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On a family of Euler-type numbers and polynomials

Claudio Pita-Ruiz

Abstract. We consider a family of Euler-type polynomials, depending on a real parameter

α 6= 0, 1. The case α = 2 corresponds to standard Euler polynomials. We show some properties

of these polynomials, and show also two generalized recurrences. As consequences of these

results, we obtain several explicit formulas for Euler numbers and polynomials.

1. Introduction

Euler polynomials Ep(x) can be defined by the generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, (1.1)

or by the explicit formula [2, p. 48]

Ep(x) =

p∑
k=0

(
p

k

)
Ek
2k

(
x− 1

2

)p−k
, (1.2)

where Ek is the k-th Euler number: Ek = 2kEk
(
1
2

)
. Together with Bernoulli

polynomials, Euler polynomials have been some of the predilect objects for math-
emathicians during the last three centuries; the interest continues nowadays, ob-
taining new explicit formulas for them and new formulas where they are involved
(see [3, 4, 5, 6, 8, 10, 12]).

In a previous work [9] we studied a generalization of Stirling numbers of the
second kind, namely

Sa,x(p, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(a(k − j) + x)

p
, (1.3)

where a, x are arbitrary complex numbers, a 6= 0. Two examples are

S1,0(p, k) = S(p, k),

S1,1(p, k) = S(p+ 1, k + 1). (1.4)

If k < 0 or k > p we have Sa,x(p, k) = 0.
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In this work we use results for the generalized Stirling numbers (GSN, for
short) of the type S1,x(p, k), contained in [9], to study a generalization of Euler
polynomials and numbers. (In [7] we used the GSN S1,x(p, k) to obtain some
results involving Bernoulli polynomials.)

We summarize next some facts about the GSN S1,x(p, k).

• Some values:

S1,x(p, 0) =xp,

S1,x(p, 1) = (x+ 1)p− xp,

S1,x(p, 2) =
1

2
(x+ 2)p− (x+ 1)p+

1

2
xp,

...

S1,x(p, p) = 1.

• The GSN S1,x(p, k) can be written in terms of standard Stirling numbers as
follows:

S1,x(p, k) =
1

k!

p∑
j=0

(
p

j

)
(x−m)p−j

m∑
t=0

(
m

t

)
(k + t)!S(j, k + t), (1.5)

where m is an arbitrary non-negative integer, and also as:

S1,x(p, k) =

p∑
j=0

(
p

j

)
(x−n)p−j

n−1∑
t=0

(−1)ts(n, n− t)S(j+n− t, k+n), (1.6)

where n is an arbitrary positive integer, and s(·, ·) are the Stirling numbers
of the first kind (with recurrence s(q + 1, k) = s(q, k − 1) + qs(q, k)). In
particular, from (1.5) with m = 0, and from (1.6) with n = 1, we have

S1,x(p, k) =

p∑
j=k

(
p

j

)
xp−jS(j, k), (1.7)

=

p∑
j=k

(
p

j

)
(x− 1)p−jS(j + 1, k + 1), (1.8)

respectively. (From (1.7) we see that S1,x(p, k) is a (p − k)-th degree poly-
nomial in x.)

• The GSN S1,x(p, k) satisfy the identity:

S1,x+1(p, k) = S1,x(p, k) + (k + 1)S1,x(p, k + 1). (1.9)

• We have the identity:

S1,x(p1 + p2, l) =

p2∑
m=0

S1,x(p2,m)S1,x+m(p1, l −m). (1.10)
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• The GSN S1,x(p, k) satisfy the recurrence:

S1,x(p, k) = S1,x(p− 1, k − 1) + (k + x)S1,x(p− 1, k). (1.11)

• The GSN S1,x(p, k) can be written in terms of the GSN S1,y(p, k) as follows:

S1,x(p, k) =

p∑
j=0

(
p

j

)
(x− y)p−jS1,y(j, k). (1.12)

• The derivative of the of GSN S1,x(p, k) with respect to x is

d

dx
S1,x(p, k) = pS1,x(p− 1, k). (1.13)

(This formula is not included in [9], but its proof is straightforward.)

2. Definitions and preliminary results

In Theorem 3.1 of [6], the authors show the following explicit formula for Euler
polynomials in terms of Stirling numbers of the second kind:

Ep(x) =

p∑
k=0

(−1)p−k
(
p

k

) p−k+1∑
l=1

(−1)l−1(l − 1)!

2l−1
S(p− k + 1, l)xk. (2.1)

We can write (2.1) as

Ep(x) =

p∑
k=0

p∑
j=0

(
p

j

)
xp−jS(j, k)

(−1)kk!

2k
. (2.2)

According to (1.7), formula (2.2) can be written in terms of GSN as

Ep(x) =

p∑
k=0

S1,x(p, k)
(−1)kk!

2k
. (2.3)

Three well-known properties of Euler polynomials are:
(*) Addition formula

Ep(x) =

p∑
j=0

(
p

j

)
(x− y)p−jEj(y). (2.4)

(*) Difference equation

Ep(x+ 1) + Ep(x) = 2xp, (2.5)
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(*) Sum of powers

Ep(x+ r)− (−1)rEp(x) = 2

r−1∑
l=0

(−1)r−1−l(x+ l)p. (2.6)

For α ∈ R, α 6= 0, 1, we define the α -Euler polynomial, denoted as E
(α)
p (x), by

E(α)
p (x) =

p∑
k=0

S1,x(p, k)
(−1)kk!

