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The Fortuin–Kasteleyn polynomial as a bialgebra morphism
and applications to the Tutte polynomial

Loïc Foissy and Claudia Malvenuto

Abstract. We compute an explicit formula for the antipode of the double bialgebra of graphs
in terms of totally acyclic partial orientations, using some general results on double bialgebras.
In analogy to what was already proven in Hopf-algebraic terms for the chromatic polynomial of
a graph, we show that the Fortuin–Kasteleyn polynomial (a variant of the Tutte polynomial)
is a morphism of the double algebra of graphs into that of polynomials, which generalizes the
chromatic polynomial. When specialized at particular values, we give combinatorial interpre-
tations of the Tutte polynomial of a graph, via covering graphs and covering forests, and of
the Fortuin–Kasteleyn polynomial, via pairs of vertex-edge colorings. Finally we show that the
map associating to a graph all its orientations is a Hopf morphism from the double bialgebra of
graphs into the one of oriented graphs, allowing to give interpretations of the Fortuin–Kasteleyn
polynomial when computed at negative values.
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Introduction

In [1] George D. Birkhoff introduced the notion of chromatic polynomial. It counts
the number of proper graph colorings as a function of the number of colors. Later
[2] Birkhoff and Lewis studied it extensively in the restricted case of planar graphs
in the attempt to solve the so–called “four color problem”. In 1932, Hassler Whit-
ney [15] and then William Tutte [14] generalized the chromatic polynomial to a
new polynomial, which Tutte called the dichromate of a graph but it is better
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known as the Tutte (or Tutte–Whitney) polynomial, and plays an important role
in graph theory. It is a polynomial in two variables associated to an undirected
graph and tells a lot of information about the way a graph is connected. It actually
contains several specializations from other domains, such as the Jones polynomial
from knot theory and the partition functions of the Potts model from statistical
physics. Thanks to his results, it is observed there that the theory of spanning
trees links the theory of graph–colorings to that of electrical networks. Another
polynomial related to it is the Fortuin–Kasteleyn polynomial: it appears in the
random-cluster model, a generalization both of the percolation model and of the
Ising model. Cees Fortuin and Cornelius Kasteleyn in [7, 8] show that the the-
ory of the random-cluster model is intimately connected with the combinatorial
theory of graphs. The physical question for a medium with randomly distributed
pores through which a liquid percolates is modeled mathematically as a three-
dimensional network of nˆnˆn vertices, usually called “sites”, in which the edges
or “bonds” between each two neighbors may be open (allowing the liquid through)
with probability p, or closed with probability 1 ´ p, and they are assumed to be
independent. Therefore, for a given p, it is natural to ask for the probability that
an open path (each of whose links is an “open” bond) exists from the top to the
bottom, and for the behavior of the system for large n. This problem, called bond
percolation model, was introduced in 1957 by Broadbent and Hammersley [4] and
has been studied intensively by mathematicians and physicists since then.

It was clear that standard operations/transformations on combinatorial objects
have an algebraic nature, since the seminal work of [10], and even more coalgebras
operations of cutting the objects into smaller pieces have strong significance. In
fact the three graph polynomials above mentioned satisfy a recurrence based on
some graph operations called deletion and contraction of edges. The advantage
of the Tutte and the Fortuin–Kasteleyn polynomials is that during the recursive
process they loose much less informations than the chromatic polynomial. The
way we treat these polynomials and their significance in graph theory, however,
takes a different approach: that of combinatorial Hopf algebras.

Several notable results that go in this direction are contained in the first au-
thor’s work [5], where the chromatic polynomial is characterized as the unique
polynomial invariant of graphs, compatible with two interacting bialgebras struc-
tures on graphs: the first coproduct is given by partitions of vertices into two parts,
the second one by a contraction–extraction process. This gives Hopf-algebraic
proofs of Rota’s result on the signs of coefficients of chromatic polynomials and of
Stanley’s interpretation of the values at negative integers of chromatic polynomi-
als.

The aim of the present work is to study this phenomenon in more detail, to
extend it to the other polynomials mentioned inserting them into the theory of
combinatorial Hopf algebras, and to recover new simpler proofs of classical results
on Tutte and Fortuin–Kasteleyn polynomials.

We start recalling in Section 1 the notion of double bialgebras due to the first
author (which appears in [6] as cointeracting bialgebras), that is to say bialgebras
with two coproducts, the first one being a comodule morphism for the coaction
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induced by the second one, and the main related results on the monoid of charac-
ters and their actions that will be used later. In Section 2 we describe the central
example of a double bialgebra on graphs, as introduced in [5] and a variation on
oriented graphs, in which the first coproduct comes from splitting a graph G in two
parts, taking the induced subgraphs via a bipartition of its vertices. The second
coproduct comes from a “deletion/contraction” process. We are able to express
the antipode of the second Hopf algebra. We then go to the Fortuin–Kasteleyn
polynomial, seen as a Hopf morphism of the Hopf algebra of graphs into the Hopf
algebra of polynomials in one indeterminate, and express some invariants of graphs
as characters making use of the general results on bialgebras. The so-developed
algebraic frame allows us to give in Section 3 some combinatorial interpretation
to both Tutte and Fortuin–Kasteleyn polynomials when specialized at particular
values: these results are analogue of the statement in [5] that the chromatic poly-
nomial of a graph is the unique polynomial invariant on graphs compatible with
both bialgebraic structures. We end with some results on orientations of graphs,
in Section 4: the map associating to a graph the sum of all possible orientations
on G is a Hopf-morphism, and we recover – giving easy proofs – some known but
complex results on specializations of Tutte’s polynomial.
Notations 0.1. 1. We denote by K a commutative field of characteristic 0. Any

vector space in this field will be taken over K.

2. For any n P N, we denote by rns the set the first n strictly positive integers
t1, . . . , nu. In particular, r0s “ H.

1. Reminders on double bialgebras

Definition 1.1. A double bialgebra is a quadruple pA,m,∆, δq with a product
m : A b A Ñ A and two coproducts ∆, δ : A Ñ A b A such that:

• pA,m,∆q is a bialgebra. Its counit is denoted by ε∆.

• pA,m, δq is a bialgebra. Its counit is denoted by ϵδ.

• The following compatibilities are satisfied:

pε∆ b Idq ˝ δ “ η ˝ ε∆,

p∆ b Idq ˝ δ “ m1,3,24 ˝ pδ b δq ˝ ∆,

where

η :

"

K ÝÑ A
x ÞÝÑ x1A,

m1,3,24 :

"

Ab4 ÝÑ Ab3

a b b b c b d ÞÝÑ a b c b bd.

