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Bounded solutions for Dirichlet problems with degenerate
coercivity and a quadratic gradient term

Lucio Boccardo and Andrea Dall’Aglio

Abstract. We give existence results for weak solutions of Dirichlet problems for elliptic equa-

tions having degenerate coercivity and a first order term which has quadratic growth with respect

to the gradient. The proof is based on the use of test functions having exponential growth.

1. Introduction

In this paper we will prove some existence and boundedness results for boundary
value problems of the form{

−div(a(x, u)∇u) + u = H(x, u,∇u) + f(x) in Ω,

u = 0 on ∂Ω,
(1.1)

whose simplest example is−div

(
∇u

(A(x) + |u|)γ

)
+ u = h(x)|∇u|2 + f(x) in Ω,

u = 0 on ∂Ω,
(1.2)

where A(x) is a measurable function on Ω such that 0 < λ ≤ A(x) ≤ µ (λ, µ ∈ R+),
γ is a positive constant, h is a measurable bounded function on Ω which may change
sign and f ∈ L∞(Ω).

Here Ω is a bounded, open subset of RN , N ≥ 2. We now give the assumptions
for problem (1.1):

a(x, s) : Ω× R → R
is measurable with respect to x for every s ∈ R
and continuous with respect to s for almost every x ∈ Ω,

(1.3)

and satisfies

α

(1 + |s|)γ
≤ a(x, s) ≤ β (degenerate coercivity), (1.4)
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for α, β, γ ∈ R+;
H(x, s, ξ) : Ω× R× RN → R
is measurable with respect to x for every (s, ξ) ∈ R× RN

and continuous with respect to (s, ξ) for almost every x ∈ Ω,

(1.5)

such that, for some R > 0,

|H(x, s, ξ)| ≤ R |ξ|2. (1.6)

As far as the datum f is concerned, we will always assume that

f(x) ∈ L∞(Ω). (1.7)

This class of problems presents some features and difficulties which we are now
going to describe briefly.

The first one is the fact that, due to hypothesis (1.4), the coefficient a(x, u)
of the principal part may go to zero when u goes to ±∞. This means that
the differential operator A(v) = −div(a(x, v)∇v), though well defined between
W 1,2

0 (Ω) and its dual, is not coercive on W 1,2
0 (Ω): for instance, if we take vn(x) =

Tn(|x|1−N/2 − 1) in the unit ball B1 ⊂ RN (N ≥ 3), then

∥vn∥
W 1,2

0 (B1)
→ ∞, but

∫
B1

|∇vn|2

(1 + vn)γ
≤ C for every γ > 0.

This implies that the classical methods used to prove the existence of a solution
of the simple problem {

−div(a(x, u)∇u) = f(x) in Ω,

u = 0 on ∂Ω,
(1.8)

cannot be applied, even if the datum f is very regular. In the papers [5] and [4]
the boundary value problem (1.8) was studied for γ ∈ (0, 1], obtaining existence
results for weak solutions of (1.8), which have different regularity according to the
integrability of the right-hand side f .

The operator A(v) = −div(a(x, v)∇v) satisfies a condition similar to operators
with nonstandard growth conditions, or p-q growth conditions (see [13]), since, in
the case γ = 1 and a(x, v) = 1/(1 + v), it is possible to prove that

C
(
∥∇v∥

N
N−1

− 1
)
≤ ⟨A(v), v⟩ =

∫
Ω

|∇v|2

1 + |v|
≤ ∥∇v∥2

2
, ∀ v ∈ W 1,2

0 (Ω), (1.9)

where C is a positive constant depending on N≥ 2 and |Ω|. The second inequal-
ity in (1.9) is trivial; the first one can be proved using Hölder’s and Sobolev’s
inequalities.
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The other relevant feature of problem (1.1) is the presence of a first-order term
which has quadratic growth with respect to the gradient. Elliptic equations of the
form

−div(a(x, u)∇u) = h(x, u)|∇u|2 + f(x) (1.10)

occur in several contexts, for instance in Calculus of Variations: the Euler–Lagrange
equations of integral functionals of the form

J [v] =

∫
Ω

B(x, v)|∇v|2 −
∫
Ω

f(x) v

are of this type. Moreover similar problems appear as the Hamilton–Jacobi–
Bellman equations in stochastic control. Finally, equations with quadratic gradi-
ent terms modelize stationary solutions for rough surfaces which grow by particle
deposition (see [12]).

Existence, regularity and uniqueness (also nonuniqueness) results for elliptic
equations with quadratic first-order terms have been widely studied in the last
decades (for instance [6, 7, 1]). In particular, equations of the form (1.10) have
been studied in [11, 10, 15, 14], where it is shown that in order to have existence
of a solution, there must be a condition of “smallness” on the datum f or some
relation between the functions a(x, u) and h(x, u).