αk
, (2.7)

or, explicitly

E(α)
p (x) =

p∑
k=0

p∑
j=0

(
p

j

)
xp−jS(j, k)

(−1)kk!

αk
. (2.8)

It is clear that E
(α)
p (x) is a p-th degree monic polynomial.

Remark 2.1. The case α = 1 of (2.7) is not interesting, since
p∑
k=0

(−1)kk!S1,x(p, k)

= (x− 1)p, which can be proved easily.

Some examples are

E
(α)
0 (x) = 1,

E
(α)
1 (x) = x− 1

α
,

E
(α)
2 (x) = x2 − 2

α
x+

2− α
α2

,

E
(α)
3 (x) = x3 − 3

α
x2 +

3(2− α)

α2
x− α2 − 6α+ 6

α3
.

Define the α-Euler numbers E
(α)
p as

E(α)
p = αpE(α)

p

(
1

α

)
. (2.9)

That is, we have

E(α)
p =

p∑
k=0

p∑
j=k

(
p

j

)
αj−kS(j, k)(−1)kk! (2.10)

For example, we have E
(α)
0 = 1, E

(α)
1 = 0, E

(α)
2 = 1−α, E

(α)
3 = (1−α)(α−2),

E
(α)
4 = (1 − α)(α2 − 9α + 9), and so on. Indeed, for p > 0 we have E

(α)
2p+1 =

(1− α)(α − 2)Q2p−2(α), where Q2p−2(α) is a (2p− 2)-th degree polynomial in α
(we leave the proof of this fact to the reader).
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Plainly E
(2)
p (x) are the standard Euler polynomials Ep(x), and E

(2)
p are the

standard Euler numbers Ep.

From (1.4), we see that the values of E
(α)
p (x) at x = 0 and x = 1 can be

calculated as

E(α)
p (0) =

p∑
k=0

S(p, k)
(−1)kk!

αk
, (2.11)

E(α)
p (1) =

p∑
k=0

S(p+ 1, k + 1)
(−1)kk!

αk
. (2.12)

By using the recurrence for Stirling numbers of the second kind in (2.12) we
can see that

E(α)
p (1) = (1− α)E(α)

p (0) ,

where p > 0. Indeed, we have

E(α)
p (1) =

p∑
k=0

S(p+ 1, k + 1)
(−1)kk!

αk

=

p∑
k=0

(S(p, k) + (k + 1)S(p, k + 1))
(−1)kk!

αk

= E(α)
p (0)− α

p∑
k=0

S(p, k)
(−1)kk!

αk

= (1− α)E(α)
p (0),

as claimed.
By using (1.5) and (1.6) we can write the following families of formulas for

α-Euler polynomials

E(α)
p (x) =

p∑
k=0

p∑
j=0

(
p

j

)
(x−m1)p−j

m1∑
t=0

(
m1

t

)
S(j, k + t)

(−1)k(k + t)!

αk
, (2.13)

where m1 is an arbitrary non-negative integer, and

E(α)
p (x) = (2.14)

p∑
k=0

p∑
j=0

(
p

j

)
(x−m2)p−j

m2−1∑
t=0

(−1)ts(m2,m2 − t)S(j +m2 − t, k +m2)
(−1)kk!

αk
,

where m2 is an arbitrary positive integer. The case m1 = 0 of (2.13) is (2.7). The
case m2 = 1 of (2.14) is

E(α)
p (x) =

p∑
k=0

p∑
j=0

(
p

j

)
(x− 1)p−jS(j + 1, k + 1)

(−1)kk!

αk
. (2.15)
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In particular, from (2.13) we get the following formula for the value of E
(α)
p (x)

at x = m (a non-negative integer)

E(α)
p (m) =

p∑
k=0

m∑
t=0

(
m

t

)
S(p, k + t)

(−1)k(k + t)!

αk
. (2.16)

Similarly, from (2.14) we get the following formula for the value of E
(α)
p (x) at

x = n (a positive integer)

E(α)
p (n) =

p∑
k=0

n−1∑
t=0

(−1)ts(n, n− t)S(p+ n− t, k + n)
(−1)kk!

αk
. (2.17)

We also obtain from (2.13) and (2.14) the following families of formulas for
α-Euler numbers

E(α)
p =

p∑
k=0

p∑
j=0

(
p

j

)
(1− αm1)p−j

m1∑
t=0

(
m1

t

)
S(j, k + t)

(−1)k(k + t)!

αk−j
=

(2.18)

p∑
k=0

p∑
j=0

(
p

j

)
(1− αm2)p−j

m2−1∑
t=0

(−1)ts(m2,m2 − t)S(j +m2 − t, k +m2)
(−1)kk!

αk−j
.

where m1 and m2 are arbitrary integers, m1 ≥ 0, m2 > 0.
By using (1.11) we obtain the following recurrence for α-Euler polynomials

E
(α)
p+1(x) =

(
x− 1

α

)
E(α)
p (x) +

α− 1

α

p∑
k=0

S1,x(p, k)
(−1)kk!k

αk
. (2.19)

In fact, we have

E
(α)
p+1(x) =

p+1∑
k=0

S1,x(p+ 1, k)
(−1)kk!

