Hilbert powers of
K3 surfaces and generalised Kummer varieties. Together with two sporadic fam-
ilies constructed by O’Grady in dimension 6 and 10 (see [18] and [17]), and not
deformation equivalent to the previous ones, these are all the known deformation
types of irreducible holomorphic symplectic manifolds. The question whether this
is a complete list or not is still open. In this paper we investigate some topological
properties of moduli spaces of one of these types, namely the generalised Kummer
deformation type, and we simply refer to these manifolds as manifolds of Kummer
type.

More precisely we focus on moduli problems. Fixed a deformation type, one
can costruct moduli spaces of marked and polarised irreducible holomorphic sym-
plectic manifolds. These moduli spaces behave very much like the corresponding
moduli spaces of K3 surfaces. For example, we have local and global Torelli theo-
rems that create a bridge between geometry and combinatorics (see for example [5]
and [9]). We address the topological question: how many connected components
do these moduli spaces have?

For K3 surfaces it is known that the marked moduli space has two connected
components, corresponding to the two pairs (S, η) and (S,−η), where S is a K3
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surface and η is a marking. In other words, this reflects the fact that the mon-
odromy group Mon2(K3) has index 2 in the isometry group O(H2(K3,Z)), and
−id is not a monodromy operator. On the other hand, fixing a polarisation does
not add connected components, i.e. the moduli space of polarised K3 surfaces is
connected (this is mostly a consequence of the fact that the K3 lattice H2(K3,Z) is
unimodular). It is quite natural to ask what is the situation in higher dimensions.

Let us also point out that determining the number of connected components
also gives information about the geometry itself. If X and X ′ are two non-
birational irreducible holomorphic symplectic manifolds, that are Hodge isometric
(i.e. they have the same period), then there exist markings η and η′ such that (X, η)
and (X ′, η′) belong to different connected components. This is a consequence of
the Hodge-theoretic Torelli theorem ([9, Theorem 1.3]). For example, Namikawa
noticed that the generalised Kummer varieties constructed on an abelian surface
and its dual are not birational, at least when A is generic, but they are Hodge iso-
metric ([15]). Markman and Mehrotra also constructed a Hodge isometry between
this two varieties in [12]. As a consequence one deduces that the moduli space
of marked manifolds of Kummer type has always at least four connected compo-
nents, and this bound is reached in the special situation when n+ 1 is the power
of a prime (recall that 2n is the dimension of the manifold). Even though similar
phenomena appear for Hilbert powers of K3 surfaces as well in certain dimensions
(cf. [8, Proposition 4.10]), when n− 1 is the power of a prime the moduli space of
marked manifolds of K3[n] type has only two connected components. This differ-
ence between Hilbert powers of K3 surfaces and generalised Kummer varieties is
due to the aforementioned Namikawa phenomenon, which is very geometrical in
nature.

As we recall in Section 2, the set of connected components is strictly related
to the shape of the monodromy group. Monodromy groups are important gadgets
attached to any irreducible holomorphic symplectic manifolds, that can be naively
thought of as groups of geometric isometries of the H2 lattice (see Definition 2.2).
Their computation is paramount to study the geometry of irreducible holomorphic
symplectic manifolds, and they have now be computed in all the known deforma-
tion classes (see [7] for the K3[n] type, [13] and [11] for the Kummer type, [14] for
the OG6 type, and [19] for the OG10 type).

Apostolov in [1] computes the number of connected components of moduli
spaces of both marked and polarised irreducible holomorphic symplectic manifolds
deformation equivalent to Hilbert powers of K3 surfaces. We extend his results
to manifolds of Kummer type. Since the Beauville–Bogomolov–Fujiki lattice of
Hilbert powers of K3 surfaces and generalised Kummer varieties are both of the
form L ⊕ 〈l〉, where L is unimodular and l2 < 0, our result is, as expected, very
similar to Apostolov’s result.

The main result of the paper is the following.

Theorem 1.1. Let n ≥ 2.

1. (Corollary 4.2) The moduli space of marked irreducible holomorphic sym-
plectic manifolds of Kummer type has 2ρ(n+1)+1 connected components, where
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ρ(k) is the number of distinct primes in the factorisation of k.

2. (Theorem 5.5) The moduli space of polarised irreducible holomorphic sym-
plectic manifolds of Kummer type is not connected in general. Moreover, the
number of connected components can get arbitrarily large as the degree of the
polarisation increases (see Theorem 5.5 for the precise statement).

The main tool used to prove the Theorem 1.1 above is a characterisation of
(polarised) parallel transport operators in terms of a distinguished orbit of prim-
itive embeddings of the Beauville–Bogomolov–Fujiki lattice in the Mukai lattice
(see Proposition 3.6 and the Corollary thereafter). This characterisation solves [9,
Problem 10.3] for manifolds of Kummer type.

