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Some results for the Asymptotics and the Strong Minimum
Principle for solutions to some nonlinear parabolic

equations

Tilak Bhattacharya

Abstract. We extend some of the results in [7] on strong minimum principle and asymptotics
of positive viscosity solutions to a class of doubly nonlinear parabolic equations,

H(Du,D2u)− f(u)ut = 0, k ≥ 1, in Ω× [0, T ),

where Ω ⊂ Rn is a bounded domain and 0 < T ≤ ∞. The spatial operator H is homogeneous of

degree k.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain, and Ω be its closure. For 0 <
T ≤ ∞, define ΩT = Ω × (0, T ). If T = ∞, we write Ω∞ = Ω × (0,∞). Let
PT = (Ω× {0}) ∪ (∂Ω× [0, T )), and P∞ = PT with T = ∞, denote the parabolic
boundaries of ΩT and Ω∞ respectively. Let u = u(x, t) : ΩT → [0,∞). For k ≥ 1,
set

Γk[u] := H(Du,D2u)− f(u)ut, k ≥ 1, (1.1)

where H is an operator that is elliptic, homogeneoeus of degree k, and satisfies
conditions described later in this section. The function f is a non-decreasing C1

function. In this work, H could be degenerate, and fully nonlinear, see below.
We introduce notation for the work. The letters x, y and z denote points in

Rn, and o is the the origin. Let Sn be the set of all n×n real symmetric matrices,
I is the identity matrix and O is the zero n× n matrix. The letters e and σ often
stand for unit vectors in Rn. Also, Bρ(x) is the Rn ball centered at x ∈ Rn with
radius ρ.

In [7], we studied non-negative viscosity solutions of the parabolic equation

H(Du,D2u)− uk−1ut = 0, in ΩT , k ≥ 1.

We showed that if k = 1, the Strong Maximum Principle and the Hopf boundary
Principle are true for a large class of operators H. However, if k > 1, these
results could fail to hold. Included in this work was also a discussion of long time
asymptotics for the equations. Our effort in the current work is to extend some of
the results in [7] to (1.1), for k > 1.
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We state the problem as follows:

Γk[u] = 0, in ΩT , u ≥ 0, and u = h on PT , (1.2)

where Γk is as in (1.1) and h = h(x, t) ∈ C(PT ). We allow T = ∞ in what follows.
The function h = h(x, t), for (x, t) ∈ PT , includes the initial and side condi-

tions, and is as given below:

h(x, t) =

{
h(x, 0) ∀x ∈ Ω, t = 0,

h(x, t) ∀(x, t) ∈ ∂Ω× [0, T ).
(1.3)

Let y ∈ ∂Ω. The function h is continuous at (y, 0), if

(i) (x, t) ∈ ∂Ω× (0, T ) and (x, t) → (y, 0), then lim
(x,t)→(y,0)

h(x, t) = h(y, 0),

(ii) x ∈ Ω and x→ y, then lim
(x,0)→(y,0)

h(x, 0) = h(y, 0).

By h ∈ C(PT ), we mean that the above holds on ∂Ω × {0}, and h is continuous
elsewhere.

We assume throughout that

0 < inf
PT

h(x, t) ≤ sup
PT

h(x, t) <∞. (1.4)

We list the conditions satisfied by H, these hold throughout the work.

Condition A (Monotonicity): Assume that H : Rn × Sn → R is continuous,
and H(℘,O) = 0, for any ℘ ∈ Rn. For any X, Y ∈ Sn with X ≤ Y ,

H(℘,X) ≤ H(℘, Y ), ∀℘ ∈ Rn.

Condition B (Homogeneity): There is a constant k1 ≥ 0 such that ∀(℘,X) ∈
Rn × Sn,

H(θ℘,X) = |θ|k1H(℘,X), ∀ θ ∈ R, and H(℘, θX) = θH(℘,X), ∀ θ > 0.

We do not assume that H is odd in X. Also, if k1 = 0 then H(℘,X) = H(X).
Set k = k1 + 1, using Condition B, for θ > 0,

H(θ℘, θX) = θkH(℘,X), ∀ (℘,X) ∈ Rn × Sn. (1.5)

For the next condition, let λ ∈ R, and e ∈ Rn be a unit vector. Define

m(λ) = min

(
min
|e|=1

H (e, I − λe⊗ e) , −max
|e|=1

H(e, λe⊗ e− I)

)
, and

M(λ) = max

(
max
|e|=1

H (e, I − λe⊗ e) , − min
|e|=1

H(e, λe⊗ e− I)

)
. (1.6)
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Note that m(λ) ≤ M(λ), and, both are non-increasing functions of λ. Moreover,
if λ ≤ 1 then m(λ) ≥ 0, since I − λe ⊗ e ≥ 0. However, if λ > 1 then no definite
statement can be made about I − λe⊗ e. Condition C addresses this issue.

Condition C (Coercivity): We require that H satisfy

C(i) m(λ) > 0, ∀λ < 1, and C(ii) M(λ) < 0, ∀λ ≥ λ1, (1.7)

for some λ1 ≥ 1.
Observe that if λ = 0 then C(i) implies that

(i) H(e, I) ≥ m(0) > 0, and H(e,−I) ≤ −m(0) < 0. (1.8)

The motivation for studying equation (1.2) arises from [9, Chap. II]. As an
example, consider the parabolic equation

(∗) div(|Du|p−2Du) + |Du|p = ut, p > 1.

Using v = eu in (∗), we obtain the well-known doubly nonlinear parabolic equation

(∗∗) div(|Dv|p−2Dv) = vp−2vt.

See Section 2 for more details.
The operator H(Du,D2u) := div(|Du|p−2Du) is quasilinear, k = p − 1, and

odd in the second derivatives. It is easy to see that Conditions A and B are
satisfied, if p ≥ 2. Also,

H(e, I − λe⊗ e) = (n+ p− 2)− (p− 1)λ.

If n ≥ 2, Condition C is satisfied. Thus, our results would hold for (∗), for p ≥ 2.
Further examples of operators H that satisfy Conditions A, B and C include,

the pseudo p-Laplacian (p ≥ 2), the infinity-Laplacian and the Pucci operators, see
[5, Section 3] for a detailed discussion. For related works, see [1, 2, 3, 4, 5, 10, 13].

In the first part of the current work, we discuss cases where the Strong Mini-
mum Principle and the Hopf Boundary Principle may not hold. It turns out that
if k > 1, these may fail regardless of whether f is a constant function or a non-
constant function. In the former (f constant), the sign of the solution u plays no
role. In the latter (f non-constant), we consider u ≥ 0, and a distinction between
the cases infΩT

u > 0 and infΩT
u = 0 needs to be made. This appears in Theo-

rem 1.2. For k = 1 and f , a positive constant, both the Strong Minimum Principle
and the Hopf Boundary Principle are true, even when H is fully nonlinear, see [7].
However, if k > 1 and f(u) = uk−1, then these were shown to fail.

The second set of results extends the large time asymptotic behaviour of pos-
itive solutions, shown in [7], to (1.2). It turns out that the results shown therein
continue to hold.

In this work, sub-solution, super-solutions and solutions are in the viscosity
sense. We provide a definition below.
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Definition 1.1 (Viscosity Solution). Let U ⊂ Rn+1 be a domain. By usc(lsc)(U),
we mean the set of all upper semi-continuous (lower semi-continuous) functions
defined on the set U .

Our work studies viscosity solution of

Γk[u] ≡ H(Du,D2u)− f(u)ut = 0, in ΩT and u = h on PT . (1.9)

A function u ∈ usc(ΩT ), u ≥ 0, is said to be a viscosity sub-solution of the
differential equation in (1.9) in ΩT (or solves Γk[u] ≥ 0 in ΩT ), if, for any ψ, C2

in x and C1 in t, such that u − ψ has a maximum at some point (y, t) ∈ ΩT , we
have

H(Dψ,D2ψ)(y, t)− f(u(y, t))ψt(y, t) ≥ 0.

We say u is a sub-solution of the problem in (1.9), if u ∈ usc(ΩT ∪ PT ), Γk[u] ≥ 0
in ΩT , and u ≤ h on PT .