αk

=

p+1∑
k=0

(S1,x(p, k − 1) + (k + x)S1,x(p, k))
(−1)kk!

αk

= − 1

α

p∑
k=0

S1,x(p, k)
(−1)kk!(k + 1)

αk
+

p∑
k=0

S1,x(p, k)
(−1)kk!k

αk

+x

p∑
k=0

S1,x(p, k)
(−1)kk!

αk

=

(
x− 1

α

)
E(α)
p (x) +

α− 1

α

p∑
k=0

S1,x(p, k)
(−1)kk!k

αk
,
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as claimed. (In section 5 we will obtain general recurrences that includes (2.19)
as particular case. See (5.2) and (5.3).) By setting x = 1

α in (2.19) we obtain the

following formula for the α-Euler numbers E
(α)
p+1

E
(α)
p+1 = (α− 1)

p∑
k=0

p∑
j=0

(
p

j

)
αj−kS(j, k)(−1)kk!k. (2.20)

In particular, from (2.19) we have the recurrence for standard Euler polyno-
mials

Ep+1(x) =

(
x− 1

2

)
Ep(x) +

p∑
k=0

S1,x(p, k)
(−1)kk!k

2k+1
, (2.21)

and from (2.20) we have the following formula for standard Euler numbers

Ep+1 =

p∑
k=0

p∑
j=k

(
p

j

)
2j−kS(j, k)(−1)kk!k. (2.22)

3. Basic properties

From (1.13) we see at once that d
dxE

(α)
p (x) = pE

(α)
p−1(x). That is, α-Euler polynomi-

als form an Appel sequence. We show next the properties for α-Euler polynomials,
that generalize (2.4), (2.5) and (2.6).

Proposition 3.1. The α-Euler polynomials E
(α)
p (x) have the following properties:

(a) Addition formula:

E(α)
p (x) =

p∑
j=0

(
p

j

)
(x− y)p−jE

(α)
j (y). (3.1)

(b) Difference equation:

E(α)
p (x+ 1) + (α− 1)E(α)

p (x) = αxp. (3.2)

(c) Sum of powers: If r is a given positive integer, then

E(α)
p (x+ r)− (1− α)rE(α)

p (x) = α

r−1∑
l=0

(1− α)r−1−l(x+ l)p. (3.3)

Proof. (a) Formula (3.1) is equivalent to the fact that E
(α)
p (x) is an Appel sequence.
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A direct and easy proof by using (1.12) is as follows

E(α)
p (x) =

p∑
k=0

S1,x(p, k)
(−1)kk!

αk

=

p∑
k=0

p∑
j=0

(
p

j

)
(x− y)p−jS1,y(j, k)

(−1)kk!

αk

=

p∑
j=0

(
p

j

)
(x− y)p−j

j∑
k=0

S1,y(j, k)
(−1)kk!

αk

=

p∑
j=0

(
p

j

)
(x− y)p−jE

(α)
j (y),

as desired.

(b) We use (1.9) to write

E(α)
p (x+ 1) =

p∑
k=0

S1,x+1(p, k)
(−1)kk!

αk

=

p∑
k=0

(S1,x(p, k) + (k + 1)S1,x(p, k + 1))
(−1)kk!

αk

=

p∑
k=0

S1,x(p, k)
(−1)kk!

αk
+

p∑
k=0

S1,x(p, k + 1)
(−1)k(k + 1)!

αk

= E(α)
p (x)− α

p∑
k=1

S1,x(p, k)
(−1)kk!

αk

= E(α)
p (x)− α

(
E(α)
p (x)− S1,x(p, 0)

)
= (1− α)E(α)

p (x) + αxp,

as claimed.

(c) The case r = 1 of (3.3) is (3.2). If we suppose that (3.3) is true for a
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positive integer r > 1, then, by using (3.2) we have

E
(α)
p (x+ r + 1)− (1− α)r+1E(α)

p (x)

= E(α)
p (x+ r + 1)− (1− α)rE(α)

p (x+ 1)

+(1− α)rE(α)
p (x+ 1)− (1− α)r+1E(α)

p (x)

= α

r−1∑
l=0

(1− α)r−1−l(x+ l + 1)p + (1− α)r
(
E(α)
p (x+ 1)− (1− α)E(α)

p (x)
)

= α

r−1∑
l=0

(1− α)r−1−l(x+ l + 1)p + (1− α)rαxp

= α

r∑
l=0

(1− α)r−l(x+ l)p,

as wanted.

If we set y = 1
α in (3.1), we can write the α-Euler polynomial E

(α)
p (x) in terms

of α-Euler numbers as

E(α)
p (x) =

p∑
j=0

(
p

j

)(
x− 1

α

)p−j
E

(α)
j

(
1

α

)

=

p∑
j=0

(
p

j

)
E

(α)
j

αj

(
x− 1

α

)p−j
. (3.4)

4. Different parameters

In this section we show some relations connecting α-Euler polynomials E
(α)
p (x)

with β-Euler polynomials E
(β)
p (x), where α, β ∈ R− {0, 1} are given parameters.