Plan of the paper. In Section 2 we recall the main definitions, notations and
background to state and prove the results in the rest of the paper. In Section 3 we
recall the definition of generalised Kummer varieties and give a characterisation of
(polarised) parallel transport operators (cf. Proposition 3.6). In Section 4 we focus
on the moduli space of marked irreducible holomorphic symplectic manifolds of
Kummer type; in Section 5 we focus on the moduli space of polarised irreducible
holomorphic symplectic manifolds of Kummer type.

Note added in proof. This manuscript has lived a long time as a preprint
before being submitted for publication. In the meantime progresses have been
done in the understanding of the other two known deformation types, namely the
so-called OG6 and OG10 deformation types. It has been proved in [14] and [19]
that in both these cases the monodromy group is maximal, i.e. it coincides with the
group of orientation preserving isometries. In particular the number of connected
components is easy to compute in these cases: we have two connected components
for the moduli space of marked manifolds of type OG6 and OG10 (corresponding
to change the sign of the marking), and only one connected component for the
moduli space of polarised manifolds with fixed polarisation type.

2. Preliminaries and notations

Definition 2.1. A compact Kähler manifold X is called irreducible holomorphic
symplectic if it is simply connected and H0(X,Ω2

X) = CσX , where σX is nonde-
generate at any point.

It follows directly from the definition that H2(X,Z) is a torsion free Z-module;
it turns out to be a lattice thanks to the Beauville–Bogomolov–Fujiki form qX (see
for example [2]). This lattice structure is paramount to study the geometry of an
irreducible holomorphic symplectic manifold X; we refer to [5] and [9] for a detailed
account of results on their geometry.

Let X1 and X2 be two irreducible holomorphic symplectic manifolds that are
deformation equivalent.
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Definition 2.2. We say that g : H2(X1,Z) → H2(X2,Z) is a parallel transport
operator if there exists a family p : X → B, points b1, b2 ∈ B and isomorphisms
ϕi : Xi

∼−→ Xbi such that the composition (ϕ∗2)−1 ◦ g ◦ ϕ∗1 is the parallel transport
inside the local system R2p∗Z along a path γ from b1 to b2. Here R2p∗Z is endowed
with the Gauss–Manin connection.

When X1 = X2 = X and γ is a loop we talk about monodromy operators.
Such isometries form a subgroup Mon2(X) of the orthogonal group O(H2(X,Z)),
called monodromy group.

Remark 2.3. If X is an irreducible holomorphic symplectic manifold, the Beauvil-
le–Bogomolov–Fujiki lattice H2(X,Z) has signature (3, b2(X)−3). As shown in [9,

Lemma 4.1], the cone C̃X of positive classes H2(X,R) (not to be confused with the

positive cone of X) has a 1-dimensional cohomology space, i.e. H2(C̃X ,Z) ∼= Z.
A choice of a generator is usually referred to as an orientation of H2(X,Z). Any

isometry of H2(X,Z) induces an automorphism of H2(C̃X ,Z), and an isometry is
said to be orientation preserving if it is in the kernel of the map O(H2(X,Z))→
Aut(H2(C̃X ,Z)) ∼= Z2. By a direct check, or again by [9, Lemma 4.1], reflections
around vectors of degree −2 are orientation preserving; reflections around vectors
of degree 2 are not orientation preserving. We remark that, up to a sign, this
definition of orientation preserving isometry coincides with the notion of spinor
norm in lattice theory.

If now ωX is a Kähler class and σX is a holomorphic symplectic 2-form, then
the positive 3-space 〈Re(σX), Im(σX), ωX〉 ⊂ H2(X,R) determines a preferred ori-
entation: in fact, by [9, Lemma 4.1] again, for any positive 3-space W in H2(X,R),

the space W \ 0 is a retract of C̃X . Notice that the orientation so defined does not
depend on the choice of the Kähler class, nor on the choice of the symplectic form
(see [9, Section 4]). In particular, if g : H2(X,Z)→ H2(Y,Z) is an isometry, then
we say that g is orientation preserving if it preserves the preferred orientations of
X and Y .

Notice that, by definition, any parallel transport operator is orientation pre-
serving. If O+(H2(X,Z)) denotes the group of orientation preserving isometries,
then Mon2(X) ⊂ O+(H2(X,Z)).

Let Λ be a lattice. A marking is an isometry η : H2(X,Z)→ Λ. We denote by
MΛ the moduli space parametrising pairs (X, η) where X has a fixed deformation
type, and η is a marking. MΛ is a smooth (but not Hausdorff) complex manifold
of dimension rk Λ−2 (complex charts are given by Kuranishi spaces Def(X)). Let
ΞΛ be the set of connected components of MΛ.