Example 1.1. The polynomial algebra KrXs is a double bialgebra, with the two
multiplicative coproducts ∆ and δ, defined by

∆pXq “ X b 1 ` 1 b X, δpXq “ X b X.
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The two counits are given by

@P P KrXs, ε∆pP q “ P p0q, ϵδpP q “ P p1q.

If pA,m,∆, δq is a double bialgebra, its set of characters CharpAq inherits two
convolution products, each making CharpAq a monoid:

@λ, µ P CharpAq, λ ˚ µ “ pλ b µq ˝ ∆, λ ‹ µ “ pλ b µq ˝ δ.

The compatibility between ∆ and δ implies that

@λ, µ, ν P CharpAq, pλ ˚ µq ‹ ν “ pλ ‹ νq ˚ pµ ‹ νq.

Theorem 1.2 ([6, Proposition 2.5]). Let pA,m,∆, δq be a double bialgebra and
pB,m,∆q be a bialgebra. We denote by EAÑB the set of bialgebra morphisms from
pA,m,∆q to pB,m,∆q. The following map is an action of the monoid pCharpAq, ‹q

onto EAÑB:
#

EAÑB b CharpAq ÝÑ EAÑB

pϕ, λq ÞÝÑ ϕ ø λ “ pϕ b λq ˝ δ.

Notations 1.1. Let pA,m,∆q be a bialgebra. We denote by A` “ Kerpε∆q its
augmentation ideal. We denote by ∆̃ : A` ÝÑ A` b A` defined by

@a P A`, ∆̃paq “ ∆paq ´ a b 1A ´ 1A b a.

It is coassociative, and we can consider its iterations ∆̃pnq : A` ÝÑ A
bpn`1q

` ,
inductively defined by

∆̃pnq “

#

IdA`
if n “ 0,

p∆̃pn´1q b Idq ˝ ∆̃ if n ě 1.

We shall say that pA,m,∆q is connected if

A` “
ď

ně0

Kerp∆̃pnqq.

If pA,m,∆, δq is a double bialgebra, we shall say that it is connected if pA,m,∆q

is connected.

Theorem 1.3 ([6, Theorem 3.9 and Corollary 3.11]). Let pA,m,∆, δq be a con-
nected double bialgebra.

1. For any λ P CharpAq, there exists a unique ϕλ P EAÑKrXs such that ϵδ ˝ϕλ “

λ. For any a P A`,

ϕλpaq “

8
ÿ

n“1

λbn ˝ ∆̃pn´1qpaq
XpX ´ 1q . . . pX ´ n ` 1q

n!
.
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2. The map ϕϵδ is the unique double bialgebra morphism from pA,m,∆, δq to
pKrXs,∆, δq.

3. The two following maps are bijections, inverse one from the other:
"

EAÑKrXs ÝÑ CharpAq

ϕ ÞÝÑ ϵδ ˝ ϕ.

"

CharpAq ÝÑ EAÑKrXs

λ ÝÑ ϕλ “ ϕϵδ ø λ.

Theorem 1.4 ([6, Corollary 2.3]). Let pA,m,∆, δq be a double bialgebra, such
that pA,m,∆q is a Hopf algebra. We denote by ϵ˚´1

δ the inverse of the character
ϵδ for the convolution associated to ∆. Then the antipode of pA,m,∆q is given by

S “ pϵ˚´1
δ b Idq ˝ δ.

If ϕ : pA,m,∆, δq ÝÑ pKrXs,m,∆, δq is a double bialgebra morphism, then for any
x P A,

ϵ˚´1
δ pxq “ ϕpxqp´1q.

2. Bialgebraic structure on graphs

2.1. Products and coproducts

We refer to [3] and [9] for classical definitions and notations on graphs. A (simple)
graph is a pair G “ pV pGq, EpGqq, where V pGq is a set, whose elements are called
the vertices of the graph, and EpGq Ď

`

V pGq

2

˘

is a subset of unordered pairs of
vertices, called the edges of G. We shall denote by G the set of (isoclasses of)
graphs. The vector space generated by G will be denoted by HG.
Example 2.1.

G “

#

1, , , , , , , ,

, , , , , , , , , , , . . .

+

.

If G and H are two graphs, their disjoint union is the graph GH defined by

V pGHq “ V pGq \ V pHq, EpGHq “ EpGq \ EpHq.

This yields a commutative and associative product m on HG, whose unit is the
empty graph 1.
Let G be a graph and I Ď V pGq. The subgraph induced in G by I, denoted here
by G|I , is defined by

V pG|Iq “ I, EpG|Iq “ ttx, yu P EpGq | x, y P Iu.

Using the notion of induced subgraph, any bipartition pI, V pGqzIq of vertices
“splits” the graph into two pieces, G|I and G|V pGqzI : this in turn allows to de-
fine a cocommutative and coassociative coproduct ∆ on HG (see Schmitt [12])
given by

@G P G, ∆pGq “
ÿ

IĎV pGq

G|I b G|V pGqzI .
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Its counit ε∆ is given by

@G P G, ε∆pGq “ δG,1.

Example 2.2.

∆p q “ b 1 ` 1 b ,

∆p q “ b 1 ` 1 b ` 2 b ,

∆p q “ b 1 ` 1 b ` 3 b ` 3 b ,

∆p q “ b 1 ` 1 b ` 2 b ` b ` 2 b ` b ,

∆p q “ b 1 ` 1 b ` 4 b ` 6 b ` 4 b ,

∆p q “ b 1 ` 1 b ` 2 b ` 2 b

` 4 b ` b ` b ` 2 b ` 2 b ,

∆p q “ b 1 ` 1 b ` b ` 2 b ` b

` 2 b ` 2 b ` 2 b ` b ` 2 b ` b ,

∆p q “ b 1 ` 1 b ` 4 b ` 4 b ` 2 b ` 4 b ,

∆p q “ b 1 ` 1 b ` 3 b ` 3 b ` 3 b

` 3 b ` b ` b ,

∆p q “ b 1 ` 1 b ` 2 b ` 2 b

` 2 b ` 2 b ` b ` b ` 2 b ` 2 b .

Let G be a graph and let EpGq the set of equivalence relations on the vertices
V pGq. For „ P EpGq, denote by π„ : V pGq ÝÑ V pGq{ „ the canonical surjection.
We define the contracted graph G{ „ by

V pG{ „q “ V pGq{ „, EpG{ „q “ ttπ„pxq, π„pyqu | tx, yu P EpGq, π„pxq ‰ π„pyqu.