Let us write (2.8) as

E(α)
p (x) =

p∑
j=0

p−j∑
k=0

(
p

j

)
S(p− j, k)

(−1)kk!

αk
xj . (4.1)

We denote by c
(p;α)
j , the coefficient of xj in E

(α)
p (x), j = 0, 1, . . . , p. That is,

we have

E(α)
p (x) =

p∑
j=0

c
(p;α)
j xj , (4.2)

where

c
(p;α)
j =

p−j∑
k=0

(
p

j

)
S(p− j, k)

(−1)kk!

αk
. (4.3)
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Proposition 4.1. We have

E(α)
p (x)− E(β)

p (x) =
β − α
β

p−1∑
j=0

c
(p;α)
j E

(β)
j (x). (4.4)

Proof. Both sides of (4.4) are (p − 1)-th degree polynomials in x. We will show
that the values of these polinomials are equal when x is a non-negative integer,
and then we conclude that the polinomials are equal for all x ∈ R. We proceed by
induction on x. First observe that if (4.4) is true for a positive integer x, then, by
using (3.2) we have

β − α
β

p−1∑
j=0

c
(p;α)
j E

(β)
j (x+ 1)

=
β − α
β

p−1∑
j=0

c
(p;α)
j

(
βxj − (β − 1)E

(β)
j (x)

)

= (β − α)

p−1∑
j=0

c
(p;α)
j xj − (β − 1)

β − α
β

p−1∑
j=0

c
(p;α)
j E

(β)
j (x)

= (β − α)
(
E(α)
p (x)− xp

)
− (β − 1)

(
E(α)
p (x)− E(β)

p (x)
)

= (α− β)xp − (α− 1)E(α)
p (x) + (β − 1)E(β)

p (x)

= αxp − (α− 1)E(α)
p (x)−

(
βxp − (β − 1)E(β)

p (x)
)

= E(α)
p (x+ 1)− E(β)

p (x+ 1), (4.5)

which shows that (4.4) is also true for x+ 1.

Now we prove that (4.4) is valid for x = 0. Observe that

E(α)
p (x)− E(β)

p (x) =

p∑
k=0

S1,x(p, k)(−1)kk!

(
1

αk
− 1

βk

)

=

p∑
k=0

S1,x(p, k)(−1)kk!
βk − αk

αkβk

=
β − α
β

p∑
k=1

S1,x(p, k)(−1)kk!

∑k
l=1 β

k−lαl−1

αkβk−1
. (4.6)

That is, we have to prove that

p−1∑
j=0

c
(p;α)
j E

(β)
j (0) =

p∑
k=1

S(p, k)(−1)kk!

∑k
l=1 β

k−lαl−1

αkβk−1
,
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or, according to (2.11) and (4.3), we have to prove that

p−1∑
j=0

p−j∑
m=1

(
p

j

)
S(p− j,m)

(−1)mm!

αm

j∑
l=0

S(j, l)
(−1)ll!

βl
(4.7)

=

p∑
k=1

S(p, k)(−1)kk!

∑k
l=1 β

k−lαl−1

αkβk−1
.

Let us begin with the left-hand side of (4.7), that we denote simply as LHS(4.7).
We have

LHS(4.7) =

p∑
m=1

(−1)mm!

αm

p−1∑
j=0

j∑
l=0

(
p

j

)
S(p− j,m)S(j, l)

(−1)ll!

βl
. (4.8)

Introduce the new index n = m+ l in (4.8), to write

LHS(4.7) =

p∑
m=1

(−1)mm!

αm

p−1∑
n=m

p−1∑
j=0

(
p

j

)
S(p− j,m)S(j, n−m)

(−1)n−m(n−m)!

βn−m
.

(4.9)
Now we use the convolution formula for Stirling numbers of the second kind

p−1∑
j=0

(
p

j

)
S(p− j,m)S(j,N −m) =

(
N

m

)
S(p,N), (4.10)

(see [1, p. 825]) to obtain from (4.9) that

LHS(4.7) =

p∑
m=1

(−1)mm!

αm

p∑
N=m

(
N

m

)
S(p,N)

(−1)N−m(N −m)!

βN−m
. (4.11)

Some additional elementary simplifications give us

LHS(4.7) =

p∑
m=1

p∑
N=m

S(p,N)
(−1)NN !

αmβN−m

=

p∑
N=1

S(p,N)(−1)NN !

N∑
m=1

α−mβm−N (4.12)

Introduce the new index l = N + 1−m in (4.12) to obtain

LHS(4.7) =

p∑
N=1

S(p,N)(−1)NN !

N∑
l=1

αl−N−1β1−l,

which is the right-hand side of (4.7).
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Formula (4.4) says that if

E(α)
p (x) = xp +

p−1∑
j=0

c
(p;α)
j xj , (4.13)

then we can use the polynomials E
(β)
j (x), 0 ≤ j ≤ p, to obtain E

(α)
p (x), “by means

of an Umbral Substitution” (of xj by E
(β)
j (x)) in the right-hand side of (4.13),

with the additional factor β−α
β in the terms of degree < p.