The group O(Λ) acts on MΛ by changing the marking, and the induced action
on ΞΛ is transitive. Moreover, the stabiliser of a connected component is a group
isomorphic to the monodromy group (see [9] for the detailed statement). Therefore,
the cardinality of ΞΛ is equal to the index of the monodromy group Mon2(X) in
O(H2(X,Z)), where X is any irreducible holomorphic symplectic manifold in MΛ.
By [6, Theorem 2.6] and [20, Theorem 3.5.(iv), Theorem 7.2], this number is finite.

Now, let h ∈ Λ be a primitive and positive element; we denote by h̄ the O(Λ)-
orbit determined by h. The moduli space Ma

h̄
parametrising triples (X,H, η),
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where η is a marking and H is a polarisation on X such that η(c1(H)) ∈ h̄, is the
moduli space of marked polarised irreducible holomorphic symplectic manifolds of
type h̄ (cf. [9, Section 7]). If we denote by Mt,a

h̄
a connected component of Ma

h̄
,

then by [9, Lemma 8.1] there is an isomorphism of analytic spaces

Ma
h̄/O(Λ) ∼= Mt,a

h̄
/Γ,

where Γ is an arithmetic subgroup of O(Λ) isomorphic to the subgroup of the
monodromy group preserving the polarisation.

By [9, Lemma 8.3] (cf. also [4, Theorem 1.5]), the quotient Vt
h̄

:= Mt,a

h̄
/Γ ∼=

Ma
h̄
/O(Λ) is (analytically) isomorphic to a connected component of the moduli

space Vn,d of polarised irreducible holomorphic symplectic manifolds of dimension
2n and with a polarisation of degree d. Here and after by degree we always mean
the Beauville–Bogomolov–Fujiki degree. The moduli space Vn,d exists as a quasi-
projective variety with quotient singularities (cf. [21]).

In [9], the moduli space

Vh̄ :=
∐
Vth̄

is referred to as the moduli space of polarised irreducible holomorphic symplectic
manifolds of type h̄.

Recall that the divisibility div(h) of a non-zero and primitive element h ∈ Λ
is the positve generator of the ideal (h,Λ) ⊂ Z. Notice that this number always
divides the determinant of Λ. Fixing the degree and the divisibility of h does not
determine its orbit h̄ in general. If Vn,d,δ ⊂ Vn,d is the sub-moduli space in which
the polarisation has divisibility δ, then

Vn,d,δ ∼=
∐
Vh̄,

where the disjoint union runs over all the O(Λ)-orbits of elements h with degree
d and divisibility δ. In particular, if Υn,d,δ is the set of connected components of
Vn,d,δ, then

Υn,d,δ =
∐

Υh̄.

Notice that all these sets are finite.
The sub-moduli spaces Vn,d,δ are the main objects in Section 5.

3. Generalised Kummer varieties and a characterisation of
parallel transport operators

The main characters of this paper are the so-called generalised Kummer varieties.
We recall the two main constructions of such manifolds.

Example 1 ([2]). Let A be an abelian surface and n ≥ 2. The Hilbert scheme
A[n+1] of (n + 1)-points on A is smooth and its Albanese map a : A[n+1] → A is
just the sum map (defined using the group structure of A). If p ∈ A, then the
fibre a−1(p) =: Kumn(A) is an irreducible holomorphic symplectic manifold of
dimension 2n.
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Let A be an abelian surface. The even cohomology ring

Heven(A,Z) = H0(A,Z)⊕H2(A,Z)⊕H4(A,Z)

has a natural quadratic form

(α1, α2, α3)2 =

∫
A

(α2
2 − 2α1α3)

turning it into an even unimodular lattice called Mukai lattice. It has signature
(4, 4) and is isometric to the abstract lattice Λ̃ := U⊕4, where U is the hyperbolic
plane.

Example 2 ([23]). Let again A be an abelian surface and let v ∈ Heven(A,Z) be
a primitive and effective Mukai vector such that v2 ≥ 6 (see [23, Definition 0.1]).
The moduli space Mv(A) (with respect to a v-generic polarisation) is again smooth
and the Albanese map is

a : Mv(A) −→ A×A∨

defined by
a(E) = (det (F(E)⊗ F(E0)∨) ,det(E)⊗ det(E0)∨) ,

where F is the Fourier–Mukai transform, E0 ∈Mv(A) is fixed and A∨ = Pic0(A) is
the dual abelian variety. The fibre a−1(E0) =: Kv(A) is an irreducible holomorphic

symplectic manifold of dimension v2 − 2 deformation equivalent to Kum
v2

2 −1(A).