As pointed out in some articles (see for instance [6, 8, 3]), the presence of a
zero-order term u in the left-hand side of (1.1) has a regularizing effect, which
may allow to relax these conditions. In particular, adapting the approach of [6]
(see also [7]), we are able to prove the following result for problem (1.1).

Theorem 1.1. Under the assumptions (1.3)–(1.7), there exists a bounded weak
solution of the Dirichlet problem (1.1), that is, a function u ∈ W 1,2

0 (Ω) ∩ L∞(Ω)
such that ∫

Ω

a(x, u)∇u∇v +

∫
Ω

u v =

∫
Ω

H(x, u,∇u) v +

∫
Ω

f v

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Subsequently we extend the results to a wider class of boundary value problems,
of the form{

−div(a(x, u)∇u) + b(x, u) = H(x, u,∇u) + f(x), in Ω,

u = 0, on ∂Ω,
(1.11)

where the functions a(x, s), b(x, s) and H(x, s, ξ) satisfy (1.3), (1.5) (and a similar
one for b) and the following general growth assumptions, for a.e. x ∈ Ω, for every
(s, ξ) ∈ R× RN :{

0 < α(|s|) ≤ a(x, s) ≤ β ∈ R ,

with α : [0,+∞) → (0,+∞) continuous and decreasing,
(1.12)

{
|H(x, s, ξ)| ≤ δ(|s|) |ξ|2,
with δ : [0,+∞) → [0,+∞) continuous and increasing,

(1.13)
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b(x, s) sign(s) ≥ φ(|s|),with φ : [0,+∞) → [0,+∞)

continuous and increasing such that lim
t→+∞

φ(t) = +∞ .
(1.14)

These assumptions may include operators having extremely degenerate coercivity,
for example −div

( ∇u
1+e|u|

)
, and first order terms which may have any growth with

respect to u. Moreover, the term b(x, u), whose presence is essential for our results,
may also have a very slow growth with respect to u (for instance b(u) = log(1 +
|u|)sign(u). Under these hypotheses we prove the following result:

Theorem 1.2. Under the assumptions (1.12)–(1.14) and (1.7), there exists a
bounded weak solution of problem (1.11), that is, a function u ∈ W 1,2

0 (Ω)∩L∞(Ω)
such that ∫

Ω

a(x, u)∇u∇v +

∫
Ω

b(x, u) v =

∫
Ω

H(x, u,∇u) v +

∫
Ω

f v

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

In the following section, we will prove Theorem 1.1. The next brief section is
devoted to some extensions. The last part of this paper is devoted to the proof of
Theorem 1.2.

2. Proof of Theorem 1.1

In this section, we assume (1.3)–(1.7) and we define

Tk(s) = max{−k,min{k, s}}.

For n ∈ N, we consider the following Dirichlet problem−div(a(x, Tn(un))∇un) + un =
H(x, un,∇un)

1 + 1
n |∇un|2

+ f(x)

un ∈ W 1,2
0 (Ω) ∩ L∞(Ω) ,

(2.1)

that is, ∀ v ∈ W 1,2
0 (Ω) ∩ L∞(Ω),∫

Ω

a(x, Tn(un))∇un ∇v +

∫
Ω

un v =

∫
Ω

H(x, un,∇un)

1 + 1
n |∇un|2

v +

∫
Ω

f v. (2.2)

Note that, by condition (1.13),

|H(x, un,∇un)|
1 + 1

n |∇un|2
≤ Rmin

{
n, |∇u2

n|
}
. (2.3)

For any fixed n, the existence is a consequence of the fact that the function
a(x, Tn(s)) is bounded from below by a positive constant. Since the right-hand
side of (2.1) is bounded by nR+∥f∥

∞
, existence of a weak solution of (2.1) follows

from an application of Schauder’s fixed point theorem.
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Lemma 2.1. The sequence {un} is bounded in L∞(Ω).

Proof. For k > 0, we take v =[g(|un|)− g(k)]+sign(un) in (2.2), where

g(t) = e
R(1+t)γ+1

α(γ+1) , (2.4)

obtaining, by (2.3),∫
{|un|>k}

|∇un|2
( αg′(|un|)
(1 + |un|)γ

−Rg(|un|)︸ ︷︷ ︸
=0

+Rg(k)
)

+

∫
{|un|>k}

(
|un| − ∥f∥

∞

) (
g(|un|)− g(k)

)
≤ 0.