Similarly, u ∈ lsc(ΩT ), u ≥ 0, is said to be a viscosity super-solution of the
differential equation in (1.9) in ΩT (or solves Γk[u] ≤ 0, in ΩT ), if, for any ψ, C

2

in x and C1 in t, such that u− ψ has a minimum at some (y, t) ∈ ΩT , we have

H(Dψ,D2ψ)(y, t)− f(u(y, t))ψt(y, t) ≤ 0.

We say u is a super-solution of the problem in (1.9), if u ∈ lsc(ΩT ∪ PT ), u > 0,
Γk[u] ≤ 0 in ΩT , and u ≥ h on PT .

A function u ∈ C(ΩT ) is a solution of Γk[u] = 0 in ΩT , if it is both a sub-
solution and a super-solution. Similarly, u ∈ C(ΩT ∪ PT ) is a solution of the
problem in (1.9), if it is both a sub-solution and a super-solution of (1.9). The
above definitions can be extended to the case T = ∞.

In the rest of the work, operator H will be assumed to satisfy Conditions A,
B and C, unless otherwise mentioned. Additionally, f satisfies conditions which
are discussed in greater detail in Section 2, see Comment I and Note II. These are
needed for a version of the comparison principle to hold, see Section 2. Also, the
results stated here hold if f > 0 is a constant function. In this case, there are no
sign restrictions on u. However, we do not state this explicitly in the theorems,
our focus being mainly on the case where f is a non-constant function.

We assume throughout that k > 1.
We now state the main results. Theorem 1.2 addresses the Strong Minimum

Principle. We place no restrictions on ∂Ω.

Theorem 1.2. Let Ω ⊂ Rn be any bounded domain and T > 0. Suppose that
f : [0,∞) → [0,∞) is C1, non-decreasing, and f1/(k−1) is concave. Let u ∈
lsc(ΩT ), u ≥ 0, be a super-solution, i.e.,

Γk[u] ≡ H(Du,D2u)− f(u)ut ≤ 0 in ΩT .

Set m = infΩT
u. The following hold:
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(a) Let m > 0. If for some (p, τ) ∈ ΩT , u(p, τ) > m then there is a ρ > 0 such
that u > m in the cylinder Bρ(p) × [τ, T ). As a consequence, if u(p, τ) = m then
u(p, s) = m for all 0 < s < τ .

(b) Suppose that u ≥ 0. If m = 0 and (p, τ) ∈ ΩT is such that u(p, τ) = 0.
Assume that u ∈ C(ΩT ). Then there is a sequence of points {(xℓ, tℓ)}∞ℓ=1 ⊂ ΩT ,
such that tℓ < τ , u(xℓ, tℓ) = 0 and (xℓ, tℓ) → (p, τ).

A proof appears in Section 3. Parts (a) and (b) cannot be improved, thus
showing that the Hopf Boundary Principle and the Strong Minimum Principle do
not hold, in general.

The next two results address large time asymptotic behaviour. See [1, 4, 10].
Here, f is as in Theorem 1.2. For Theorem 1.3, we place no restrictions on ∂Ω.
However, ∂Ω satisfies a uniform outer ball condition in Theorem 1.4.

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain, and h ∈ C(P∞), h > 0,
satisfy (1.3) and (1.4).

(a) Let u ∈ lsc(Ω∞ ∪ P∞), u > 0, be a super-solution to (1.2), i.e., Γk[u] ≤ 0.
Assume that u = h on ∂Ω× [T,∞), for some T > 0.

Let hinf = limt→∞
(
inf∂Ω×[t,∞) h

)
. If hinf exists then

lim
t→∞

(
inf

Ω×[t,∞)
u

)
= hinf .

(b) Let u ∈ usc(Ω∞ × P∞), u > 0, be a sub-solution to (1.2), i.e., Γk[u] ≥ 0.
Assume that u = h on ∂Ω× [T,∞), for some T > 0.

Let hsup = limt→∞

(
sup∂Ω×[t,∞) h

)
. If hsup exists then

lim
t→∞

(
sup

Ω×[t,∞)

u

)
= hsup.

The next result addresses the case where h ≡ constant. See [7] for the case
k = 1.

Theorem 1.4. Let Ω be a bounded domain that satisfies a uniform outer ball
condition. Suppose that, for some ν ∈ R, h = ν, on ∂Ω× [T,∞) for some T ≥ 0.

Assume that ν > 0. Suppose that the sub(super)-solution u satisfies u = ν on
∂Ω× [T,∞). The following holds for any α < 1/(k − 1).

(a) If u > 0 is a subsolution then lim
t→∞

tα

(
sup

Ω×[t,∞)

u− ν

)
= 0.

(b) If u > 0 is a supersolution then lim
t→∞

tα
(
ν − inf

Ω×[t,∞)
u

)
= 0.

See Section 4 for the proofs of Theorems 1.3 and 1.4. In this work, we do
not address existence issues for the parabolic problems (1.2). Instead, we direct
the reader to [5, Theorems 1.2 and 1.3] for such issues, see also [2]. A somewhat
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more refined version of Condition C is used in [5]. Under conditions on M(λ) (we
require ∂Ω to be smooth in some cases) existence of a positive solution is shown
in ΩT , for any T > 0. However, if u is allowed to vanish somewhere in ΩT , then
these results may not apply. See [5] for more details.

The proofs, in the current work, follow [7] closely. To make it self-contained,
we have included the details.

2. Preliminaries

We present some elementary calculations that will be useful in the work. Included
here is a version of a comparison principle for parabolic equations in (1.2).

2.1. Radial functions

Let z ∈ Rn and r = |x− z|. Suppose that v(x) = v(r), r ≥ 0, is C2 in r > 0. Set
e = (x− z)/r, in r > 0. Then for x ̸= z,

H(Dv,D2v) = H

(
v′(r)e,

v′(r)

r
(I − e⊗ e) + v′′(r)e⊗ e

)
, (2.1)

where I is the n× n identity matrix. If v(r) = rα, α > 0, then

H(Dv,D2v) = αkrαk−(k+1)H(e, I + (α− 2)e⊗ e).

2.2. Change of variable formula

See Lemma 2.3 in [5] for a more general statement. Let f : [0,∞) → [0,∞) be a
C1 non-decreasing function that satisfies f(s) = 0 if and only if s = 0.

Suppose that u ∈ usc(lsc)(ΩT ), u > 0, satisfies

H(Du,D2u)− f(u)ut ≥ (≤)0 in Ω.

For k > 1, let Fk(s) be a primitive

Fk(s) =

∫ s dθ

f(θ)1/(k−1)
, s > 0. (2.2)

Note that Fk is a C2 function, and is increasing and concave. Define w = Fk(u);
thus, if u ∈ usc(lsc)(ΩT ) then w ∈ usc(lsc)(ΩT ), and

H

(
Dw,D2w +

[
1

F ′
k(u)

]′
Dw ⊗Dw

)
− wt ≥ (≤)0 in ΩT .

Here, [1/F ′
k(u)]

′ = [f(u)1/(k−1)]′. The above is in the sense of viscosity. For deriv-
ing a comparison principle, we require that [f(u)1/(k−1)]′ is non-increasing in w,
i.e, non-increasing in u. Recall that w is increasing if and only if u is increasing.

See also [2]. A formal derivation appears in Appendix A.1.
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Comment I: The aim of the change in variable is to derive a comparison
principle for Γk. It will be seen that under some conditions, the function w = Fk(u)
satisfies a comparison principle. Thus a version for u holds, see Theorem 2.3
below. Since Fk is an increasing continuous function, Fk(u) ∈ usc(lsc)(ΩT ∪ PT ),
if u ∈ usc(lsc)(ΩT ∪ PT ).

For a version of the comparison principle to hold, we require that f(s)1/(k−1)

be a concave function. If f(s) = sα, α ∈ R, this leads to the requirement

0 ≤ α ≤ k − 1.

Observe also that J(s) ≡ [f(s)1/(k−1)]′ could be unbounded near s = 0. If f(s) =
sα and α < k− 1, J(s) is unbounded near s = 0. However, if α = k− 1, J(s) = 1.