Any irreducible holomorphic symplectic manifold deformation equivalent to
one of the examples above is called of Kummer type. If X is one such manifold,
the lattice structure on H2(X,Z) is isometric to

Λn := U⊕3 ⊕ 〈−2n− 2〉, (3.1)

where U is the hyperbolic plane.
The discriminant group AX of an irreducible holomorphic symplectic manifold

is the quotient H2(X,Z)∗/H2(X,Z); any isometry g ∈ O(H2(X,Z)) naturally acts
on AX . Define

W (X) = {g ∈ O(H2(X,Z)) | g acts as ± id on AX} (3.2)

and consider the associated character χ : W (X) −→ {±1}. Let f : W (X) −→ {±1}
be the map f(g) = χ(g) det(g) and define

N(X) = ker f. (3.3)

Remark 3.1. If u ∈ H2(X,Z) is such that q(u) = ±2, define the reflections

ρu(v) =

{
v + q(u, v)u q(v) = −2
−v + q(u, v)u q(v) = 2

(3.4)

Notice that W (X) is the group generated by products of reflections ρu, where
(u, u) = ±2 ([8, Lemma 4.2]). It follows that N(X) is the group generated by
products ρu1 · · · ρuk

, where (uj , uj) = −2 for an even number of indices, and
(uj , uj) = 2 for the remaining ones.
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Proposition 3.2 ([13, Theorem 2.3]). Let X be an irreducible holomorphic sym-
plectic manifold of Kummer type. Then

Mon2(X) = N(X).

When X = Kv(A) is a moduli space as in Example 2, we have a natural
isometry H2(X,Z) ∼= v⊥ and so a natural primitive embedding iv : H2(X,Z) →
Heven(A,Z) ∼= Λ̃.

Remark 3.3. Notice that if g ∈W (X) then it extends to the lattice Heven(A,Z),
i.e. there exists an isometry g̃ ∈ O(Heven(A,Z)) such that g̃|H2(X,Z) = g ([16,
Proposition 1.5.1]).

Let O(Λn, Λ̃) be the set of primitive embeddings of Λn inside Λ̃. Both O(Λn)

and O(Λ̃) act on O(Λn, Λ̃) by, respectively, pre- and post-composition.

Proposition 3.4 ([22, Theorem 4.9]). There exists a distinguished Mon2(X)-

invariant O(Λ̃)-orbit

[iX ] ∈ O(Λ̃)\O(H2(X,Z), Λ̃).

Let us recall how this orbit is constructed. Deform X to Kv(A) and pick
a parallel transport operator P : H2(X,Z) → H2(Kv(A),Z). As we said above,
there exists a distinguished primitive embedding iv : H2(K(v),Z) → Heven(A,Z)

and hence a distinguished O(Λ̃)-orbit [iv] ∈ O(Λ̃)\O(H2(K(v),Z), Λ̃). Put then

[iX ] := [iv ◦ P ] ∈ O(Λ̃)\O(H2(X,Z), Λ̃).

Remark 3.5. Notice that W (X) is identified with the stabiliser with respect to

the O+(H2(X,Z))-action of [iX ] in O(Λ̃)\O(H2(X,Z), Λ̃) ([8, Lemma 4.3]).

Proposition 3.6. Let X1 and X2 be two irreducible holomorphic symplectic man-
ifolds of Kummer type, and let g : H2(X1,Z)→ H2(X2,Z) be an orientation pre-
serving isometry. Then,

1. if g is a parallel transport operator, then [iX1
] = [iX2

] ◦ g;

2. if [iX1
] = [iX2

] ◦ g, then either g is a parallel transport operator or τX2
◦ g is,

where τX2 is any element in W (X2) \N(X2).

Notice that since N(X) has index 2 in W (X), the choice of τX2 is essentially
unique.

Proof. Assume first that g is a parallel transport operator. Let us deform both X1

and X2 to the same moduli space Kv(A) and pick two parallel transport operators
Pi : H

2(Xi,Z) → H2(Kv(A),Z). By assumption on g, we can choose P1 = P2 ◦ g
and then

[iX1
] = [iv ◦ P1] = [iv ◦ P2 ◦ g] = [iv ◦ P2] ◦ g = [iX2

] ◦ g
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by the definition of [iX ].
Vice versa, let us suppose that [iX1

] = [iX2
] ◦ g. Since X1 and X2 are de-

formation equivalent, we can pick a parallel transport operator f : H2(X2,Z) →
H2(X1,Z) and by the previous part of the proof we have [iX2

] = [iX1
]◦f . Putting

together these two equalities, we get the relation [iX1 ] = [iX1 ] ◦ (f ◦ g), that is
f ◦ g ∈W (X1).