Corollary 4.2. (a) The α-Euler polynomial E
(α)
p (x) can be written in terms of

the standard Euler polynomials Ej(x), j = 0, 1, . . . , p as

E(α)
p (x) = Ep(x) +

2− α
2

p−1∑
j=0

p−j∑
k=0

(
p

j

)
S(p− j, k)

(−1)kk!

αk
Ej(x). (4.14)

(b) The standard Euler polynomial Ep(x) can be written in terms of the α-Euler

polynomials E
(α)
j (x), j = 0, 1, . . . , p as

Ep(x) = E(α)
p (x) +

α− 2

α

p−1∑
j=0

p−j∑
k=0

(
p

j

)
S(p− j, k)

(−1)kk!

2k
E

(α)
j (x). (4.15)

Proof. It is a direct consequence of (4.4).

We can use (4.14) to write the sum of powers (3.3) in terms of standard Euler
polynomials as

Ep(x+ r)− (1− α)rEp(x)

+
2− α

2

p−1∑
j=0

p−j∑
k=0

(
p

j

)
S(p− j, k)

(−1)kk!

αk
(Ej(x+ r)− (1− α)rEj(x))

= α

r−1∑
l=0

(1− α)r−1−l(x+ l)p. (4.16)

In the case α = 1, formula (4.16) gives us the identiy (see Remark 2.1)

p∑
j=0

p−j∑
k=0

(
p

j

)
(−1)k+1k!S(p− j, k)Ej(x+ r) = Ep(x+ r)− 2(x+ r − 1)p,

and in the case α = −1, we have a formula for the weighted sum of pow-

ers
r−1∑
l=0

2r−l(x + l)p in terms of Euler polynomials and Fubini numbers Fm =

m∑
k=0

k!S(m, k), namely

r−1∑
l=0

2r−l(x+ l)p = Ep(x+ r)− 2rEp(x)− 3

p∑
j=0

(
p

j

)
(Ej(x+ r)− 2rEj(x))Fp−j .
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5. Generalized recurrences

We begin this section with a formula for E
(α)
p1+p2(x), where p1, p2 are arbitrary

non-negative integers.

Proposition 5.1. We have

E
(α)
p1+p2(x) =

p1∑
k1=0

p2∑
k2=0

S1,x(p2, k2)S1,x+k2(p1, k1)
(−1)k1+k2(k1 + k2)!

αk1+k2
. (5.1)

Proof. By using (2.3) and (1.10) we have

E
(α)
p1+p2(x) =

p1+p2∑
k=0

S1,x(p1 + p2, k)
(−1)kk!

αk

=

p2∑
k2=0

p1+p2∑
k1=k2

S1,x(p2, k2)S1,x+k2(p1, k1 − k2)
(−1)k1k1!

αk1

=

p1∑
k1=0

p2∑
k2=0

S1,x(p2, k2)S1,x+k2(p1, k1)
(−1)k1+k2(k1 + k2)!

αk1+k2
,

as wanted.

In terms of standard Stirling numbers, formula (5.1) looks as

E
(α)
p1+p2(x) =

p1∑
k1=0

p2∑
k2=0

p1∑
j1=0

p2∑
j2=0

(
p1
j1

)(
p2
j2

)
(x+ k2)p1−j2xp2−j2S(j1, k1)×

× S(j2, k2)
(−1)k1+k2(k1 + k2)!

αk1+k2
.

The case p1 = 1 of (5.1) is

E
(α)
p+1(x) = (x− 1)E(α)

p (x) + (α− 1)

p∑
k=0

p∑
j=0

(
p

j

)
xp−jS(j, k)

(−1)k(k + 1)!

αk+1
. (5.2)
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(The case α = 2 of (5.2) is essentially the recurrence (2.21).) Formula (5.2) is
included in the following general result.

Proposition 5.2. For arbitrary non-negative integers p, q, we have

q∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q∏
j=1

(x− j) = (α− 1)q
p∑
k=0

S1,x(p, k)
(−1)k+q(k + q)!

αk+q
. (5.3)

Proof. We proceed by induction on q. The case q = 1 of (5.3) is (5.2). If we
suppose that (5.3) is true for a given q ∈ N, then

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q+1∏
j=1

(x− j)

=

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

(x− q − 1)

q∏
j=1

(x− j)



=

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

(x− q − 1)
dk

dxk

q∏
j=1

(x− j) + k
dk−1

dxk−1

q∏
j=1

(x− j)


= (x− q − 1)

q∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q∏
j=1

(x− j)

−
q∑

k=0

Ep+1+k;α(x)
(−1)k

k!

dk

dxk

q∏
j=1

(x− j)

= (x− q − 1)(α− 1)q
p∑
k=0

S1,x(p, k)
(−1)k+q(k + q)!

αk+q

−(α− 1)q
p+1∑
k=0

S1,x(p+ 1, k)
(−1)k+q(k + q)!

αk+q
, (5.4)

where we used the induction hypothesis in the last step. According to (1.11) we
have from (5.4) that
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q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q+1∏
j=1

(x− j)

= (α− 1)q(x− q − 1)

p∑
k=0

S1,x(p, k)
(−1)k+q(k + q)!