Finally, if lims→0+ Fk(1)− Fk(s) <∞, we define

Fk(0) ≡ lim
s→0+

Fk(s) > −∞.

If, instead, lims→0+ Fk(1)− Fk(s) = ∞, we define

lim
s→0+

Fk(s) = −∞.

Note II: In the rest of the work, we assume that (i) f
′
(u) ≥ 0, and (ii)

f(u)1/(k−1) is concave in u, see (2.2). If f is a constant function, the requirement
that u ≥ 0 may be dropped, as Fk(u) = u.

2.3. Parabolic Comparisons

We discuss a version of the comparison principle used in this work. Note that
Ω ⊂ Rn is a bounded domain and 0 < T < ∞. However, many of these continue
to hold for T = ∞, by letting T → ∞.

We begin with a well known result about sub-solutions that we state without
proof.

Lemma 2.1. Suppose that H satisfies Condition A. For i = 1, 2, let ui ∈ usc(ΩT ∪
PT ), such that ui ≥ 0 solve Γk[ui] ≥ 0 in ΩT . Then the function u = max{u1, u2}
solves

Γk[u] ≥ 0 in ΩT .

An analogous statement holds for super-solutions with max replaced by min.

Suppose that F : R+ × R× Rn × Sn → R is continuous and satisfies

F (t, ν, ℘,X) ≤ F (t, ν, ℘, Y ), (2.3)

for any (t, ν, ℘) ∈ (0, T )× R× Rn, with X ≤ Y ,
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Lemma 2.2 (Comparison principle). Let F be as in (2.3), and E : R → [0,∞) be
continuous and non-increasing. Suppose that u ∈ usc(ΩT ∪ PT ) and v ∈ lsc(ΩT ∪
PT ) satisfy

F (t,Du,D2u+ E(u)Du⊗Du)− g(t)ut ≥ 0,

and F (t,Dv,D2v + E(v)Dv ⊗Dv)− g(t)vt ≤ 0,

in ΩT . If supPT
v <∞ and u ≤ v on PT then u ≤ v in ΩT .

See [5, Lemma 4.1, Section 4]. See [8], for a more general result. We apply
the above (see Comment I and Note II) to obtain the comparison principle in
Theorem 2.3.

We introduce additional notation for the following theorem. Let δ > 0 be
small. Define

(∗) Ωδ = {x ∈ Ω : dist(x,Rn \ Ω) ≥ δ}.

Let θ > 0, be small. By P (δ, T − θ) we denote the parabolic boundary of Ωδ ×
(δ, T − θ). Note that P (0, T − θ) = PT−θ.

Theorem 2.3 (Comparison principle). Let H satisfy Conditions A and B, and
f satisfy Note II, in Subsection 2.2. Suppose that u ∈ usc(ΩT ∪ PT ), and v ∈
lsc(ΩT ∪ PT ), satisfy

Γk[u] ≥ 0, and Γk[v] ≤ 0, in ΩT ,

where Γk[w] = H(Dw,D2w)− f(w)wt.
(i) Let f(u) = c > 0. Then u − v ≤ supPT

(u − v). This holds without any
sign restrictions on u and v. Moreover, u ≤ supPT

u, and v ≥ infPT
v.

In what follows, suppose that f(u) is a non-constant function. Let Fk be the
function defined in (2.2). Assume in parts (ii) and (iii) that v > 0 in ΩT . The
following hold.

(ii) Assume that u ≥ ν > 0, for some ν > 0, and v > 0 on PT . Then
Fk(u) − Fk(v) ≤ supPT

(Fk(u) − Fk(v)). If u ≤ v on PT then u ≤ v. Also,
u ≤ supPT

u, and v ≥ infPT
v.

(iii) Suppose that u ≥ 0 on ΩT ∪ PT . We address two cases.
(iii-a) If v > 0 on PT , then Fk(u)− Fk(v) ≤ supPT

(Fk(u)− Fk(v)). The
remaining conclusions in Part (ii) hold also. Moreover, if u = 0 on PT then u ≡ 0
in ΩT .

(iii-b) Suppose that v = 0 somewhere on PT .

• If lims→0+ Fk(s) > −∞, then Fk(u)− Fk(v) ≤ supPT
(Fk(u)− Fk(v)).

Thus, if u ≤ v on PT , u ≤ v in ΩT . As a result, u ≤ supPT
u, and v ≥ infPT

v.

• If lims→0+ Fk(s) = −∞, then

Fk(u)− Fk(v) ≤ limδ→0

[
supP (δ,T−δ) (Fk(u)− Fk(v))

]
.

Moreover, u ≤ supPT
u, and v ≥ infPT

v. In particular, if u = 0 on PT , u = 0 in
ΩT .
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Proofs of parts (i) and (ii): The conclusion in (i) follows from Lemma 2.2,
see also [8]. To show the maximum principles, take v =constant in one case, and
u =constant in the other.

For part (ii), see [5, Theorem 4.3, Section 4]. We apply Lemma 2.2 to the
transformed functions Fk(u) and Fk(v), see Comment I and Note II in Subsection
2.2. Since Fk is increasing, and Fk(s) > −∞, for s > 0, the conclusion u ≤ v in
ΩT follows, if u ≤ v on PT . The maximum principles follow as in part (i) since
Fk(u) ≤ supPT

Fk(u) ≤ Fk(supPT
u). The second inequality follows as u(x, t) ≤

supPT
u, ∀ (x, t) ∈ PT .

Proof of part (iii): We begin by showing that the claim holds if v > 0 on
ΩT ∪ PT .

Proof of (iii-a) Assume that u ≥ 0, and v > 0 in ΩT ∪ PT . For a fixed, small
ε > 0, set uε = max{u, ε}. By Lemma 2.1, uε is a sub-solution, since w = ε is a
sub-solution. Assume that u > 0 somewhere in Ω.

(a1): Suppose that Fk(0) ≡ lims→0+ Fk(s) > −∞. Thus, Fk : [0,∞) →
[Fk(0),∞) is right continuous at 0. Recall from Comment I that Fk(u) ∈ usc(ΩT ∪
PT ), and Fk(v) ∈ lsc(ΩT ∪ PT ).

If (x, t) ∈ ΩT , then (x, t) ∈ ΩT−θ, for some θ > 0, small. Set

Mε ≡ sup
{0≤u≤ε}∩PT−θ

[Fk(ε)− Fk(v)].

Since Fk(u) ≤ Fk(uε), applying part (ii) of the theorem, for any ε > 0,

Fk(u(x, t))− Fk(v(x, t)) ≤ Fk(uε(x, t))− Fk(v(x, t))

≤ sup
PT−θ

(Fk(uε)− Fk(v)) = max

{
Mε, sup

{u>ε}∩PT−θ

[Fk(u)− Fk(v)]

}

≤ max

{
Mε, sup

PT−θ

[Fk(u)− Fk(v)]

}
. (2.4)

Choose η > 0, small. For every ε > 0 (ε→ 0), let (xε, tε) ∈ {0 ≤ u ≤ ε}∩PT−θ

such thatMε ≤ Fk(ε)−Fk(v(xε, tε))+η. SinceMε is decreasing, 0 ≤ u(xε, tε) ≤ ε,
and Fk(ε)− Fk(v) ∈ usc(ΩT ∪ PT ),

lim
ε→0

Mε ≤ lim sup
ε→0

[Fk(ε)− Fk(v(xε, tε))] + η ≤ Fk(0)− Fk(v(x0, t0)) + η,

≤ Fk(u(x0, t0))− Fk(v(x0, t0)) + η ≤ sup
PT−θ

[Fk(u)− Fk(v)] + η.

for some (x0, t0) ∈ PT−θ. Since the above holds for any η, (2.4) implies that

Fk(u(x, t))− Fk(v(x, t)) ≤ sup
PT

Fk(u)− Fk(v).