If f ◦ g ∈ N(X1), then we conclude as before. If f ◦ g /∈ N(X1), then there
exists h ∈W (X1) \N(X1) such that h ◦ f ◦ g ∈ N(X1) is a monodromy operator.
As before, the composition (f−1 ◦ h ◦ f) ◦ g is a parallel transport operator and
f−1 ◦ h ◦ f = τX is the required element in W (X1) but not in N(X1).

Now let (X1, H1) and (X2, H2) be two polarised deformation equivalent irre-
ducible holomorphic symplectic manifolds. Let us put hi := c1(Hi) for conve-
nience. Using [9, Proposition 7.4], we get the following corollary.

Corollary 3.7. Suppose X1 and X2 are irreducible holomorphic symplectic man-
ifolds of generalised Kummer type, and let g : H2(X1,Z) → H2(X2,Z) be an ori-
entation preserving isometry. Then:

1. if g is a polarised parallel transport operator, then [iX1 ] = [iX2 ] ◦ g and
g(h1) = h2;

2. if [iX1
] = [iX2

] ◦ g and g(h1) = h2, then either g is a polarised parallel
transport operator or there exists an element u ∈ H2(X2,Z), with (u, u) =
−2 and (u, h2) = 0, such that ρu ◦ g is a parallel transport operator.

Proof. By Remark 3.1, ρu is an element in W (X2) but not in N(X2) as soon as
(u, u) = −2. The only thing to prove is then the existence of elements u such that
(u, u) = −2 and (u, h2) = 0. Since (−2)-elements exist in hyperbolic planes, this
follows from the Eichler criterion ([3, Proposition 3.3]).

4. Moduli spaces of marked irreducible holomorphic symplec-
tic manifolds

Let Λn = U⊕3 ⊕ 〈−2n − 2〉 be the abstract lattice of an irreducible holomorphic
symplectic manifold of dimension 2n of Kummer type, and MΛn

the moduli space
of marked irreducible holomorphic symplectic manifolds of Kummer type. We
denote by Ξn the set of connected components of MΛn .

By Remark 2.3, any X comes with a preferred orientation on H2(X,Z) (in-
duced by the choice of a Kähler class and a holomorphic symplectic class). If η
is a marking, then η induces an orientation on the abstract lattice Λn. (As in
Remark 2.3, one defines the orientation of a lattice Λ of signature (3, t) to be a

generator of H2(C̃Λ,Z), where C̃Λ is the cone of positive vectors - see [9, Sec-
tion 4].) Let us call orient(X, η) this orientation. As explained in [9, Section 4],
the induced orientation map

orient : Ξn −→ orient(Λn) = {±1},
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defined by sending each connected component Mt
Λn

to orient(X, η) for any (X, η) ∈
Mt

Λn
, is well defined and independent of the choice of (X, η). Essentially this is

due to the fact that if (X1, η1) and (X2, η2) are in the same connected component,
then the composition η−1

2 ◦ η1 is a parallel transport operator, and hence it is
orientation preserving.

On the other hand we can define the map

orb: Ξn −→ O(Λ̃)\O(Λn, Λ̃)

by sending Mt
Λn

to [iX ]◦η−1, where (X, η) ∈Mt
Λn

. This is well defined, because if
(X ′, η′) ∈Mt

Λn
is another marked pair, then the composition η−1 ◦ η′ is a parallel

transport operator and, by Proposition 3.6, [iX′ ] ◦ η′−1 = [iX ] ◦ η−1.

Proposition 4.1. The product map

orb× orient : Ξn −→ O(Λ̃)\O(Λn, Λ̃)× {±1}

is 2:1 and surjective.

Proof. It directly follows from Proposition 3.6.

Corollary 4.2. The number of connected components of the moduli space MΛn

of marked irreducible holomorphic symplectic manifolds of Kummer type is

|Ξn| = 2ρ(n+1)+1,

where ρ(k) is the number of distinct primes in the factorisation of k.

Proof. According to [8, Lemma 4.3.(1)], the cardinality of O(Λ̃)\O(Λn, Λ̃) is equal
to 2ρ(n+1)−1. Hence the claim follows directly from Proposition 4.1.