αk+q

−(α− 1)q
p+1∑
k=0

(S1,x(p, k − 1) + (k + x)S1,x(p, k))
(−1)k+q(k + q)!

αk+q

= (α− 1)q (x− q − 1)

p∑
k=0

S1,x(p, k)
(−1)k+q(k + q)!

αk+q

+(α− 1)q
p∑
k=0

S1,x(p, k)
(−1)k+q(k + q + 1)!

αk+q+1

−(α− 1)q
p∑
k=0

(k + x)S1,x(p, k)
(−1)k+q(k + q)!

αk+q

= α(α− 1)q
p∑
k=0

S1,x(p, k)
(−1)k+q+1(k + q + 1)!

αk+q+1

+(α− 1)q
p∑
k=0

S1,x(p, k)
(−1)k+q(k + q + 1)!

αk+q+1

= (α− 1)q+1

p∑
k=0

S1,x(p, k)
(−1)k+q+1(k + q + 1)!

αk+q+1
,

as wanted.

If we set p2 = 1 in (5.1) we get

E
(α)
p+1(x) = xE(α)

p (x) +

p∑
k=0

p∑
j=k

(
p

j

)
(x+ 1)p−jS(j, k)

(−1)k+1(k + 1)!

αk+1
. (5.5)

Formula (5.5) is included in the following general result.

Proposition 5.3. For arbitrary non-negative integers p, q, we have

q∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q−1∏
j=0

(x+ j) =

p∑
k=0

S1,x+q(p, k)
(−1)k(k + q)!

αk+q
. (5.6)

Proof. We proceed by induction on q. The case q = 1 of (5.6) is (5.5). If we
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suppose formula (5.6) is true for a given q ∈ N, then

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q∏
j=0

(x+ j)

=

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

(x+ q)

q−1∏
j=0

(x+ j)


=

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

(x+ q)
dk

dxk

q−1∏
j=0

(x+ j) + k
dk−1

dxk−1

q−1∏
j=0

(x+ j)


= (x+ q)

q∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q−1∏
j=0

(x+ j)

−
q∑

k=0

E
(α)
p+1+k(x)

(−1)k

k!

dk

dxk

q−1∏
j=0

(x+ j)

= (x+ q)

p∑
k=0

S1,x+q(p, k)
(−1)k(k + q)!

αk+q
−
p+1∑
k=0

S1,x+q(p+ 1, k)
(−1)k(k + q)!

αk+q
,

where we used induction hypothesis in the last step. By using first (1.11) and then
(1.9) we have

q+1∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q∏
j=0

(x+ j)

= (x+ q)

p∑
k=0

S1,x+q(p, k)
(−1)k(k + q)!

αk+q

−
p+1∑
k=0

(S1,x+q(p, k − 1) + (k + x+ q)S1,x+q(p, k))
(−1)k(k + q)!

αk+q

= −
p+1∑
k=1

(S1,x+q(p, k − 1) + kS1,x+q(p, k))
(−1)k(k + q)!

αk+q

=

p∑
k=0

(S1,x+q(p, k) + (k + 1)S1,x+q(p, k + 1))
(−1)k(k + q + 1)!

αk+q+1

=

p∑
k=0

S1,x+q+1(p, k)
(−1)k(k + q + 1)!

αk+q+1
,

as desired.



On a family of Euler-type numbers and polynomials 17

We show next some particular cases of (5.3) and (5.6). We will use that (−1)k

k!

dk

dxk

q∏
j=1

(x− j)


x=0

= (−1)qs(q + 1, k + 1),

 (−1)k

k!

dk

dxk

q∏
j=1

(x− j)


x=1

= (−1)qs(q, k).

First observe that we can write formula (5.6) as

q∑
k=0

E
(α)
p+k(x− q) (−1)k

k!

dk

dxk

q∏
j=1

(x− j) =

p∑
k=0

S1,x(p, k)
(−1)k(k + q)!

αk+q
. (5.7)

Thus, formulas (5.3) and (5.7) can be written together as

1

(α− 1)q

q∑
k=0

E
(α)
p+k(x)

(−1)k

k!

dk

dxk

q∏
j=1

(x− j)

=

q∑
k=0

E
(α)
p+k(x− q) (−1)k

k!

dk

dxk

q∏
j=1

(x− j)

=

p∑
k=0

S1,x(p, k)
(−1)k(k + q)!

αk+q
. (5.8)

The cases x = 0 and x = 1 of (5.8) are

1

(α− 1)q

q∑
k=0

s(q + 1, k + 1)E
(α)
p+k(0)

= (−1)q
q∑

k=0

s(q + 1, k + 1)E
(α)
p+k(−q)

=

p∑
k=0

S(p, k)
(−1)k(k + q)!

αk+q
, (5.9)

and

1

(α− 1)q

q∑
k=0

s(q, k)E
(α)
p+k(1)

= (−1)q
q∑

k=0

s(q, k)E
(α)
p+k(1− q)

=

p∑
k=0

S(p+ 1, k + 1)
(−1)k(k + q)!