We show the last part. Assume that u = 0 on PT and u(x̄, t̄) > 0 at some
(x̄, t̄) ∈ ΩT . Set v = 1, then, for any ε > 0,

(Fk(u)− Fk(1)) (x̄, t̄) ≤ (Fk(uε)− Fk(1)) (x̄, t̄)

≤ sup
PT

(Fk(uε)− Fk(1)) = Fk(ε)− Fk(1).
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Hence, Fk(u(x̄, t̄)) ≤ Fk(ε). Taking ε < u(x̄, t̄), we get a contradiction. Thus,
u = 0 in ΩT .

(a2): Suppose that lims→0+ Fk(s) = −∞. If u = 0 on PT , using the argument
in (a1), we get u = 0 in ΩT . We assume that u > 0 somewhere in ΩT , hence,
u > 0 somewhere on PT . Note that the functions uε = ε and v = 1 are positive
solutions of Γk = 0.

We observe that (2.4) (see (a1)) continues to hold, i.e.,

Fk(u)− Fk(v)

≤ max

{
sup

{0≤u≤ε}∩PT

[Fk(ε)− Fk(v)], sup
{u>0}∩PT

[Fk(u)− Fk(v)]

}
, ∀ε > 0.

Since infPT
v > −∞, and limε→0 Fk(ε) = −∞, one can choose ε, small, so that

sup
{0≤u≤ε}∩PT

[Fk(ε)− Fk(v)] ≤ Fk(ε)− Fk(inf
PT

v) ≤ sup
{u>0}∩PT

[Fk(u)− Fk(v)].

It follows from above that

Fk(u)− Fk(v) ≤ sup
{u>0}∩PT

[Fk(u)− Fk(v)] ≤ sup
PT

[Fk(u)− Fk(v)].

Proof of (iii-b). We now consider the case v ≥ 0 on PT . Recall that Fk(v) ∈
lsc(ΩT ).

Let δ > 0 and θ > 0 be small, and Ωδ, and P (δ, T −θ) be as defined above (see
(∗)). Let (x, t) ∈ ΩT . There are δ > 0 and θ > 0 such that (x, t) ∈ Ωδ × (δ, T − θ).
Note that

v > 0 on Ωδ × (δ, T − θ).

(b1) Let Fk(0) > −∞. It follows that Fk(u) ∈ usc(ΩT ∪ PT ).
As shown in part (a1) above (using uε),

Fk(u(x, t))− Fk(v(x, t)) ≤ sup
P (δ,T−θ)

(Fk(u)− Fk(v)).

.
We now show that

Fk(u(x, t))− Fk(v(x, t)) ≤ sup
PT−θ

Fk(u)− Fk(v).

Let η > 0 be small; fix θ. For each δ > 0, let (xδ, tδ) ∈ P (δ, T − θ) (i.e., on the
parabolic boundary of Ωδ × (δ, T − θ)) be such that

Fk(u(x, t))− Fk(v(x, t)) ≤ sup
P (δ,T−θ)

Fk(u)− Fk(v)

≤ Fk(u(xδ, tδ))− Fk(v(xδ, tδ)) + η.
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Since, as δ → 0, Ωδ × (0, T − θ) ↗ ΩT−θ, there is a sub-sequence (xδ, tδ) and a
(y, s) ∈ ∂Ω× [0, T − θ] such that (xδ, tδ) → (y, s). Thus,

(Fk(u)− Fk(v)) (x, t) ≤ lim
δ→0

[ sup
P (δ,T−θ)

(Fk(u)− Fk(v))]

≤ lim sup
δ→0

[Fk(u(xδ, tδ))− Fk(v(xδ, tδ))] + η

≤ Fk(u(y, s))− Fk(v(y, s)) + η

≤ sup
PT

(Fk(u)− Fk(v)) + η.

The above follows as Fk(u)− Fk(v) is upper semi-continuous. The claim follows.
(b2) Suppose that lims→0+ Fk(s) = −∞. The assumption v > 0 in ΩT con-

tinues to hold.
Thus, Fk(u) ∈ usc((ΩT ∪PT )∩{u > 0}), and Fk(v) ∈ lsc(ΩT ∪(PT ∩{v > 0})).
Arguing as in (a1) and (b1), we get that Fk(u)−Fk(v) ≤ supP (δ,T−δ) Fk(u)−

Fk(v), if δ > 0 is small enough. Hence,

Fk(u)− Fk(v) ≤ lim
δ→0

[
sup

P (δ,T−δ)

Fk(u)− Fk(v)

]
.

Firstly, by arguing as in (a1), we can show that if u = 0 on PT then u = 0 in
ΩT . Suppose that supPT

u > 0. Choose 0 < ε < supPT
u. By (a2) (take v = 1),

Fk(u) ≤ Fk(uε) ≤ sup
PT

Fk(uε) ≤ Fk(sup
PT

u).

This concludes the proof.

Corollary 2.4. In Theorem 2.3, take f(s) = sq, where 0 ≤ q ≤ k − 1. Let
u ∈ usc(ΩT ∪ PT ) and v ∈ lsc(ΩT ∪ PT ) solve

H(Du,D2u)− uqut ≥ 0 and H(Dv,D2v)− vqvt ≤ 0 in ΩT .

(i) For 0 ≤ q < k − 1, define

α =
k − 1

k − 1− q
.

Suppose that u ≥ 0 and v > 0 in ΩT . If v ≥ 0 on PT , then

u1/α − v1/α ≤ sup
PT

(
u1/α − v1/α

)
.

(ii) Let q = k−1. Assume that u > 0 and v > 0 in ΩT∪PT . Then log u−log v ≤
supPT

(log u − log v). Clearly, the following quotient type comparison result holds
in ΩT :

u/v ≤ sup
PT

(u/v) .
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The above quotient continues to hold in case u ≥ 0 and v > 0 in ΩT ∪PT . If v > 0
in ΩT and v ≥ 0 on PT , then

u/v ≤ lim
δ→0

[
sup

P (δ,T−δ)

u/v

]
.

Proof. Parts (i) and (ii) follow from Theorem 2.3(iii). For 0 ≤ q < k − 1,

Fk(s) =

∫ s

f(s)−1/(k−1)ds =

(
1− q

k − 1

)−1

s1−q/(k−1) = αs1/α.

Note that w = Fk(u) = αu1/α. Moreover, from Comment I and Note II,

H

(
Dw,D2w +

α− 1

w
Dw ⊗Dw

)
− wt ≥ (≤)0.

Clearly, lims→0+ Fk(s) > −∞.
If q = k − 1, then Fk(s) = log s, w = log u, and

H(Dw,D2w +Dw ⊗Dw)− wt ≥ (≤)0.

Here, lims→0+ Fk(s) = −∞.

Corollary 2.5. Let ū ∈ usc(ΩT ∪ PT ) and v̄ ∈ lsc(ΩT ∪ PT ), v̄ > −∞. Assume
that infΩT

ū > −∞ with, possibly, infΩT∪PT
ū = −∞. If

H(Dū,D2ū+Dū⊗ ū)− ūt ≤ 0 and H(Dv̄,D2v̄ +Dv̄ ⊗ v̄)− v̄t ≥ 0, in ΩT ,

then, ū− v̄ ≤ maxPT
(ū− v̄).

Proof. For ε ∈ R, ūε = max{ū, ε} is a sub-solution. Apply Subsection 2.2 and
Lemma 2.2.

3. Proof of Theorem 1.2: Strong Minimum Principle

In this section, we show that the Strong Minimum Principle and the Hopf Bound-
ary Principle for a non-negative super-solution u may fail, if k > 1 and m ≡
infΩT

u > 0. This conclusion holds regardless of f is constant or increasing (see
Comment I and Note II at the end of Subsection 2.2). The case k > 1 differs from
k = 1, even when f ≡constant.

However, things are not clear in the case m = 0 (f increasing, k > 1), and we
provide a partial result. One of the difficulties seems to be that the comparison
principle (see Theorem 2.3) becomes unclear at places where both the sub-solution
and the super-solution vanish.