5. Moduli spaces of polarised irreducible holomorphic sym-
plectic manifolds

Let Λn be the abstract lattice of an irreducible holomorphic symplectic manifold
of dimension 2n of Kummer type and let h ∈ Λn be a primitive element such
that (h, h) = 2d > 0 (notice that Λn is even). Denote by h̄ the O(Λn)-orbit of
h. Recall from Section 2 that Vt

h̄
= Mh̄/O(Λn) is (isomorphic to) one connected

component of the moduli space of polarised irreducible holomorphic symplectic
manifolds (X,H) of dimension 2n and such that qX(c1(H)) = 2d. If δ is a positive
divisor of 2n + 2, then Vn,d,δ ∼=

∐
Vt
h̄

is (isomorphic to) the moduli space of
polarised manifolds with polarisation of degree 2d and divisibility δ. Here the sum
runs over all the O(Λn)-orbits of vectors of degree 2d and divisibility δ, and over
all the connected components of the moduli space Vh̄ (see Section 2). We want to
compute the cardinality of the set Υn,d,δ of conneceted components of Vn,d,δ.

Let (X,H) ∈Mh̄/O(Λn) be a polarised pair and pick a representative i ∈ [iX ].

The orthogonal complement i(H2(X,Z))⊥ ⊂ Λ̃ is a positive rank 1 sublattice. If
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T(X,H) is the saturation of the lattice generated by i(H2(X,Z))⊥ and i(c1(H)),

then T(X,H) is a positive and primitive rank 2 sublattice of Λ̃.
Notice that if i′ is another representative of [iX ], then there exists an isometry

g̃ ∈ O(Λ̃) which restricts to an isometry g ∈ O(T(X,h)). Moreover, by construction
g(i(c1(H))) = i′(c1(H)).

This suggests the definition of the following set

Σn =

{
(T, h)

∣∣∣∣ T positive rank 2 lattice and h ∈ T
primitive s.t. h⊥ = 〈2n+ 2〉

}
/ ∼,

where (T, h) ∼ (T ′, h′) if there exists an isometry g : T → T ′ such that g(h) = h′.
We denote by [T, h] the equivalence classes.

Remark 5.1. By [16, Theorem 1.1.2], T can be primitively embedded in Λ̃ in a

unique way (up to an isometry of Λ̃).

Now let I(X) be the set of positive and primitive classes in H2(X,Z). There
is a well-defined map

fX : I(X) −→ Σn

defined by sending h ∈ I(X) to [T(X,h), i(h)] for any i ∈ [iX ]. In the following, we
drop the dependence on [iX ] from the notation and we simply write [T (X,h), h].

Proposition 5.2. Given two polarised pairs (X1, H1) and (X2, H2) of manifolds
of Kummer type, a polarised parallel transport operator between them exists if and
only if fX1

(c1(H1)) = fX2
(c1(H2)).

The following proof is a translation to our case of the proof of [1, Proposi-
tion 1.6]. For sake of notation, we put hi = c1(H1).

Proof. Suppose that P : H2(X1,Z) → H2(X2,Z) is a polarised parallel transport
operator. By [9, Proposition 7.4] and Corollary 3.7, we immediately get an isom-

etry g̃ ∈ O(Λ̃) which restricts to an isometry g : T(X1,h1) → T(X2,h2) such that
g(h1) = h2.

Vice versa, suppose that such an isometry g exists. In particular T(X1,h1)

has two primitive embeddings inside Λ̃, the second one given by composing the
natural embedding T(X2,h2) ⊂ Λ̃ with g. By Remark 5.1, there exists a unique
(up to isometry) such primitive embedding and hence there exists an isometry

g̃ ∈ O(Λ̃) such that the diagram

Λ̃
g̃ // Λ̃

T(X1,h1)

?�

OO

g // T(X2,h2)

?�

OO
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commutes.
Since g̃(i1(H2(X1,Z))) = i2(H2(X2,Z)), it follows that g̃ restricts to an isom-

etry P from H2(X1, h1) to H2(X2, h2). Here i1 ∈ [iX1
] and i2 ∈ [iX2

], and we
have a commutative diagram

Λ̃
g̃ // Λ̃

H2(X1,Z)
?�

i1

OO

P // H2(X2,Z).
?�

i2

OO

In particular [iX2 ]◦P = [iX1 ] and P (h1) = h2. By Corollary 3.7, we get a polarised
parallel transport operator from P as long as P is orientation preserving.

Let us then suppose that P is not orientation preserving. Let us pick an
element u ∈ H2(X2,Z) such that (u, u) = 2 and (u, h2) = 0, and let us consider the
reflection ρu. Since ρu is orientation preserving by definition and ρu(h2) = −h2,
then P ′ = −ρu◦P is an orientation preserving isometry such that [iX2 ]◦P ′ = [iX2 ]
and P ′(h2) = h2, and we can apply Corollary 3.7 to produce a polarised parallel
transport operator.

Remark 5.3. fX is a faithful monodromy invariant, as defined in [10, Section 5.3].