αk+q
, (5.10)
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respectively.
In the case p = 0, formulas (5.8), (5.9) and (5.10) produce the same result:

q!/αq. We can write together the corresponding identities as

1

(1− α)q

q∑
k=0

E
(α)
k (x)

(−1)k

k!

dk

dxk

q∏
j=1

(x− j)

=

q∑
k=0

E
(α)
k (x− q) (−1)k

k!

dk

dxk

q∏
j=1

(x− j)

=
1

(α− 1)q

q∑
k=0

s(q + 1, k + 1)E
(α)
k (0)

= (−1)q
q∑

k=0

s(q + 1, k + 1)E
(α)
k (−q)

=
1

(α− 1)q

q∑
k=0

s(q, k)E
(α)
k (1)

= (−1)q
q∑

k=0

s(q, k)E
(α)
k (1− q)

=
q!

αq
. (5.11)

In particular, we have the following identities involving standard Euler poly-
nomials:

q∑
k=0

Ek(x)
(−1)k+q

k!

dk

dxk

q∏
j=1

(x− j)

=

q∑
k=0

Ek(x− q) (−1)k

k!

dk

dxk

q∏
j=1

(x− j)

=

q∑
k=0

s(q + 1, k + 1)Ek(0)

= (−1)q
q∑

k=0

s(q + 1, k + 1)Ek(−q)

=

q∑
k=0

s(q, k)Ek(1)

=

q∑
k=0

(−1)k+qs(q, k)Ek(q)

=
q!

2q
. (5.12)
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6. Some formulas for Euler numbers

From the results of previous sections, we obtain several explicit formulas for even
Euler numbers, and sum and difference of two even Euler numbers as well. (We
will be considering the case α = 2 of the previous general results.)

Proposition 6.1. We have the following formulas for the even Euler numbers
E2p, where p > 0,

E2p =

2p∑
k=0

2p∑
j=k

(
2p

j

)
2j−kS(j, k)(−1)k(k + 1)! (6.1)

=

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 1)! (6.2)

=

2p−2∑
k=0

2p−2∑
j=0

(
2p− 2

j

)
2j−kS(j, k)(−1)k(k + 2)!(k − 1) (6.3)

=

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
2j−k−2S(j, k)(−1)k(k + 2)! (6.4)

=

2p∑
k=0

2p∑
j=0

(
2p

j

)
32p−j2j−kS(j, k)(−1)k(k + 1)! (6.5)

=

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
32p−1−j2j−kS(j, k)(−1)k+1(k + 1)! (6.6)

=

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
52p−1−j2j−k−2S(j, k)(−1)k+1(k + 2)! (6.7)

Proof. From (5.2) we can see that

Ep+1 + Ep =

p∑
k=0

p∑
j=k

(
p

j

)
2j−kS(j, k)(−1)k(k + 1)! (6.8)

Replace p by 2p in (6.8) to obtain (6.1). Replace p by 2p − 1 in (6.8) to obtain
(6.2).

From the case q = 2 of (5.3) we see that

3Ep + 4Ep+1 + Ep+2 =

p∑
k=0

p∑
j=0

(
p

j

)
2j−kS(j, k)(−1)k(k + 2)! (6.9)

Replace p by 2p − 1 in (6.9) to obtain (6.4). Replace p by 2p − 2 in (6.9) to
obtain

3E2p−2 + E2p =

2p−2∑
k=0

2p−2∑
j=0

(
2p− 2

j

)
2j−kS(j, k)(−1)k(k + 2)! (6.10)
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From (6.1) we see (replacing p by p− 1) that

E2p−2 =

2p−2∑
k=0

2p−2∑
j=k

(
2p− 2

j

)
2j−kS(j, k)(−1)k(k + 1)! (6.11)

From (6.10) and (6.11) we obtain (6.3).

From (5.5) we see that

Ep+1 − Ep =

p∑
k=0

p∑
j=k

(
p

j

)
3p−j2j−kS(j, k)(−1)k+1(k + 1)! (6.12)

Replace p by 2p in (6.12) to obtain (6.5). Replace p by 2p − 1 in (6.12) to
obtain (6.6).

From (5.6) with q = 2 we obtain

3Ep − 4Ep+1 + Ep+2 =

p∑
k=0

p∑
j=0

(
p

j

)
5p−j2j−kS(j, k)(−1)k(k + 2)! (6.13)

Replace p by 2p− 1 in (6.13) to obtain (6.7).

Proposition 6.2. We have the following formulas for the sum of two consecutive
even Euler numbers

E2p+2 + E2p =

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 1)!k (6.14)

=
1

6

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 2)!k (6.15)

=

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−k−2S(j, k)(−1)k(k + 1)!k2. (6.16)

Proof. Replace p by 2p in (6.9) to obtain

3E2p + E2p+2 =

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 1)!(k + 2). (6.17)

From (6.17) and (6.1) we obtain (6.14). From the case q = 3 of (5.3) we see
that

15Ep + 23Ep+1 + 9Ep+2 + Ep+3 =

p∑
k=0

p∑
j=0

(
p

j

)
2j−kS(j, k)(−1)k(k + 3)! (6.18)



On a family of Euler-type numbers and polynomials 21

Replace p by 2p in (6.18), and use (6.17), to get

15E2p + 9E2p+2 =

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 3)!

=

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 2)!(k + 3)

=

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 2)!k + 3(3E2p + E2p+2),

from where we obtain (6.15). From (6.14) and (6.15) we obtain (6.16).