We consider super-solutions u > 0 of doubly nonlinear equations of the type:

H(Du,D2u)− f(u)ut ≤ 0,

where f : [0,∞) → [0,∞), is non-decreasing, and f(s) = 0 if and only if s = 0.
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3.1. Case m > 0:

Before presenting the proof of the the theorem, we discuss an example that shows
the failure of the Strong Minimum Principle and the Hopf Boundary Principle.

Example: We construct a super-solution ξ, in an appropriate cylinder ΩT ,
such that for some p ∈ Ω, and some T > 0, ξ(p, t) = m ≡ infΩT

ξ, for 0 < t ≤ T .
However, ξ > m in the rest of ΩT . Actually, our construction produces a super-
solution in Rn × (0, T ), for any fixed T > 0.

Take p = o, and any T > 0. Set r = |x − o| = |x| and ϕ(r) = r(k+1)/(k−1).
Using (2.1) (see Subsection 2.1) and (1.7) i.e, Condition C(i),

H(Dϕ,D2ϕ) = cr(k+1)/(k−1)H

(
e, I − k − 3

k − 1
e⊗ e

)
≤ cϕ(r)L, (3.1)

for some constants 0 < c = c(k) <∞, and 0 < L = L(k) <∞.
For any R > 0, we take ΩT = BR(o)× [0, T ). Define

ξ(x, t) = m+ ϕ(r)η(t), where η(t) =

(
1

E(2T − t)

)1/(k−1)

and E =
c(k − 1)L

f(m)
.

Note that f(m) > 0 as m > 0, and

η′(t) = Eηk/(k − 1) > 0.

Using (3.1), we get in, 0 < r < R

Γk[ξ] = H(Dξ,D2ξ)− f(ξ)ξt ≤ cϕηkL− f(m+ ϕη)ϕη′

= cϕηkL− Ef(m+ ϕη)ηk

k − 1
≤ ϕηk

[
cL− Ef(m)

(k − 1)

]
≤ 0.

We verify below that ξ is a super-solution in ΩT , i.e., also at (o, t). But first,
we make the following observations. Clearly,

ξ(o, t) = m, 0 < t ≤ T, and ξ(x, t) > m, x ̸= o.

This shows that u does not attain its minimum value anywhere except along
(o, t), 0 < t < T .

Next, let ∇ be the Rn+1 gradient. Then ∇ξ(o, t) = 0, 0 < t < T . Let z ̸= o
and ρ = |z|. Let U = Bρ(z) × [0, T ], and r = |x|, as defined above. Thus, ξ > m
is a super-solution in U and ξ(o, t) = m, 0 < t < T . This is a t-segment on the
parabolic boundary of U . Since ∇ξ(o, t) = 0, the Hopf Boundary Principle fails.

We now show that ξ is a super-solution in ΩT by showing that it is a super-
solution at (o, t). Let ζ, C2 in x and C1 in t, be such that ξ− ζ has a minimum at
(o, s) for some 0 < s < T . Then ξ(x, t) − ξ(o, s) ≥ ζ(x, t) − ζ(o, s). Since ξ is C1

in both x and t, we get that Dξ(o, s) = Dζ(o, s) = 0 and ξt(o, s) = ζt(o, s) = 0.
Since k > 1, we get, by applying Condition B (k1 > 0) that

H(Dζ(o, s), D2ζ(o, s))− ξ(o, s)k−1ζt(o, s) = 0.

This finishes the proof.
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Proof of Theorem 1.2 Part (a). We now show that if u > 0 satisfies Γk[u] ≤ 0,
in ΩT , and u(p, τ) > m, for some (p, τ) ∈ ΩT , then there is a cylinder C ≡
Bρ(p) × [τ, T ), for some ρ > 0, such that u(x, t) > m in C. As a result, if
u(p, τ) = m then u(p, t) = m, for all 0 < t < τ . As the above example shows, this
result cannot be improved.

Suppose that u(p, τ) > m. Since u is lower semicontinuous, there are ε̄ > 0
and 0 < ρ < 1 such that

u(x, τ) ≥ m+ ε̄, in Bρ(p).

We construct a sub-solution. Set δ = T − τ , r = |x − p| and C = Bρ(p) × [τ, T ).
In C, we define ψ, C2 function in both x and t, as follows. For 0 < ε ≤ ε̄, to be
chosen,

ψ(x, t) = m+ εϕ(r)2η(t), where ϕ(r) = ρ2 − r2, and η(t) =
T − t+ δ

2δ
.

(3.2)

Using (2.1) and Condition B, we get

H(Dψ,D2ψ) = (εη)kH
(
−4rϕe,−4ϕ(I − e⊗ e) + (−4ϕ+ 8r2)e⊗ e

)
= (4εϕη)krk−1H

(
e,

2r2

ϕ
e⊗ e− I

)
.

Hence,

Γk[ψ] = H(Dψ,D2ψ)− f(ψ)ψt (3.3)

= (4εηϕ)
k
rk−1H

(
e,

2r2

ϕ
e⊗ e− I

)
+
εf(ψ)ϕ2

2δ
.

We divide the interval [0, ρ) into two sub-intervals: [0, σ] and [σ, ρ), where σ is
such that

∀ r ∈ [σ, ρ),
2r2

ϕ(r)
=

2

(ρ/r)2 − 1
≥ 2

(ρ/σ)2 − 1
≥ λ1,

where σ = ρν, and ν ≡
√

λ1
λ1 + 2

,

where λ1 is defined in (1.7) C(ii). See also (1.6).

Thus, H(e, 2r2/ϕ(r)− I) ≥ 0, in [σ, ρ). By (3.3), Γk[ψ] ≥ 0, in [σ, ρ)× (τ, T ).

Next, we consider [0, σ]. We estimate

H(e, 2r2/ϕ(r)− I) ≥ min
|e|=1

H(e,−I) ≥ −|M | > −∞.

Observe that 1/2 ≤ η ≤ 1, (1−ν2)ρ2 = ϕ(σ) ≤ ϕ(r) ≤ ρ2, and m ≤ ψ ≤ m+ε.
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Applying these in (3.3), we see

Γk[ψ] ≥ − (4εηϕ)
k
rk−1|M |+ εf(ψ)ϕ2(r)

2δ
(3.4)

≥ εf(m)ϕ(σ)2

2δ
− (4ε)

k
ϕ(0)krk−1|M |

≥ ε

[
f(m)(1− ν2)2ρ4

2δ
− 4kεk−1ρ3k−1|M |

]
= ερ4

[
f(m)(1− ν2)2

2δ
− 4kεk−1ρ3k−5|M |

]
.

If ε > 0 is small enough then ψ is a sub-solution in Bρ(p)× [τ, T ).
Next, we observe that u ≥ ψ = m, on ∂Bρ(p)× [τ, T ), and u(x, τ) ≥ m+ ε ≥

ψ(x, τ), for x ∈ Bρ(p). By using the comparison principle Theorem 2.3, ψ ≤ u in
C. Thus, for any (x, t) ∈ C,

u(x, t) ≥ ψ(x, t) = m+ ε(ρ2 − |x− p|2)2
(
T − t+ δ

2δ

)
> m.

The claim holds.

3.2. Case m = 0:

We assume that u ∈ C(ΩT ).

Proof of Theorem 1.2 Part (b). We show that the zeros of u are not isolated.
Assume to the contrary. Suppose that u(p, τ) = 0, and there is a cylinder
C ≡ Bρ(p) × (τ − δ, τ) ⊂ ΩT , for some ρ > 0 and δ > 0, such that u > 0 in
C \ {(p, τ)}.

Let P be the parabolic boundary of C. Since u > 0 on P , there is a µ > 0
such that u ≥ µ on P . Recall the calculations done in the proof of Part (a), (3.1)
and (3.3). Define in C,

ψ(x, t) =
µ

2
+ ε(ρ2 − r2)2

(
τ − t

2δ

)
, r = |x− p|,

where 0 < ε ≤ min{µ/(2ρ4), ε̄}. As shown above, if ε small enough, ψ is a sub-
solution in C, see (3.4). Moreover, ψ ≤ ν ≤ u on P . Hence, by Theorem 2.3,
u ≥ ψ in C. In particular, u(p, t) ≥ µ/2, τ − δ ≤ t < τ . Since u is continuous,
u(p, τ) ≥ µ/2 > 0, a contradiction. The claim holds.