We define the restricted graph G |„ by

V pG |„q “ V pGq, EpG |„q “ ttx, yu P EpGq | π„pxq “ π„pyqu.

In other words, G |„ is the disjoint union of the subgraphs G|C , with C P V pGq{ „.
We shall say that an equivalence „ on V pGq is in EcpGq if for any equivalence
class C P V pGq{ „ the graph G|C induced by C is a connected graph. So, for
any equivalence on V pGq under the assumption of taking classes being connected,
contraction and restriction give two graphs associated to G.
Remark 2.1. For an edge e “ tx, yu P EpGq, let „e be the equivalence whose
classes are

V pG{ „eq “

"

tx, yu

*

ď

z‰x,y

tzu.

Then „eP EcpGq: for simplicity, we will denote by G{e the contracted graph G{ „e.



The Fortuin–Kasteleyn polynomial as a bialgebra morphism 299

We thus define a second coproduct δ on HG by

@G P G, δpGq “
ÿ

„ PEcpGq

G{ „ b G |„ .

This coproduct is coassociative, but not cocommutative. Its counit ϵδ is given by

@G P G, ϵδpGq “

#

1 if EpGq “ H,

0 otherwise.

Example 2.3.

δp q “ b ,

δp q “ b ` b ,

δp q “ b ` b ` 3 b ,

δp q “ b ` 2 b ,

δp q “ b ` b ` 6 b ` b p6 ` 4 q,

δp q “ b ` b ` p4 ` q b ` b p2 ` 2 ` 2 q,

δp q “ b ` b ` p ` 3 q b ` b p ` ` 2 q,

δp q “ b ` b ` 4 b ` b p2 ` 4 q,

δp q “ b ` b ` 3 b ` 3 b ,

δp q “ b ` b ` 3 b ` b p ` 2 q.

Proposition 2.1 ([5, Theorem 1.7]). pHG,m,∆, δq is a double bialgebra.

As pHG,m,∆q is a graded and connected bialgebra, it is a Hopf algebra. Its
antipode is denoted by S. The invertible characters for the convolution ‹ induced
by δ are given by the following:

Lemma 2.2 ([5, Theorem 2.1]). Let λ P CharpHGq. It is invertible for the product
‹ if, and only if, λp q ‰ 0.

For a set X (the set of “colors”), recall that a proper X-coloring of a graph
G is an assignment of an element of X to each vertex f : V pGq Ñ X such that
adjacent vertices are assigned different colors. The chromatic number χpGq of G
is the minimum number of colors in a proper vertex coloring of G:

χpGq “ min t|fpV pGqq| : f is a proper coloring of Gu .

For any k P N, we call k-proper coloring of G any proper coloring using at most
k colors and denote by ϕchrpG, kq the number of proper k-colorations of G. If
|V pGq| “ 0, one takes this number to be 1. It is a well-known result that ϕchrpG, kq
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is a polynomial in k with integer coefficients: it can be extended to a unique
polynomial ϕchrpGq “ ϕchrpG, xq P Krxs, called is the chromatic polynomial, an
important invariant of graph theory. The problem of coloring a graph can be
reduced to the problem of coloring two graphs derived from G: for e “ ta, bu P

EpGq, if G ´ e is the graph obtained by G removing the edge e, and G{e is the
graph obtained by G by contraction of e, then the following holds:

ϕchrpGq “ ϕchrpG ´ eq ´ ϕchrpG{eq.

Proposition 2.3 ([5, Theorem 2.4 and Proposition 2.2]).

1. The unique double bialgebra morphism from the double algebra of graphs
pHG,m,∆, δq to pKrXs,m,∆, δq (by virtue of Theorem 1.3) is the chromatic
polynomial ϕchr.

2. The following morphism is a Hopf algebra morphism from pH,G,m,∆q to
pKrXs,m,∆q:

ϕ0 “

#

HG ÝÑ KrXs

G P G ÝÑ X |V pGq|.

2.2. Double bialgebra of oriented graphs

An oriented graph is a pair G “ pV pGq, ApGqq, where V pGq is a finite set, called
the set of vertices of G, and ApGq a set of ordered pairs of distinct elements of
V pGq, i.e.

ApGq Ď V pGq ˆ V pGqztpx, xq|x P V pGqu.

The elements of ApGq are called the arcs of G. The set of (isoclasses of) oriented
graphs is denoted by Go. (Note that we are not considering loops on oriented
graphs, that is to say arcs whose both extremities are equal).

Let us recall the double bialgebra structure on oriented graphs of [11]. As
a vector space, HGo is the vector space generated by Go. If G,G1 P Go, their
product is the graph GG1 defined by

V pGG1q “ V pGq \ V pG1q, ApGG1q “ ApGq \ ApG1q.

This induces a commutative and associative product m on HGo , whose unit is the
empty graph 1.

Let G be an oriented graph and I Ď V pGq. The oriented subgraph G|I is
defined by

V pG|Iq “ I, ApG|Iq “ tpx, yq P ApGq | x, y P Iu.

We shall say that I is an ideal of G if for any x, y P V pGq,

x P I and px, yq P ApGq ùñ y P I.
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These notions induce a commutative and coassociative coproduct ∆ on HGo given
by

@G P Go, ∆pGq “
ÿ

I ideal of G

“ G|I b G|V pGqzI .

Its counit ε∆ is given by

@G P Go, ε∆pGq “ δG,1.

Let G be an oriented graph and let „ be an equivalence relation on V pGq. We
define the contracted oriented graph G{ „ by

V pG{ „q “ V pGq{ „,

ApG{ „q “ tpπ„pxq, π„pyqq | px, yq P ApGq, π„pxq ‰ π„pyqu,

where π„ : V pGq ÝÑ V pGq{ „ is the canonical surjection. We define the restricted
oriented graph G |„ by

V pG |„q “ V pGq, ApG |„q “ tpx, yq P ApGq | π„pxq “ π„pyqu.

In other words, G |„ is the disjoint union of the oriented subgraphs G|π, with
π P V pGq{ „. We shall say that „P EcpGq if for any class C P V pGq{ „, G|C is a
connected graph. We then define a second coproduct δ on HGo

by

@G P Go, δpGq “
ÿ

„PEcpGq

G{ „ bG |„ .

This coproduct is coassociative, but not cocommutative. Its counit ϵδ is given by

@G P Go, ϵδpGq “

#

1 if EpGq “ H,

0 otherwise.

Theorem 2.4 ([11]). pHGo
,m,∆, δq is a double bialgebra.