Since the first integral is positive, taking k = ∥f∥
∞
, the above inequality implies

|un| ≤ ∥f∥
∞

. (2.5)

Corollary 2.2. For every n ≥ ∥f∥
∞
, a(x, Tn(un)) = a(x, un), therefore un ∈

W 1,2
0 (Ω) ∩ L∞(Ω) is a weak solution of the Dirichlet problem

−div(a(x, un)∇un) + un =
H(x, un,∇un)

1 + 1
n |∇un|2

+ f(x),

that is, ∀ v ∈ W 1,2
0 (Ω) ∩ L∞(Ω),∫

Ω

a(x, un)∇un ∇v +

∫
Ω

un v =

∫
Ω

H(x, un,∇un)

1 + 1
n |∇un|2

v +

∫
Ω

f v. (2.6)

Lemma 2.3. The sequence {un} is bounded in W 1,2
0 (Ω).

Proof. Note that, by (2.5),

α

(1 + ∥f∥
∞
)γ

≤ α

(1 + |un|)γ
≤ a(x, un) ≤ β.

Then, for every C1 odd increasing function q(s) : R → R, the choice v = q(un) in
(2.6) yields

α

(1 + ∥f∥
∞
)γ

∫
Ω

|∇un|2q′(un) ≤ R

∫
Ω

|∇un|2q(|un|) + q(∥f∥
∞
)

∫
Ω

|f |.

In particular, choosing
q(t) =

(
eλ |t| − 1

)
sign(t), (2.7)
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with λα ≥ R(1 + ∥f∥
∞
)γ , we obtain

αλ

(1 + ∥f∥
∞
)γ

∫
Ω

|∇un|2eλ |un| ≤ R

∫
Ω

|∇un|2[eλ |un| − 1] + q(∥f∥
∞
)

∫
Ω

|f |

and therefore

R

∫
Ω

|∇un|2 ≤ q(∥f∥
∞
)

∫
Ω

|f |.

As a consequence of the previous lemma and (2.5), passing to a subsequence
if necessary, we may assume that the sequence {un} converges to a function u ∈
W 1,2

0 (Ω) ∩ L∞(Ω) weakly in W 1,2
0 (Ω) and a. e.

Lemma 2.4. The sequence {un} converges strongly to u in W 1,2
0 (Ω).

Proof. Here, following [6, 7], we use q(un−u) as test function, where q(t) is defined
as in (2.7) and λα > 2R(1 + ∥f∥

∞
)γ . Then

∫
Ω

a(x, un)∇un[∇un −∇u]q′(un − u) +

∫
Ω

un q(un − u)

≤ R

∫
Ω

|∇un|2|q(un − u)|+
∫
Ω

|f ||q(un − u)|,

that is, since |∇un|2 ≤ 2|∇un −∇u|2 + 2|∇u|2,

α

(1 + ∥f∥
∞
)γ

∫
Ω

|∇un −∇u|2q′(un − u) +

∫
Ω

un q(un − u)

≤ 2R

∫
Ω

|∇un −∇u|2|q(un − u)|+ 2R

∫
Ω

|∇u|2|q(un − u)|

+

∫
Ω

|f ||q(un − u)| −
∫
Ω

a(x, un)∇u[∇un −∇u]q′(un − u),

which implies(
αλ

(1 + ∥f∥
∞
)γ

− 2R

)∫
Ω

|∇un −∇u|2

≤ −
∫
Ω

un q(un − u) + 2R

∫
Ω

|∇u|2|q(un − u)| (2.8)

+

∫
Ω

|f ||q(un − u)| −
∫
Ω

a(x, un)∇u[∇un −∇u]q′(un − u) .

Using the a.e. convergence and boundedness of un and the weak-L2 convergence
of ∇un, it is now easy to show that for n → ∞ all the integrals of the right-hand
side of (2.8) go to zero.
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Corollary 2.5. The properties (1.5), (1.6) and the strong convergence of the
sequence {un} to u in W 1,2

0 (Ω) imply the strong convergence of the sequence{
H(x, un,∇un)

1 + 1
n |∇un|2

}
to H(x, u,∇u) in L1(Ω).

Conclusion of the proof of Theorem 1.1. Using the properties of the sequence
{un} proved above (in particular, in the previous corollary), it is possible to pass
to the limit in every term of (2.6) in order to prove the statement.

3. Extensions

In the following two subsections, we present some developments, possible thanks
to the properties of our method.