4. Proof of Theorem 1.3: Asymptotics

The proof extends Theorem 1.2 in [7] to a somewhat more general equation. We
recall a few items, and introduce two auxiliary functions before presenting the
proof. In this section, all the sub-solutions and super-solutions are positive.
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We recall that Ω∞ = Ω × (0,∞) and P∞ = (Ω × {0}) ∪ (∂Ω × (0,∞)). For
t > 0, set

Qt = Ω× [t,∞) and St = ∂Ω× [t,∞).

Let T > 0 be as in the statement of the theorem. We assume that u = h on
ST . Set

m = min
ST

h > 0 and M = sup
ST

h <∞.

By a sub(super)-solution u of (1.9), we mean u ∈ usc(lsc)(Ω∞), u ≤ (≥)h on
P∞, and Γk[u] ≥ (≤)0. Thus, Theorem 2.3 implies that

If u > 0 is a sub-solution then u ≤ max{sup
Ω

u(x, T ), M} in QT ,

If u > 0 is a super-solution then u ≥ min{inf
Ω
u(x, T ), m} in QT . (4.1)

To see (4.1), apply the comparison principle in the cylinder Ω× (T, s), for s > T ,
and then let s→ ∞.

We make a remark about f that will be useful in the sequel.
Remark: We note a property of f1/(k−1) that follows from concavity. Since

f1/(k−1)(s)/s is decreasing,

sup
s≥θ

f(s)

sk−1
=
f(θ)

θk−1
≡ F(θ) <∞. (4.2)

If f is non-constant, we assume that f(0) = 0.
We introduce notation and quantities that are needed for constructing the

auxiliary functions. In what follows, D, E, F and a are positive constants, where
a depends on E. We choose D, E and F in the proof of the theorem.

Let z ∈ Rn \ Ω; set

r = |x− z|, R = sup
x∈Ω

|x− z|, R = inf
x∈Ω

|x− z|, and D = diam(Ω). (4.3)

Clearly, R > 0, r ≥ R > 0, if x ∈ Ω, and

R ≤ R+D and Ω ⊂ BR+D(z) \BR(z).

Auxiliary Function 1 (Sub-solution): Let z and r be defined as above.
For constants D, E, F , and a, we define the function ξ ∈ C2(Ω∞) as follows:

ξ(x, t) = α(r)τ(t), where α(r) = DeEr2 and τ(t) =
eat

eat + F
. (4.4)

We record that

α′(r) = (2Er)α(r), α′′(r) = 2Eα(r)
(
1 + 2Er2

)
,

and τ ′(t) = τ(t)

(
aF

eat + F

)
.
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Set σ = (x− z)/|x− z|; we get

Dξ = (2Er)ξ σ, and ξt = ξ

(
aF

eat + F

)
.

Using (2.1), we get

D2ξ = τ

[
α′

r
(I − σ ⊗ σ) + α′′σ ⊗ σ

]
= 2Eξ

(
I + 2Er2σ ⊗ σ

)
.

Using the above observations and Conditions A, B and C, and (4.3), we get

Γk[ξ] = (2Eξ)krk−1H(σ, I + 2Er2σ ⊗ σ)− f(ξ)ξ

(
aF

eat + F

)
≥ ξk

[
(2E)kRk−1H(σ, I)− af(ξ)

ξk−1

]
.

By (4.3) and (4.4), ξ(x, t) ≥ DeER2

/(1+F ), in ΩT . For ξ to be a subsolution,
we require that

0 < a <
(2E)kRk−1 min|σ|=1H(σ, I)

F(θ)
, where θ = DeER2

/(1 + F ) > 0, (4.5)

and F(θ) = sups≥θ f(s)/s
k−1. See (1.7) C(i), and (4.2).

Auxiliary Function 2 (Super-solution): Let z be as before, and recall
(4.3). For positive D, E, F , and a > 0, we set

ζ(x, t) = β(r)γ(t), where β(r) = De−Er2 and γ(t) = 1 + Fe−at. (4.6)

We impose a condition on E and a, for ζ to be a super-solution. Rest are chosen
in the proof of the theorem. Clearly,

β′ = (−2Er)β, β′′ = 2Eβ(2Er2 − 1), and

γ′ = −aFe−at = −γ
(

aFe−at

1 + Fe−at

)
.

Letting σ = (x− z)/|x− z|, we have

Dζ = (−2Er)ζ σ, ζt = −ζ
(

aFe−at

1 + Fe−at

)
,

D2ζ = γ

[
β′

r
(I − σ ⊗ σ) + β

′′
σ ⊗ σ

]
= 2Eζ

(
2Er2σ ⊗ σ − I

)
.
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Thus,

Γk[ζ] = H
(
−2Eζr σ, 2Eζ

(
2Er2σ ⊗ σ − I

))
+ f(ζ)ζ

(
aFe−at

1 + Fe−at

)
= (2Eζ)krk−1H

(
σ, 2Er2σ ⊗ σ − I

)
+ f(ζ)ζ

(
aFe−at

1 + Fe−at

)
= ζk

[
(2E)krk−1H

(
σ, 2Er2σ ⊗ σ − I

)
+
af(ζ)

ζk−1

(
Fe−at

1 + Fe−at

)]
. (4.7)

By (4.3), R ≤ r ≤ R+D. We choose E (see (1.7) C(i)) small so that

0 < κ ≡ 2E(R+D)2 ≤ 1/2 and L ≡ max
|σ|=1

H(σ, κ σ ⊗ σ − I) < 0.

The latter follows as H(σ, κσ ⊗ σ − I) ≤ H(σ,−I/2) = H(σ,−I)/2 < 0.
Next, set (see (4.2))

θ ≡ inf
(x,t)∈Ω∞

ζ ≥ De−E(R+D)2 ≥ De−1, and F(θ) = sup
[θ,∞)

f(s)

sk−1
.

Select

0 < a <
(2E)kRk−1 |L|

F(θ)
. (4.8)

Hence,

ΓK [ζ] ≤ ζk
[
af(ζ)

ζk−1
+ (2E)krk−1H (σ, κ σ ⊗ σ − I)

]
≤ ζk

[
aF(θ)− (2E)kRk−1|L|

]
≤ 0,

i.e., ζ is a super-solution in Ω∞.
We introduce additional notation for the proof of the theorem. Recall that for

t > 0, Qt = Ω× [t,∞) and St = ∂Ω× [t,∞). Let t ≥ T . Define

(i) µinf(t) = inf
Qt

u, (ii) µsup(t) = sup
Qt

u, (4.9)

(iii) νinf(t) = inf
St

h, and (iv) νsup(t) = sup
St

h.

Since u = h on ST , µinf(t) ≤ νinf(t), and νsup(t) ≤ µsup(t). Set

νsup = lim
t→∞

νsup(t) and νinf = lim
t→∞

νinf(t). (4.10)

Proof of Part (a) of Theorem 1.3. Let k > 1, and t ≥ T . Recall the notation in
(4.9), and (4.10). Recall also that u > 0 is a super-solution, and since (1.4) holds,
µinf(t) <∞, ∀ t > 0.
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Since µinf(t) ≤ νinf(t), the claim follows if we show that

lim
t→∞

µinf(t) ≥ νinf .

Also, from (4.1), u ≥ min{minΩ u(x, T ), m} ≡ m0. Since νinf ≥ νinf(t) ≥
µinf(t) ≥ m0, if νinf = m0, the claim follows. Assume from here on that νinf > m0.

Let ε > 0 be small, and T0 ≥ T , large, so that for t ≥ T0 (see (4.10))

νinf(t) ≥ νinf − ε > m0 > 0.

Fix z ∈ Rn \ Ω; let r, R and D be as in (4.3). We employ Auxiliary Function
1, see (4.4), and recall condition (4.5):

ξ(x, t) = DeEr2
(

ea(t−T0)

ea(t−T0) + F

)
, where

0 < a <
(2E)kRk−1 min|σ|=1H(σ, I)

F(θ)
, and θ = inf

ΩT

ξ ≥ m0/2,

see (4.2), (4.8), and (4.12) below.
We select

D = m0, E =
1

(R+D)2
log

(
νinf − ε

m0

)
, and F =

νinf − ε

m0
− 1.