2.3. The antipode for graphs

Definition 2.5. A mixed graph is a triple G “ pV pGq, EpGq, ApGqq, such that:

• V pGq is a finite set, whose elements are the vertices of G.

• EpGq is a set of unordered pairs of elements of V pGq, whose elements are
called the edges of G.

• ApGq is a set of ordered pairs of elements of V pGq, made of distinct elements,
called the arcs of G.

We assume that the following conditions hold: for any x, y P V pGq, distinct,
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• If tx, yu P EpGq, then px, yq R ApGq and py, xq R ApGq.

• If px, yq P ApGq, then py, xq R ApGq and tx, yu R EpGq.

Mixed graphs have interesting applications. For example, in operational re-
search they may be used to model the so-called “job-shop scheduling problems”,
in which a collection of tasks is to be performed, subject to certain timing con-
straints: undirected edges represent two tasks that cannot be performed simulta-
neously, and directed edges represent precedence constraints, when one task must
be performed before another one. A different example comes from Bayesian infer-
ence, where acyclic mixed graphs (that is graphs with no cycles of directed arcs)
are used: undirected edges indicate a non-causal correlation between two events;
directed edges indicate a causal correlation in which the outcome of the first event
influences the probability of the second event.

Definition 2.6. Let H be a mixed graph. We associate to it two simple graphs
grpHq and gr0pHq, defined respectively removing the orientations of the oriented
edges, and removing the oriented edges, that is:

V pgrpHqq “ V pHq, EpgrpHqq “ EpHq Y ttx, yu | px, yq P ApHqu,

V pgr0pHqq “ V pHq, Epgr0pHqq “ EpHq.

Definition 2.7. Let G P G. A partial orientation of G is a mixed graph H such
that grpHq “ G. We shall say that a partial orientation is not totally acyclic if
there exists a sequence px0, . . . , xnq of vertices of G such that:

• n ě 2.

• x0 “ xn.

• For any i P rns, txi´1, xiu P EpHq or pxi´1, xiq P ApHq.

• There exists at least one i P rns such that pxi´1, xiq P ApHq.

The set of totally acyclic partial orientations of G is denoted by POtacpGq.

Remark 2.2. For any graph G, G P POtacpGq.

Definition 2.8. An orientation of a simple graph G is an assignment of one and
only one ordering (or direction) to each edge tu, vu, denoted by pu, vq or pv, uq, as
the case may be. In other words, an orientation of G is a mixed graph H where
EpHq “ H and grpHq “ G. An orientation H of G is said to be acyclic if it has
no directed cycles, that is if there is no sequence px0, . . . , xnq of vertices of G such
that:

• n ě 2.

• x0 “ xn.

• For any i P rns, pxi´1, xiq P ApHq.
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Proposition 2.9. The antipode S of pHG,m,∆q is given by

@G P G, SpGq “
ÿ

HPPOtacpGq

p´1qccpgr0pHqqgr0pHq,

where for any graph K P G, ccpKq is the number of connected components of K.

Proof. We make use of a well known result by Stanley [13]. It states that the
chromatic polynomial of a graph evaluated at ´1 is up to sign the number of its
acyclic orientations, more precisely:

ϕchrpGqp´1q “ p´1q|V pGq||tacyclic orientations of Gu|.

Let us apply Theorem 1.4. The morphism ϕchr is a double bialgebra morphism
from pHG,m,∆, δq to pKrXs,m,∆, δq, so, for any G P G,

ϵ˚´1
δ pGq “ ϕchrpGqp´1q.

For „P EcrGs, denote by clp„q the number of its equivalence classes. Hence,

SpGq “
ÿ

„PEcrGs

p´1qclp„q|tacyclic orientations of G{ „u|G |„ .

Let us consider the set

A “
ğ

„PEcrGs

tacyclic orientations of G{ „u.

Let H “ pV pGq, EpHq, ApHqq P POtacpGq. We denote by „H the equivalence
whose classes are the connected components of the graph gr0pHq. If π P V pGq{ „H ,
then H|π is connected. As G|π has more edges than H|π (because the edges of H
are edges of G), it is connected, so „HP EcrGs. Let us assume that px, yq P ApHq,
and let x1 „H x, y1 „H y, such that tx, yu P EpGq. There exist non oriented paths
py, y1, . . . , yk, y

1q and px1, x1
1, . . . , x

1
l, xq in H. If tx1, y1u P EpHq or py1, x1q P ApHq,

then the sequence px, y, y1, . . . , yk, y
1, x1, x1

1, . . . , x
1
l, xq proves that H is not totally

acyclic: this is a contradiction. So px1, y1q P ApHq. Hence, H induces a total orien-
tation of G{ „H , which we denote by H{ „H . It is acyclic: if px0, . . . , xn, x0q is an
oriented cycle in H{ „H , there exist sequences px1

0, . . . , x
1
n, y

1
0q and px2

0, . . . , x
2
n, y

2
0q

such that:

• For any i, x1
i „H x2

i „H xi and y1
0 „H y2

0 „H x0.

• For any i, px2
i , x

1
i`1q P ApHq and py1

0, y
2
0q P ApHq.

By definition of „H , there exists a non oriented path in H from x1
i to x2

i for any
i and from y2

0 to x1
0. Hence, we obtain a cycle in H, containing at least one arc

of H: H is not totally acyclic, this is a contradiction. So H{ „H is acyclic. We
obtain a map

θ :

"

POtacpGq ÝÑ A
H ÞÝÑ H{ „H .
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Let us prove that θ is injective. Let H1, H2 P POtacpGq such that H1{ „H1“

H2{ „H2
. Then „H1

“„H2
. Let px, yq P ApH1q. Then px, yq P ApH1{ „H1

q “

ApH2{ „H2
q, so px, yq P ApH2q. By symmetry, ApH1q “ ApH2q, so H1 “ H2.

Let us prove that θ is surjective. Let „P EcrGs and H be an acyclic orientation
of G{ „. We define a partial orientation H of G as follows:

ApHq “ tpx, yq | tx, yu P EpGq, px, yq P ApHqu.

It is totally acyclic: any cycle in H containing at least one arc induces an oriented
cycle in H of length at least two, which is not possible as H is acyclic. As „P EcrGs,
its classes are the connected components of G |„, which is equal to gr0pHq by
construction of H. Hence, „H“„ and θpHq “ H.
Finally,

SpGq “
ÿ

„PEcrGs

p´1qclp„q|tacyclic orientations of G{ „u|G |„

“
ÿ

„PEcrGs

p´1qccpG|„q|tacyclic orientations of G{ „u|G |„

“
ÿ

HPPOtacpGq

p´1qccpgr0pHqqgr0pHq.