For the next result, we define Vn :=
∐
Vh̄, where the disjoint union runs

over all the O(Λ)-orbits (in particular, we are not even fixing the degree of the
polarisation). The set of the connected components of Vn is denoted by Υn =∐

Υh̄. Furthermore, define Σn,d,δ ⊂ Σn as the subset consisting of pairs [T, h]
such that (h, h) = 2d and div(h) = δ; notice that Σn =

∐
Σn,d,δ.

The existence of a polarised parallel transport operator between (X1, H1) and
(X2, H2) is equivalent to saying that (X1, H1) and (X2, H2) belong to the same
connected component.

Proposition 5.4. There exists a well-defined injective map

f : Υn −→ Σn (5.1)

defined by sending a connected component Vt
h̄

to fX(c1(H)), for any (X,H) ∈ Vt
h̄

.
Moreover, f(Υn,d,δ) = Σn,d,δ.

Proof. The proof is the same as the proof of [1, Theorem 1.7, Proposition 2.3], up
to use Proposition 5.2 above istead of [1, Proposition 1.6].

In the rest of this section we want to compute the cardinality of Σn,d,δ. The
first remark is that a pair [T, h] ∈ Σn is completely determined by the primitive
embedding j : 〈h〉 → T such that j(h)⊥ = 〈2n+2〉. Therefore we want to count the
number of such primitive embeddings. Let us note that, by [16, Theorem 1.1.2],

without loss of generality we can think of both 〈h〉 and T as sublattices of Λ̃.
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The main result of this section is the following. First of all, we make the
following definitions (which will be useful during the proof of the theorem below):

d1 =
2d

gcd(2d, 2n+ 2)
, n1 =

2n+ 2

gcd(2d, 2n+ 2)
, g =

gcd(2d, 2n+ 2)

δ

w = gcd(g, δ), g1 =
g

w
, δ1 =

δ

w
.

(5.2)

Furthermore, the following notation is used in the statement of the main theorem:
for an integer l we write φ(l) for the Euler function and ρ(l) for the number of
distinct primes in the factorisation of l; for w and δ1 as defined above, we write
w = w+(δ1)w−(δ1), where w+(δ1) is the product of all powers of the primes that
appear in the factorisation of w and that divide gcd(w, δ1) (that is, w−(δ1) is the
part coprime to δ1). More precisely, if pk is a factor of w and p divides gcd(w, δ1),
then pk is a factor of w+(δ1).

Theorem 5.5. With the notations as above, we have:

1. |Υn,d,δ| = w+(δ1)φ(w−(δ1))2ρ(δ1)−1 if δ > 2 and one of the following holds:

(a) g1 is even, gcd(d1, δ1) = 1 = gcd(n1, δ1) and −d1/n1 is a quadratic
residue mod δ1;

(b) g1, δ1 and d1 are odd, gcd(d1, δ1) = 1 = gcd(n1, 2δ1) and −d1/n1 is a
quadratic residue mod 2δ1;

(c) g1, δ1 and w are odd, d1 is even, gcd(d1, δ1) = 1 = gcd(n1, 2δ1) and
−d1/4n1 is a quadratic residue mod δ1.

2. |Υn,d,δ| = w+(δ1)φ(w−(δ1))2ρ(δ1/2)−1 if δ > 2, g1 is odd, , gcd(d1, δ1) = 1 =
gcd(n1, 2δ1), δ1 is even and −d1/n1 is a quadratic residue mod 2δ1.

3. |Υn,d,δ| = 1 if δ ≤ 2 and one of the following holds:

(a) g1 is even, gcd(d1, δ1) = 1 = gcd(n1, δ1) and −d1/n1 is a quadratic
residue mod δ1;

(b) g1, δ1 and d1 are odd, gcd(d1, δ1) = 1 = gcd(n1, 2δ1) and −d1/n1 is a
quadratic residue mod 2δ1;

(c) g1, δ1 and w are odd, d1 is even, gcd(d1, δ1) = 1 = gcd(n1, 2δ1) and
−d1/4n1 is a quadratic residue mod δ1;

(d) g1 is odd, δ1 is even, gcd(d1, δ1) = 1 = gcd(n1, 2δ1) and −d1/n1 is a
quadratic residue mod 2δ1.

4. |Υn,d,δ| = 0 otherwise.

Proof. Using the bijection (5.1) and the discussion above, |Υn,d,δ| = |Σn,d,δ| and
the latter is the number of primitive embeddings j : 〈2d〉 → T such that j(〈2d〉)⊥ =
〈2n+ 2〉.
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By [16, Proposition 1.5.1], an embedding j : 〈2d〉 → T is determined by the
pair (H, γ), where H ⊂ A2d is a subgroup, γ : H → A2n+2 is an injective homo-
morphism and the pushout Γγ = H ⊂ A2d⊕A2n+2 is isotropic. Since we have also
fixed div(h) = δ, it follows that H must be of order δ (see [1, Proposition 2.2]).