Hence,

eE(R+D)2 = 1 + F =
νinf − ε

m0
, and (4.11)

ξ(x, t) = m0(1 + F )r
2/(R+D)2

(
ea(t−T0)

ea(t−T0) + F

)
.

We may bound ξ as follows. For a lower bound, take r = R (large), and for an
upper bound take r = R+D, to find that, for t ≥ T0,

m0

2
≤
(

m0

1 + F

)
(1 + F )R

2/(R+D)2 ≤ ξ(x, t) ≤ m0(1 + F ) = νinf − ε. (4.12)

The lower bound for ξ influences the choice of a, see (4.2) and (4.5) (take
θ = m0/2).

We show that u ≥ ξ in QT0
. Using (4.1), (4.11), and that R ≤ r ≤ R+D,

m0(1 + F )[R
2/(R+D)2]−1 ≤ ξ(x, T0) ≤ m0 ≤ u(x, T0), ∀ x ∈ Ω.

Use the upper bound in (4.12) to see that, for x ∈ ∂Ω, ξ(x, t) ≤ νinf − ε ≤
h(x, t), ∀(x, t) ∈ ST0 . Employing the comparison principle in Theorem 2.3,

u ≥ ξ in QT0
.
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Using (4.11), and r ≥ R, we have

u(x, t) ≥ m0

(
νinf − ε

m0

)R2/(R+D)2 (
ea(t−T0)

ea(t−T0) + F

)
, ∀(x, t) ∈ QT0

.

Since the above holds for any x ∈ Ω, we take the infimum over x to obtain,

µinf(t) ≥ m0

(
νinf − ε

m0

)R2/(R+D)2 (
ea(t−T0)

ea(t−T0) + F

)
.

Letting t→ ∞, and then letting R → ∞,

lim
t→∞

µinf(t) ≥ νinf − ε.

The claim follows since the above is true for any small ε.

Proof of Part (b). We assume that u is a sub-solution. Recall thatM = supST
h(x, t).

Set M0 = max{u(x, T ), M}. As noted in (4.1), u(x, t) ≤ M0 in QT . Since
νsup ≤ µsup(t) ≤M0, if νsup =M0, the statement follows.

Thus, we assume that νsup < M0 and show that limt→∞ µsup(t) ≤ νsup.
Let ε > 0, small, and T0 > T > 0 be such that

νsup ≤ νsup(t) ≤ νsup + ε < M0, for any t ≥ T0. (4.13)

This ensures that h(x, t) ≤ νsup + ε on ST0
.

We employ the super-solution ζ in (4.6): let z ∈ Rn \Ω and r = |x−z|. Define

ζ(x, t) = ζ(r, t) = De−Er2
(
1 + Fe−a(t−T0)

)
, ∀(x, t) ∈ QT0

,

where D, E, F and a are positive constants. Recalling (4.3) and (4.8), we choose

0 < a <
(2E)kRk−1|L|

F(θ)
, where L = max

|ω|=1
H(σ, κσ ⊗ σ − I) < 0,

κ ≡ 2E(R+D)2 ≤ 1/2, and θ = De−E(R+D)2 . (4.14)

Observe that L ≤ max|σ|=1H(σ,−I)/2. Also, a different choice for θ is indicated
below.

For a fixed κ, we choose

D = eκ/2(νsup + ε), E =
κ

2(R+D)2
and F =

M0

νsup + ε
− 1.

Thus, in QT0 ,

ζ(x, t) = (νsup + ε) exp

(
κ

2

[
1− r2

(R+D)2

])(
1 + Fe−a(t−T0)

)
.
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Since ζ ≥ νsup + ε, one can choose θ = νsup + ε, see (4.14).
Recall that u(x, t) ≤M0. Since R ≤ r ≤ R+D, for x ∈ Ω, by (4.13),

ζ(x, T0) ≥ (νsup + ε)

(
M0

νsup + ε

)
≥M0 ≥ u(x, T0).

As noted above already, ζ ≥ νsup + ε, and, thus, ζ(x, t) ≥ h(x, t), ∀(x, t) ∈ ST0 .
Thus, ζ ≥ u on the parabolic boundary of QT0

, and Theorem 2.3 implies that
ζ ≥ u in QT0

. Observe that for each x ∈ Ω, ζ(x, t) is decreasing in t. Thus,

µsup(t) ≤ sup
Qt

ζ ≤ (νsup + ε) exp

(
κ

2

[
1− R2

(R+D)2

])(
1 + Fe−a(t−T0)

)
,

for any t > T0.
Let t → ∞ and then let R → ∞ to obtain that limt→∞ µsup(t) ≤ νsup + ε.

The claim holds.

5. Proof of Theorem 1.4

We begin with a useful lemma. See Appendix A.2 for existence, and comparison
principles.

Lemma 5.1. Suppose that Ω ⊂ Rn is a bounded domain that satisfies an outer
ball condition. Let k ≥ 1, δ ̸= 0 and θ ∈ R. Then there is a ψ in C(Ω) such that

H(Dψ,D2ψ) = δ, in Ω, with ψ = θ on ∂Ω.

If δ > 0 then ψ ≤ θ, and if δ < 0 then ψ ≥ θ. Also, ψ = θ + |δ|1/kη(x), where
H(Dη,D2η) = δ/|δ|, and η = 0 on ∂Ω.

Proof of Theorem 1.4 Part (a). Suppose that ν > 0 and k > 1. Assume that
u > 0 is a sub-solution and u = ν on ST .

Let ε > 0 be small. By Theorem 1.3, there is a T0 ≥ T such that

ν ≤ sup
x∈Ω

u(x, t) ≤ ν + ε, for any t ≥ T0. (5.1)

By Lemma 5.1, there is a function ψ ≥ 1 in C(Ω) such that

H(Dψ,D2ψ) = −1 in Ω, and ψ = 1 on ∂Ω. (5.2)

Observe that ψ ≥ 1 in Ω.
Let T1 ≥ T0, to be determined later. With ψ as in (5.2), set in QT1 ,

ϕ(x, t) = ν + εψ(x)τ(t) in QT1 , where τ(t) =

(
T1
t

)1/(k−1)

.

Define M = supΩ ψ. Clearly,

1 ≤ ψ ≤M, ν ≤ ϕ ≤ ν + εM, and τ ′(t) =
−τ(t)
(k − 1)t

. (5.3)
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Using (5.2) and (5.3),

Γk[ϕ] = H(Dϕ,D2ϕ)− f(ϕ)ϕt = −(ετ)k + f(ϕ)

(
ετψ

(k − 1)t

)
.

Since τk−1 = T1/t, using (5.3),

Γk[ϕ] = ετ

[
ψf(ϕ)

(k − 1)t
− (ετ)k−1

]
≤ ετ

t

[
Mf(ν + εM)

k − 1
− εk−1T1

]
.

Hence, ϕ is super-solution in QT1 if

T1 ≥ max

{
Mf(ν + εM)

(k − 1)εk−1
, T0

}
.

Next, from (5.1) and (5.3),

u(x, T1) ≤ ν + ε ≤ ϕ(x, T1) and u(x, t) = ν ≤ ϕ(x, t), ∀(x, t) ∈ ST1
.

By the comparison principle in Theorem 2.3, and (5.1),

ν ≤ sup
Ω
u(x, t) ≤ sup

Ω
ϕ(x, t) ≤ ν +

εMT
1/(k−1)
1

t1/(k−1)
= ν +

K

t1/(k−1)
in QT1

,

where K = K(k, ν, T,M). Thus,

lim
t→∞

[
tα
(
sup
Ω
u(x, t)− ν

)]
= 0, for any 0 < α <

1

k − 1
.

The claim holds.

Proof of Part (b). We assume that u > 0 is a super-solution. In Lemma 5.1, let ψ
be the solution for δ = 1 and θ = −1. Set L = maxΩ |ψ|; thus, ψ < 0, and

1 ≤ |ψ| ≤ L.