2.4. The Fortuin and Kasteleyn’s polynomial as a Hopf morphism

The Fortuin–Kasteleyn polynomial, which is due to Fortuin [7], and Fortuin and
Kasteleyn [8], is a two variable polynomial, comes from a random cluster model,
and it is a variant of the Tutte polynomial. We recall here both the definitions.
Notations 2.1. For G P G, if F Ď EpGq, denote by G|F the subgraph of G defined
by

V pG|F q “ V pGq, EpG|F q “ F.

Definition 2.10. Let G P G.

1. A spanning graph of G is a graph H with V pHq “ V pGq and EpHq Ď EpGq.
The set of spanning graphs of G is denoted by SpGq. The set of spanning
forests of G (that is, spanning graphs of G which are acyclic) is denoted by
SFpGq.

2. A covering graph of G is a spanning graph H of G such that ccpHq “ ccpGq.
The set of covering graphs of G is denoted by CpGq. The set of covering
forests of G (that is, covering graphs of G which are forests) is denoted by
CFpGq.

Remark 2.3. 1. Let G P G and H P SpGq. The connected components of G
are disjoint union of connected components of H, so ccpHq ě ccpGq. If H is
a covering graph of G, then the connected components of G and H are the
same.



The Fortuin–Kasteleyn polynomial as a bialgebra morphism 305

2. The spanning graphs of G are the graphs G|F , with F Ď EpGq. Therefore,
for any graph G, |SpGq| “ 2|EpGq|.

Definition 2.11. To any graph G P G, we associate the Fortuin–Kasteleyn poly-
nomial ZGpX,Y q P KrX,Y s defined by

ZGpX,Y q “
ÿ

FĎEpGq

XccpG|F qY |F |.

Recall that the rank of a graph G P G is the number rpGq “ |V pGq| ´ ccpGq;
the nullity npGq of G is defined by the relation npGq ` rpGq “ |EpGq|.

Definition 2.12. The rank-generating polynomial associated to G P G is:

SGpX,Y q “
ÿ

FĎEpGq

XrpGq´rpG|F qY npG|F q.

The Tutte polynomial TGpX,Y q P KrX,Y s is a simple function of the rank-
generating polynomial:

TGpX,Y q “ SGpX ´ 1, Y ´ 1q

“
ÿ

FĎEpGq

pX ´ 1q´ccpGq`ccpG|F qpY ´ 1qccpG|F q`|F |´|V pGq|

“ pX ´ 1q´ccpGqpY ´ 1q´|V pGq|
ÿ

FĎEpGq

ppX ´ 1qpY ´ 1qq
ccpG|F q

pY ´ 1q|F |.

Remark 2.4. 1. The previous equality on the Tutte polynomial and the defi-
nition of the Fortuin–Kasteleyn polynomial yield that the two polynomials
satisfy the following relations:

TGpX,Y q “ pX ´ 1q´ccpGqpY ´ 1q´|V pGq|ZGppX ´ 1qpY ´ 1q, Y ´ 1q; (2.1)

equivalently,

ZGpX,Y q “ XccpGqY |V pGq|´ccpGqTG

ˆ

X

Y
` 1, Y ` 1

˙

. (2.2)

2. It should be noted that ZG and TG are classically defined on graphs with
multiple edges and with loops. However for the purpose of the Hopf structure
we are interested in, they do not have significance in the coproduct (and
we restrict our attention to simple graphs). Tutte’s polynomial satisfies a
recursion which uses the ”deletion/contraction“ of edges, similarly to the
chromatic polynomial. More precisely, starting from the value TEnpX,Y q “

1 (with En the empty graph), one has

TGpX,Y q “

$

&

%

XTG´e if e is a bridge,
Y TG´e if e is a loop,
TG´e ` TG{e if e is neither a bridge nor a loop,

where a bridge for G is an edge e P EpGq such that its deletion increases the
number of connected components.
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Theorem 2.13. Let y P K. We put

ζy :

"

HG ÝÑ KrXs

G P G ÝÑ ZGpX, yq.

λy :

$

&

%

HG ÝÑ K
G P G ÝÑ

ÿ

HPCpGq

y|EpHq|.

µy :

"

HG ÝÑ K
G P G ÝÑ p1 ` yq|EpGq|.

Then ζy is a Hopf algebra morphism from pHG,m,∆q to pKrXs,m,∆q and λy and
µy are characters of HG. Moreover,

ζy “ ϕ0 ø λy “ ϕchr ø µy.

Proof. Let G1, G2 P G. Then, for the set of covering graphs of the product, one
has

CpG1G2q “ tH1H2 | H1 P CpG1q, H2 P CpG2qu.

This implies that λy is a character. Obviously, µy is a character.
Let G P G and let F Ď EpGq. We define an equivalence „F P ErV pGqs such that
the classes of „F are the connected components of G|F . Let π be a class of „F .
Then pG|F q|π is connected by definition. As this graph has less edges than G|π, the
latter is connected. So „F P EcrGs. Moreover, G|F is a covering graph of G |„F ,
as the connected components of G |„F are the classes of „F , that is to say the
connected components of G|F . Therefore,

ζypGq “
ÿ

FĎEpGq

XccpG|F qy|F |

“
ÿ

„PEcrGs

ÿ

HPCpG|„q

XccpHqy|EpHq|

“
ÿ

„PEcrGs

ÿ

HPCpG|„q

XccpG|„qy|EpHq|

“
ÿ

„PEcrGs

ÿ

HPCpG|„q

X |V pG{„q|y|EpHq|

“
ÿ

„PEcrGs

ϕ0pG{ „qλypG |„q

“ pϕ0 ø λyqpGq.

So ζy “ ϕ0 ø λy. As ϕ0 is a Hopf algebra morphism and λy is a character, ζy
is a Hopf algebra morphism. Therefore, by Theorem 1.3, there exists a unique
character µy P CharpHGq such that ζy “ ϕchr ø µy. Still by Theorem 1.3, this
character is µy “ ϵδ ˝ ζy: for any G P G,

µypGq “ ζypGqp1q “
ÿ

FĎEpGq

y|F | “ p1 ` yq|EpGq|.
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Remark 2.5. As ζy is a Hopf algebra morphism for any y P K, identifying KrXs b

KrXs and KrX1, X2s, we obtain that for any graph G P G,

ZGpX1 ` X2, Y q “
ÿ

V pGq“I\J

ZG|I
pX1, Y qZG|J

pX2, Y q.