3.1. Q-condition

In this subsection, instead of (1.7) we assume that there exists a constant Q > 0
such that

|f(x)| ≤ Qa(x), a ∈ L1(Ω), (3.1)

and we consider the Dirichlet problems{
un ∈ W 1,2

0 (Ω) ∩ L∞(Ω) :

−div(a(x, Tn(un))∇un) + a(x)un = H(x, un,∇un) + f(x);
(3.2)

that is, ∀ v ∈ W 1,2
0 (Ω) ∩ L∞(Ω),∫

Ω

a(x, Tn(un))∇un ∇v +

∫
Ω

a(x)un v =

∫
Ω

H(x, un,∇un) v +

∫
Ω

f(x) v. (3.3)

In [2] the existence of a solution un to problem (3.3) is proven; moreover it is
shown, despite the assumption f ∈ L1(Ω), that

∥un∥∞ ≤ Q

and the above estimate does not depend on the principal part.
Thus, for un solution of (3.2), we are in the same position of Lemma 2.1; then,

it is possible to prove the following existence result concerning bounded weak
solutions despite the very poor assumption f ∈ L1(Ω), thanks to (3.1).

Theorem 3.1. Under the assumptions (1.3)–(1.6) and (3.1), there exists a bounded
weak solution of

u ∈ W 1,2
0 (Ω) ∩ L∞(Ω) : −div(a(x, u)∇u) + a(x)u = H(x, u,∇u) + f(x)

that is, ∀ v ∈ W 1,2
0 (Ω) ∩ L∞(Ω),∫

Ω

a(x, u)∇u∇v +

∫
Ω

a(x)u v =

∫
Ω

H(x, u,∇u) v +

∫
Ω

f v,

with ∥u∥
∞

≤ Q, where Q is the constant appearing in (3.1).
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3.2. Function H(x, s, ξ) unbounded with respect to s

If we assume (instead of (1.5))

|H(x, s, ξ)| ≤ R (1 + |s|)λ |ξ|2, (3.4)

where λ ∈ R+, we need to modify the real function g(t) in (2.4) by changing γ
with γ + λ.

4. Proof of Theorem 1.2

We assume here the hypotheses (1.12)–(1.14) and (1.7). We consider the problem{
un ∈ W 1,2

0 (Ω) :

−div(a(x, Tn(un))∇un) + bn(x, un) = Tn(H(x, un,∇un)) + f,
(4.1)

where

bn(x, s) =

{
min{b(x, s), ns} for s ≥ 0

max{b(x, s),−ns} for s < 0.

Note that, if we set φn(t) = min{φ(t), nt} for t > 0, then

bn(x, s) sign(s) ≥ φn(|s|) ≥ φ1(|s|).

Existence of a solution un of problem (4.1), that is, of a function un ∈ W 1,2
0 (Ω) ∩

L∞(Ω) such that∫
Ω

a(x, Tn(un))∇un ∇v +

∫
Ω

bn(x, un) v =

∫
Ω

Tn(H(x, un,∇un)) v +

∫
Ω

f(x) v,

(4.2)
for every v ∈ W 1,2

0 (Ω)∩L∞(Ω), follows again from Schauder’s fixed point theorem.
We now define

B(t) =

∫ t

0

δ(σ)

α(σ)
dσ for t ≥ 0.

For k > 0 to be chosen below, we take

v =
(
eB(|un|) − eB(k)

)
+
sign(un)

in (4.2). Using the assumptions on the functions appearing in the equation, we
obtain∫

{|un|>k}
δ(|un|)eB(|un|)|∇un|2 +

∫
{|un|>k}

φn(|un|)
(
eB(|un|) − eB(k)

)
≤

∫
{|un|>k}

δ(|un|)
(
eB(|un|) − eB(k)

)
|∇un|2 +

∫
{|un|>k}

|f |
(
eB(|un|) − eB(k)

)
,
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and therefore

eB(k)

∫
{|un|>k}

δ(|un|)|∇un|2

+

∫
{|un|>k}

(
φn(|un|)− ∥f∥

∞

)(
eB(|un|) − eB(k)

)
≤ 0.

Since the first integral is nonnegative, by taking k = kn such that φn(k) = ∥f∥
∞

we obtain
∥un∥∞ ≤ φ−1

n (∥f∥
∞
). (4.3)

In particular, since φn(s) ≥ φ1(s), this implies a uniform L∞-estimate for the
sequence {un}:

∥un∥∞ ≤ φ−1
1 (∥f∥

∞
). (4.4)

From now on, the proof is very similar to the one is presented in the previous
section, since the functions un are weak solutions of the equation

−div(a(x, un)∇un) + bn(x, un) = Tn(H(x, un,∇un)) + f,

where

a(x, un) ≥ α(φ−1
1 (∥f∥

∞
), |Tn(H(x, un,∇un))| ≤ δ(φ−1

1 (∥f∥
∞
)|∇un|2.

Note that from the estimate (4.3) it follows that the limit solution u satisfies

∥u∥
∞

≤ φ−1(∥f∥
∞
).
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