Let ε0 > 0, small, such that ε0L < ν. Next, choose Tε and T0 as follows.

(i) Tε =
f(ν)L

(k − 1)εk−1
, where 0 < ε ≤ ε0, and

(ii) T0 ≥ Tε such that ∀(x, t) ∈ QT0
, 0 < ν − ε ≤ inf

Ω
u(x, t) ≤ ν. (5.4)

For the second statement, we have used Theorem 1.3.
Next, set

ϕ(x, t) = ν + εψ(x)

(
T0
t

)1/(k−1)

= ν − ε|ψ(x)|
(
T0
t

)1/(k−1)

, ∀(x, t) ∈ QT0
.



Nonlinear Parabolic Equations 277

Since εL < ν (see (5.4)) and ψ ≤ −1, we have

ϕ(x, T0) ≤ ν − ε, in Ω, and 0 < ϕ(x, t) ≤ ν in ST0
. (5.5)

Since H(Dψ,D2ψ) = 1, using (5.5), we have that

Γk[ϕ] = εk
(
T0
t

)k/(k−1)

+ f(ϕ)

(
εψ

k − 1

)
T

1/(k−1)
0

tk/(k−1)

≥ εT
1/(k−1)
0

tk/(k−1)

(
εk−1T0 −

f(ν)L

k − 1

)
≥ 0.

The last line follows from (5.4).
Since ϕ is sub-solution in QT0 , by (5.5) and that u = ν on ∂Ω, t ≥ T0, we

obtain that u ≥ ϕ on its parabolic boundary. Using Theorem 2.3,

u(x, t) ≥ ϕ(x, t) = ν + εψ(x)

(
T0
t

)1/(k−1)

≥ ν − εL

(
T0
t

)1/(k−1)

, ∀(x, t) ∈ QT0
.

Observe that infΩ ϕ(x, t) ≤ infΩ u(x, t) ≤ ν.
If 0 < α < 1/(k − 1) we have

lim
t→∞

[
tα
(
inf
Ω
u(x, t)− ν

)]
= 0.

This proves the claim.

A. Change of variables and Existence for the elliptic problem

A.1. Change of Variables:

Recall from Subsection 2.2 that

Fk(u) =

∫ u

f(s)−1/(k−1)ds, u > 0.

Setting w = Fk(u), we get

Du = f(u)1/(k−1)Dw, ut = f(u)1/(k−1)wt

D2u = f(u)1/(k−1)
{
D2w + [f(u)1/(k−1)]′Dw ⊗Dw

}
.

Hence,

H(Du,D2u)− f(u)ut

= f(u)k/(k−1)
[
H
(
Dw,D2w + [f(u)1/(k−1)]′Dw ⊗Dw

)
− wt

]
.
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A.2. Existence for the elliptic problem:

The work overlaps with the work in [7]. We begin with a version of the comparison
principle that will be used in this section. Let Ω ⊂ Rn be a bounded domain. We
recall a result proven in [6].

Lemma A.1. Let fi : Ω × R → R, i = 1, 2, be continuous as in (2.2). Suppose
that u ∈ usc(Ω) and v ∈ lsc(Ω) are solutions to

H(Du,D2u) ≥ f1(x, u(x)) and H(Dv,D2v) ≤ f2(x, v(x)), in Ω.

If supΩ(u− v) > sup∂Ω(u− v) then there is a point z ∈ Ω such that

(u− v)(z) = sup
Ω

(u− v) and f1(z, u(z)) ≤ f2(z, v(z)).

Proof. A proof can be worked out as in Theorem 4.1 in [[6]: Section 4].

Corollary A.2 (Comparison Principle). Suppose that s, t ∈ R are such that
|s|+ |t| > 0, and s ≤ t. Let u ∈ usc(Ω) and v ∈ lsc(Ω) satisfy

H(Du,D2u) ≥ t, and H(Dv,D2v) ≤ s in Ω.

Then u− v ≤ sup∂Ω(u− v).

Proof. Consider s < t. By taking f1 = t and f2 = s, Lemma A.1 implies that
u− v ≤ sup∂Ω(u− v).

Assume now that t = s. We take θ > 1 if t > 0, and 0 < θ < 1 if t < 0.
The function uθ = θu solves H(Duθ, D

2uθ) = θkH(Du,D2u) ≥ tθk > s. Thus,
uθ − v ≤ sup∂Ω(uθ − v). The conclusion follows by letting θ → 1.

A.3. Existence for Lemma 5.1

Let δ > 0 and θ ∈ R. We show now the existence of viscosity solutions to the
following problems by using the Perron method.

(a) H(Du,D2u) = δ, in Ω, u = θ on ∂Ω, and

(b) H(Du,D2u) = −δ, in Ω, u = θ on ∂Ω. (A.1)

Corollary A.2 provides the necessary comparison principle. Define

d = diam(Ω). (A.2)

By the outer ball condition, for any y ∈ ∂Ω, there is a ρ > 0 and a q ∈ Rn \Ω
such that

Bρ(q) ⊂ RN \ Ω and y ∈ ∂Ω ∩Bρ(q). (A.3)

Sub and Super solutions to (A.1)(a): Note that w(x) = θ is a super-
solution of (A.1)(a). Our effort is to construct sub-solutions.
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Let y ∈ ∂Ω. With ρ and qy as in (A.3), set r = |x− q|. Define

vy(x) = θ + E

(
1

rα
− 1

ρα

)
, ∀x ∈ Ω.

where E > 0 and α > 0 are to be determined. Using (2.1), we get, in r ≥ ρ,

H(Dvy, D
2vy) = EkH

(
−α
rα+1

e,
−α
rα+2

(I − e⊗ e) +
α(α+ 1)

rα+2
e⊗ e

)
=

(Eα)k

rαk+k+1
H (e, (α+ 2)e⊗ e− I) . (A.4)

Setting Λ = α + 2, and recalling (1.6) and Condition C(ii) in Section 1 (see
(1.7)),

min
|e|=1

H(e,Λe⊗ e− I) ≥ −M(Λ) > 0, if Λ > Λ1.

Choose Λ > Λ1 and α = Λ− 2. Since ρ ≤ r ≤ ρ+ d, ∀x ∈ Ω, (A.4) yields in Ω,

Hk[vy] ≥
(Eα)k|M(Λ)|
(ρ+ d)kα+k+1

≥ δ > 0,

if E is chosen large enough. With this choice, we obtain that

H(Dvy, D
2vy) ≥ δ, vy(y) = θ, and vy ≤ θ on ∂Ω.

For every y ∈ ∂Ω, the sub-solution vy attains the boundary value θ at y. The
Perron Method leads to a solution vy ≤ u ≤ w = θ of (A.1)(a).

Sub and Super solutions to (A.1)(b): Observe that v(x) = θ is a sub-
solution. Our effort is to construct super-solutions.

Let y ∈ ∂Ω. With d as in (A.2), and ρ and q as in (A.3), set r = |x− q|. Define

wy(x) = θ + E

(
1

ρα
− 1

rα

)
, ∀x ∈ Ω,

where E > 0 and α > 0 are to determined. Using (2.1), and (A.4), we get, in
r > 0,

H(Dwy, D
2wy) =

(Eα)k

rαk+k+1
H(e, I − (α+ 2)e⊗ e).

Set Λ = α+2. From (1.6) and Condition C(ii), max
|e|=1

H(e, I − Λe⊗ e) ≤M(Λ) < 0,

if Λ > Λ1. Choose α > Λ − 2. Since, ρ ≤ r ≤ ρ + d, we see that if E > 0 is large
enough,

H(Dwy, D
2wy) =

(Eα)k

rαk+k+1
H(e, I − (α+ 2)e⊗ e) ≤ (Eα)kM(Λ)

(ρ+ d)αk+k+1
≤ −δ < 0.

Thus, H(Dwy, D
2wy) ≤ −δ, in Ω, w̄y(y) = θ, and wy ≥ θ, on ∂Ω. By the

Perron method, there is a solution u such that θ = v ≤ u ≤ wy.
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