Proposition 2.14. For any graph G P G,

ZGpX,´1q “ ϕchrpGq,

ZGpX, 0q “ ϕ0pGq,

ϕchrpGq “ p´1q|V pGq|`ccpGqXccpGqTGp1 ´ X, 0q.

Proof. For any graph G P G,

µ´1pGq “

#

1 if EpGq “ H,

0 otherwise,

so µ´1 “ ϵδ. Therefore,

ζ´1 “ ϕchr ø ϵδ “ ϕchr.

Using (2.2), we obtain the relation between ϕchr and TGp1 ´ X, 0q. Moreover, if
the graph G P G has EpGq ‰ H, then for any H P CpGq one has EpHq ‰ H. It
follows

λ0pGq “

#

1 if EpGq “ H,

0 otherwise,

so λ0 “ ϵδ. Consequently,
ζ0 “ ϕ0 ø ϵδ “ ϕ0.

Proposition 2.15. The character µ0 is invertible for the convolution ‹ and µ‹´1
0 “

λ´1. For any y P K,

µy “ µ0 ‹ λy, λy “ λ´1 ‹ µy.

Proof. For any G P G,

ϵδ ˝ ϕ0pGq “ 1|V pGq| “ 1 “ µ0pGq,

so ϵδ ˝ ϕ0 “ µ0. Moreover,

µy “ ϵδ ˝ ζy

“ ϵδ ˝ pϕ0 b λyq ˝ δ

“ ppϵδ ˝ ϕ0q b λyq ˝ δ

“ pµ0 b λyq ˝ δ

“ µ0 ‹ λy.

As noticed in the proof of Proposition 2.14, µ´1 “ ϵδ, so ϵδ “ µ0 ‹ λ´1. As
µ0p q “ 1, µ0 is invertible for ‹ (Lemma 2.2) and µ‹´1

0 “ λ´1.
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Proposition 2.16. For any graph G,

ZGp´X,Y q “
ÿ

HPPOtacpGq

p´1qccpgr0pHqqZgr0pHqpX,Y q,

TGp2 ´ X,Y q “
ÿ

HPPOtacpGq

p1 ´ Xqccpgr0pHqq´ccpGqTgr0pHqpX,Y q.

Proof. For any y P K, ζy : pHG,m,∆q ÝÑ pKrXs,m,∆q is a bialgebra morphism;
as both pHG,m,∆q and pKrXs,m,∆q are Hopf algebras, ζy is a Hopf algebra
morphism, that is to say S ˝ ζy “ ζy ˝ S. For any graph G, this gives, with
Proposition 2.9,

ZGp´X, yq “ S ˝ ζypGq

“ ζy ˝ SpGq

“ ζy

¨

˝

ÿ

HPPOtacpGq

p´1qccpgr0pHqqgr0pHq

˛

‚

“
ÿ

HPPOtacpGq

p´1qccpgr0pHqqZgr0pHqpX, yq,

which implies the first result. Then,

TGp2 ´ X,Y q “ pX ´ 1q´ccpGqpY ´ 1q´|V pGq|ZGppX ´ 1qp1 ´ Y q, 1 ´ Y q

“ p´1q´ccpGqp1 ´ Xq´ccpGqpY ´ 1q´|V pGq|ZGp´p1 ´ Xqp1 ´ Y q, 1 ´ Y q

“
ÿ

HPPOtacpGq

p´1qccpgr0pHqq´ccpGqp1 ´ Xq´ccpGqpY ´ 1q´|V pGq|

Zgr0pHqpp1 ´ Xqp1 ´ Y q, 1 ´ Y q

“
ÿ

HPPOtacpGq

p´1qccpgr0pHqq´ccpGqp1 ´ Xqccpgr0pHqq´ccpGqTgr0pHqpX,Y q

“
ÿ

HPPOtacpGq

pX ´ 1qccpgr0pHqq´ccpGqTgr0pHqpX,Y q.

3. Combinatorial interpretations

3.1. For the Tutte polynomial

Lemma 3.1. For any graph G P G, for any y P K,

λypGq “ y|V pGq|´ccpGqTGp1, 1 ` yq.

Proof. By (2.2),

lim
XÝÑ0

ζypGq

XccpGq
“ y|V pGq|´ccpGqTGp1, 1 ` yq.
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Moreover,
ζypGq “ pϕ0 ø λyqpGq “

ÿ

„PEcrGs

Xclp„qλypG |„q.

If „P EcrGs, then clp„q ě ccpGq, as the classes of „ are connected, and clp„q “

ccpGq if, and only if, „ is the equivalence „c whose classes are the connected
components of G. Therefore,

lim
XÝÑ0

ζypXq

XccpGq
“ λypG |„cq “ λypGq.

Proposition 3.2. For any graph G P G,

TGp1, 2q “ |CpGq|, TGp1, 1q “ |CFpGq|.

Proof. For y “ 1, by the previous Lemma one has

TGp1, 2q “ λ1pGq “
ÿ

HPCpGq

1|EpHq| “ |CpGq|.

Let G be a covering graph of G. Then G has at least |V pGq| ´ ccpGq edges, with
an equality if, and only if, G is a covering forest of G. Hence,

λypGq “ y|V pGq|´ccpGq|CFpGq| ` O
´

y|V pGq|´ccpGq`1
¯

.

This implies

lim
yÝÑ0

λypGq

y|V pGq|´ccpGq
“ |CFpGq| “ lim

yÝÑ0
TGp1, 1 ` yq “ TGp1, 1q.

Proposition 3.3. For any graph G P G, TGp2, 1q “ |SFpGq|.

Proof. For any x P K, by (2.2),

ζxpGqpxq “ xccpGqx|V pGq|´ccpGqTGp2, 1 ` xq “ x|V pGq|TGp2, 1 ` xq.

Moreover,

ζxpGqpxq “ pϕ0 ø λxqpGqpxq “
ÿ

„PEcrGs

ÿ

HPCpG|„q

xclp„q`|EpHq|.

Let „P EcrGs and H P CpG |„q. Then H has ccpG |„q “ clp„q connected
components, so |EpHq| ě |V pGq| ´ ccp„q and clp„q ` |EpHq| ě |V pGq|, with
equality if, and only if H is a forest. Conversely, if F P SFpGq, denoting „F the
equivalence whose classes are the connected components of G, then „F P EcrGs

and, moreover, F P CpG |„F q, contributing with x|V pGq|:

ζxpGqpxq “ |SFpGq|x|V pGq| ` O
´

x|V pGq|
¯

.