Remark 5.6. Recall that two pairs (H, γ) and (H ′, γ′) determine the same prim-
itive embedding j if H = H ′ and there exist an isometry ϕ ∈ O(〈2d〉) ∼= Z/2Z and
an isometry ψ ∈ O(〈2n+ 2〉) ∼= Z/2Z such that γ ◦ ϕ = ψ ◦ γ′ ([16, Section 5]).

Identifying A2d with Z/2dZ and picking generators h of 〈2d〉 and v of 〈2n+2〉,
we can write H = 〈h/δ〉. Then γ is uniquely determined by the image γ(h/δ) =
cv/δ, where c is coprime with δ. The isotropy condition is

2d

δ2
+
c2(2n+ 2)

δ2
≡ 0 (mod 2). (5.3)

Substituting (5.2) in equation (5.3), we eventually get

δ1

(
2d

δ2
+
c2(2n+ 2)

δ2

)
= g1(d1 + c2n1) ≡ 0 (mod 2δ1). (5.4)

The problem is now reduced to determine all the solutions c of equation (5.4)
such that gcd(c, δ) = 1. This problem has already been solved by Gritsenko,
Hulek and Sankaran in the proof of [4, Proposition 3.6]. Since we are interested in
isometric embeddings, we have to understand which of these solutions are invariant
under the isometries in Remark 5.6. Both O(〈2d〉) and O(〈2n + 2〉) act on H by
changing the sign of the first, respectively the second, coordinate. Moreover, notice
that H has a central symmetry, i.e. (x, y) ∈ H if and only if (−x,−y) ∈ H. We
can then distinguish two cases:

• δ ≤ 2: then any subgroup H is fixed by this action and the number of
solutions c corresponds to the number of primitive embeddings;

• δ > 2: then there are no fixed subgroups H and we must divide the number
of solutions c by 2.

This concludes the proof.

Remark 5.7. When w = 1, the values of d and δ determine the orbit of h, i.e.
Vn,d,δ = Vh̄ (cf. [4, Corollary 3.7]).

We conclude this section by giving a few examples.

Example 3. If δ = 1, then the orbit of h is determined and moreover the corre-
sponding moduli space is connected.

Example 4. Let p and q be two (different) odd primes and put δ = d = pq and
n+ 1 = mpq, where gcd(m, pq) = 1 and −m is a quadratic residue mod pq. Then
the moduli space Vn,d,δ has two connected components.
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Example 5. If gcd(2d, 2n + 2) is square free, then w = 1 (cf. [4, Remark 3.13]).
This is the case, for example, when 2n+ 2 is square free.

Example 6. Let X be a fourfold of Kummer type. Then 2n + 2 = 6 is square
free, so that w = 1 and the values of the degree and the divisibility determine the
O(Λ2)-orbit of the polarisation (see Example 5 and Remark 5.7). We claim that
the moduli space V2,d,δ = Vh̄ is always connected.

In fact suppose that h = c1(H) is the class of a polarisation on X with qX(h) =
2d and div(h) = δ.

1. If δ = 1, then this is Example 3.

2. If δ = 2, then 2d = 8k− 6 for some integer k. We have two cases: either k is
a multiple of 3, or k is coprime to 3. In the first case d1 = 4k′ − 1, n1 = 1,
g1 = 3 and −d1/n1 = 1 − 4k′ ≡ 1 mod 4. In the second case d1 = 4k − 3,
n1 = 3, g1 = 1 and −d1/n1 = 9 − 12k ≡ 1 mod 4. In both cases we have
just one connected component by Theorem 5.5.(3.(d)).

3. If δ = 3, then 2d = 18k − 6t2 for some integer t coprime to 3. Then
d1 = 3k − t2, n1 = 1, g1 = 2 and −d1/n1 ≡ t2 mod 3 is a quadratic
residue. Then the claim follows from Theorem 5.5.(1.(a)).

4. If δ = 6, then 2d = 72k − 6t2 for some integer t coprime to 6. Then
d1 = 12k − t2, n1 = 1, g1 = 1 and −d1/n1 ≡ t2 mod 12 is a quadratic
residue. The claim follows from Theorem 5.5.(2).

Example 7. Let X be a manifold of Kummer type of dimension 6, and suppose
that h is the class of a polarisation such that div(h) = 4. The degree qX(h) = 2d
must be of the form 2d = 32k − 8t2, with t coprime to 4 and one can check that
g = w = 2. Therefore we are in the situation of Theorem 5.5.(2) and the number
of conncted components of V3,d,4 is 2.

To conclude, let us remark that the number of connected components can get
arbitrarily large as the dimension and the degree of the polarisation increase.
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