Proposition 6.3. We have the following formulas for the difference of two con-
secutive even Euler numbers

E2p+2 − E2p =

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)! (6.19)

=
1

5

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!k (6.20)

=
1

8

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 3)! (6.21)

Proof. From (6.17) and (6.4) we get

3E2p + E2p+2 =

2p∑
k=0

2p∑
j=0

((
2p− 1

j

)
+

(
2p− 1

j − 1

))
2j−kS(j, k)(−1)k(k + 2)! (6.22)

= 4E2p +

2p∑
k=0

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!,

from where we obtain (6.19).
Replace p by 2p− 1 in (6.18) and use (6.4) to get

23E2p + E2p+2 =

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 2)!k + 12E2p.

That is, we have

11E2p + E2p+2 =

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 2)!k. (6.23)
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From (6.15) and (6.23) we get

6(E2p+2 + E2p) =

2p∑
k=0

2p∑
j=0

((
2p− 1

j

)
+

(
2p− 1

j − 1

))
2j−kS(j, k)(−1)k(k + 2)!k

= 11E2p + E2p+2 +

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!k,

from where (6.20) follows.

From (6.19) and (6.20) we have

E2p+2 − E2p =
1

5

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k + 3− 3)

=
1

5

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 3)!− 3

5
(E2p+2 − E2p),

from where (6.21) follows.

Proposition 6.4. We have the following family of formulas for the difference of
Euler numbers E2p+4 − E2p

E2p+4−E2p =

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k+2)!(k2+βk−5β−23), (6.24)

where β is an arbitrary constant.

Proof. From the case q = 4 of (5.3) we see that

105Ep+176Ep+1+86Ep+2+16Ep+3+Ep+4 =

p∑
k=0

p∑
j=0

(
p

j

)
2j−kS(j, k)(−1)k(k+4)!

(6.25)

Replace p by 2p− 1 in (6.25) to get

176E2p + 16E2p+2 =

2p−1∑
j=0

2p−1∑
k=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 4)! (6.26)
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Replace p by 2p in (6.25) and use (6.26) to get

105E2p + 86E2p+2 + E2p+4

=

2p∑
j=0

2p∑
k=0

(
2p

j

)
2j−kS(j, k)(−1)k(k + 4)!

=

2p−1∑
j=0

2p−1∑
k=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 4)!

+

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 4)!

= 176E2p + 16E2p+2 +

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 4)!

That is, we have

−71E2p+70E2p+2 +E2p+4 =

2p−1∑
j=1

2p−1∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k+4)! (6.27)

or

E2p+4−E2p =

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k+4)!−70(E2p+2−E2p). (6.28)

By using (6.19), we obtain from (6.28) that

E2p+4 − E2p

=

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 4)! (6.29)

−70

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!

=

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k2 + 7k − 58).

Finally, observe that (6.19) and (6.20) imply that

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k − 5) = 0.
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Thus, for any constant α we have

E2p+4 − E2p =

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k2 + 7k − 58)

+ α

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k − 5)

=

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2)!(k2 + (7 + α)k − 58− 5α).

(6.30)

Set β = 7 + α in (6.30) to obtain the desired conclusion (6.24).

Let us consider now the case q = 6 of (5.3), namely

10395Ep + 19524Ep+1 + 12139Ep+2 + 3480Ep+3 + 505Ep+4 + 36Ep+5 + Ep+6

=

p∑
k=0

p∑
j=0

(
p

j

)
2j−kS(j, k)(−1)k(k + 6)!

(6.31)

and proceed as we did to obtain (6.27). Replace p by 2p− 1 in (6.31) to get

19524E2p + 3480E2p+2 + 36E2p+4 =

2p−1∑
k=0

2p−1∑
j=0

(
2p− 1

j

)
2j−kS(j, k)(−1)k(k + 6)!

(6.32)

Replace p by 2p in (6.31) to get

10395E2p+12139E2p+2+505E2p+4+E2p+6 =

2p∑
k=0

2p∑
j=0

(
2p

j

)
2j−kS(j, k)(−1)k(k+6)!

(6.33)

Beginning with (6.33), and then using (6.32) we have

10395E2p + 12139E2p+2 + 505E2p+4 + E2p+6

=

2p∑
k=0

2p∑
j=0

((
2p− 1

j

)
+

(
2p− 1

j − 1

))
2j−kS(j, k)(−1)k(k + 6)!

= 19524E2p + 3480E2p+2 + 36E2p+4

+

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 6)!
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That is, we have the formula

−(8659 + 469 + 1)E2p + 8659E2p+2 + 469E2p+4 + E2p+6 (6.34)

=

2p∑
k=1

2p∑
j=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 6)!

Formulas (6.19), (6.27) and (6.35), suggest that for any m ∈ N, there exist
a1, a2, . . . , am ∈ N, with am = 1, such that

−

 m∑
j=1

aj

E2p + a1E2p+2 + a2E2p+4 + · · ·+ amE2p+2m (6.35)

=

2p∑
j=1

2p∑
k=1

(
2p− 1

j − 1

)
2j−kS(j, k)(−1)k(k + 2m)!

We leave this final comment as a conjecture.
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