Finally,

lim
xÝÑ0

ζxpGqpxq

x|V pGq|
“ |SFpGq| “ TGp2, 1q.
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3.2. For the Fortuin and Kasteleyn’s polynomial

Proposition 3.4. Let G be a graph and let px, yq P NˆN. A compatible px, yq-pair
of colorings of G is a pair of maps pcV , cEq

cV : V pGq ÝÑ t1, . . . , xu, cE : EpGq ÝÑ t0, . . . , yu,

such that for any e “ tv, wu P EpGq, cEpeq ‰ 0 if, and only if cV pvq “ cV pwq. We
denote by PCx,ypGq the set of compatible px, yq-pairs of colorings of G. For any
x P N, for any y P Zě´1,

ZGpx, yq “ |PCx,y`1pGq|.

For any x P N, for any y P Ně1,

ZGpx,´yq “
ÿ

pcV ,cEqPPCx,y´1pGq

p´1q|c´1
E pry´1sq|.

Proof. As ζy “ ϕchr ø µy, for any graph G,

ZGpx, yq “
ÿ

„PEcrGs

ϕchrpG{ „qpxqp1 ` yq|EpG|„q|

“
ÿ

„PEcrGs

|tproper x-colorings of G{ „u|p1 ` yq|EpG|„q|.

Let f “ pcV , cEq be a compatible px, zq-pair of colorings of G, with z P N. We
define an equivalence „1

f on V pGq by

v „1
f w ðñ cV pvq “ cV pwq.

This has no reason to be in EcrGs: we now define „f as the equivalence whose
classes are the connected components of G |„1

f . Then „fP EcrGs. As cV is constant
on the classes of „f , it induces a (vertex) coloring of G{ „f . This coloring is a
proper vertex-coloring of G: if tC,Du is an edge of G{ „f , there exists an edge
tv, wu in EpGq, with v P C and w P D. By absurd, if cV pvq “ cV pwq, then v, w
are in the same connected component of G |„f as they are linked by an edge, so
v „f w: a contradiction, C ‰ D. Hence, cV pvq ‰ cV pwq.

Conversely, if „P EcrGs and f is a proper x-coloring of G{ „, f can be extended
to a map of all vertices cC : V pGq ÝÑ rxs, assigning to each vertex in a class of
„ the color it has in the coloring of G{ „. By the condition of compatibility for a
pair of (vertex, edge)-coloration, there exist exactly z|EpG|„q| maps cE completing
cC to a compatible px, 1 ` yq pair of colorings. Hence, ZGpx, yq is the number of
compatible px, y ` 1q-pairs of colorings of G.
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Similarly, if x, y P N,

ZGpx,´yq “
ÿ

„PEcrGs

ϕchrpG{ „qpxqp1 ´ yq|EpG|„q|

“
ÿ

„PEcrGs

|p´1qEpG|„qtproper x-coloring of G{ „u|py ´ 1q|EpG|„q|

“
ÿ

pcV ,cEqPPCx,y´1pGq

p´1q|c´1
E pry´1sq|.

From (2.2), it follows:

Corollary 3.5. Let G P G. For any x, y ě 2,

TGpx, yq “
1

px ´ 1qccpGqpy ´ 1q|V pGq|
|PCpx´1qpy´1q,ypGq|.

For any x, y ě 0,

TGp´x,´yq “
p´1qccpGq`|V pGq|

px ` 1qccpGqpy ` 1q|V pGq|

ÿ

pcV ,cEqPPCp1`xqp1`yq,ypGq

p´1q|c´1
E prysq|.

4. Orientations

4.1. Orientations of graphs as a Hopf algebra morphism

Notations 4.1. Let G P G. We denote by OpGq the set of orientations of G and by
OacpGq the set of acyclic orientations of G. By definitions, OpGq contains 2|EpGq|

oriented graphs.

Proposition 4.1. The following map is a bialgebra morphism:

Θ:

$

&

%

pHG,m,∆q ÝÑ pHGo
,m,∆q

G P G ÝÑ
ÿ

HPOpGq

H.

Proof. Let G,G1 P G. Then

OpGG1q “ tHH 1 | H P OpGq, H 1 P OpG1qu.

Hence, ΘpGG1q “ ΘpGqΘpG1q.
Let G P G. We consider

A “ tpH, Iq | H P OpGq, I ideal of Hu,

B “ tpJ,H 1, H2q | J Ď V pGq, H 1 P OpG|V pGqzJq, H2 P OpG|Jqu.
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There exists an obvious map

υ :

"

A ÝÑ B
pH, Iq ÝÑ pI,H|V pGqzI , H|Iq.

Let us prove that υ is injective. Let us assume that υpH1, IIq “ υpH2, I2q. Then
I1 “ I2 “ J . Let e P ApHq.

• If both extremities of e are elements of J , as pH1q|J “ pH2q|J , e is oriented
in the same way in H1 and in H2.

• If both extremities of e are not elements of J , as pH1q|V pGqzJ “ pH2q|V pGqzJ ,
e is oriented in the same way in H1 and in H2.

• Otherwise, let us denote by x the extremity of e which is in V pGqzJ and y
the extremity of e which is in J . As J is an ideal of H1 and of H2, necessarily
e is oriented in H1 and in H2 from x to y.

Therefore, H1 “ H2.
Let us prove that υ is surjective. Let pJ,H 1, H2q P B. We define an orientation

H of G as follows: if e P EpGq,

• If both extremities of e are elements of J , then choose for e the same orien-
tation as in H2.

• If both extremities of e are not elements of J , then choose for e the same
orientation as in H 1.

• Otherwise, let us denote by x the extremity of e which is in V pGqzJ and y
the extremity of e which is in J . Then orient e from x to y: px, yq.

We obtain H P OpGq, such that H|V pGqzJ “ H 1 and H|J “ H2. Moreover, by
construction there is no arc in H from a vertex belonging to J to a vertex not
belonging to J , so J is an ideal of H. Therefore, pH,Jq P A and υpH,Jq “

pJ,H 1, H2q.
Using this bijection,

∆ ˝ ΘpGq “
ÿ

pH,JqPA

H|V pGqzJ b H|J

“
ÿ

pJ,H1,H2qPB

H 1 b H2

“
ÿ

JĎV pGq

ΘpG|V pGqzJq b ΘpG|Jq

“ pΘ b Θq ˝ ∆pGq.

So Θ is a bialgebra morphism.
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Remark 4.1. The map Θ is not compatible with δ. For example,

Θp q “ 2 , Θp q “ 2 ` 6

so

pΘ b Θq ˝ δp q “ pΘ b Θqp b ` b ` 3 b q

“ Θp q b ` b Θp q ` 12 b ,

δ ˝ Θp q “ 2δp q ` 6δp q

“ Θp q b ` b Θp q ` 12 b ` 12 b .

We denote by Ioc the space of HGo generated by oriented graphs containing
an oriented cycle. If G is such a graph:

• For any oriented graph H, GH has an oriented cycle. In other terms, Ioc is
an ideal.

• Let I be an ideal of G. If I contains a vertex of the oriented cycle of G, then
it contains all the vertices of the cycle, as it is an ideal. Therefore, G|I or
G|V pGqzI has an oriented cycle. In other words, Ioc is a coideal for G.

• Let „P EcrGs. If all the vertices of G are „-equivalent, then G |„ has
an oriented cycle. Otherwise, the contraction G{ „ has an oriented cycle.
Moreover, ϵδpGq “ 0, as ApGq ‰ H, since it has an oriented cycle. In other
terms, Ioc is a coideal for δ.

As a consequence, the quotient HGo
{Ioc which we identify with the space HGaco

of oriented acyclic graphs, inherits a double bialgebra structure such that the
following map is a double bialgebra morphism:

π :

$

’

&

’

%

HGo
ÝÑ HGaco

G ÝÑ

#

G if G is acyclic,
0 otherwise.

Proposition 4.2 ([5, Theorem 1.7]). The following is a double bialgebra mor-
phism:

Θac “ π ˝ Θ:

$

&

%

HG ÝÑ HGaco

G ÝÑ
ÿ

HPOacpGq

H.

Definition 4.3. Let G be a graph and H be an orientation of G. We shall say
that H is strongly connected if for any x, y P V pGq, there exists an oriented path
from x to y in H. The set of orientations of G such that any connected component
of G is strongly connected is denoted by OscpGq.
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Lemma 4.4. Let us consider the characters of HGo defined by

µ1 :

"

HGo ÝÑ K
G P Go ÝÑ 1,

µsc :“ :

$

’

’

’

&

’

’

’

%

HGo
ÝÑ K

G P Go ÝÑ

$

’

&

’

%

p´1qccpGq if any connected component of G
is strongly connected,

0 otherwise.

Denoting ˚ the convolution associated to ∆, then µsc “ µ˚´1
1 .

Proof. Let G P Go, different from 1. We denote by I1, . . . , Ik its strongly connected
components and by „ the equivalence on V pGq whose classes are I1, . . . , Ik. For
any i, G|Ii is strongly connected, so it is connected: „P EcrGs.

Let us prove that G{ „ is acyclic. If pIj1 , . . . , Ijpq is an oriented cycle in G{ „,
then for any k, there exists an arc from a vertex of Ijk to Ijk`1

, with the convention
jp`1 “ j1. As G|Jl

is strongly connected for any l, we deduce the existence of an
oriented cycle in G, which goes through I1, . . . , Ip. All the vertices of this cycle
are in the same strongly connected component of G, so belong to the same Ik: we
deduce that Ij1 “ ¨ ¨ ¨ “ Ijp , pIj1 , . . . , Ijpq is an oriented cycle in G{ „: this is a
contradiction. So G{ „ is acyclic.

As G{ „ is acyclic, it has wells, that is to say vertices with no outgoing arc.
We denote by J1, . . . , Jm its wells. These elements J1, . . . , Jm of V pG{ „q are
equivalence classes of „, that is to say some of the Ii’s: tJ1, . . . , Jmu Ď tI1, . . . , Iku.

Let J Ď V pGq. Let us show that it is an ideal of G such that µscpG|Iq ‰ 0 if,
and only if, J is a disjoint union of Jj ’s.

ùñ. If so, the connected components of G|J are strongly connected. Let us
assume that its intersection with Ii contains a vertex x. Let x P Ii. As G|Ii is
strongly connected, G contains an oriented path from x to y. Since J is an ideal,
y P J . Therefore, G is a disjoint union of Ii’s. Let us assume that one of the Ii’s
included in G is not a well of G{ „. There exists j ‰ i, such that pIi, Ijq is an
arc in G{ „. Therefore, there exists an arc between a vertex x P Ii and a vertex
y P Ij in G. As x P J and J is an ideal, y P J . The connected components of G|J

being strongly connected, it follows that there exists an oriented path from y to x
in G|J , so x and y are in the same strongly connected component of G and finally
i “ j: this is a contradiction. So Ii is a well of G{ „, so is one of the Jj ’s.

ðù. Let J be a disjoint union of Jj ’s. Let x P J and y P V pGq, with an arc
between x and y, and j such that x P Jj . If y R Jj , there is an arc in G{ „ from Jj
to another vertex: this contradicts the fact that Jj is a well. So y P Jj Ď J , and
J is an ideal of G. Its connected components are obviously the Ii’s it contains, so
they are strongly connected: µscpG|Jq ‰ 0.
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Then,

µ1 ˚ µscpGq “
ÿ

I ideal of G

µscpG|Iq “
ÿ

I1Ďrms

µsc

¨

˚

˝

G
|

ď

iPI1

Ji

˛

‹

‚

“
ÿ

I1Ďrms

p´1q|I1
| “ 0,

as m ě 1. Therefore, µ1 ˚ µsc “ ε∆, i.e. µsc “ µ˚´1
1 .

Proposition 4.5. We consider the character α defined by

α “ µ˚´1
1 :

"

HG ÝÑ K
G P G ÝÑ p´1qccpGq|OscpGq|.

Then α is the inverse for the convolution associated to ∆ of the character µ1 of
HG.

Proof. For any graph G P G,

µ1pGq “ 2|EpGq| “ |OpGq| “ µ1 ˝ ΘpGq,

so µ1 “ µ1 ˝ Θ. Moreover,

αpGq “
ÿ

HPOpGq

µscpHq “ µsc ˝ ΘpGq,

so α “ µsc ˝ Θ. Consequently, since Θ is a Hopf algebra morphism:

µ1 ˚ α “ pµ1 b µscq ˝ pΘ b Θq ˝ ∆ “ pµ1 b µscq ˝ ∆ ˝ Θ “ ε∆ ˝ Θ “ ε∆,

so α “ µ˚´1
1 .

Proposition 4.6. Let G P G. Then TGp0, 2q is the number of strongly connected
orientations of G.

Proof. Note that for any y P K, as ζy is a Hopf algebra morphism,

ZGp´X, yq “ S ˝ ζypGq “ ζy ˝ SpGq,

so
ZGp´1, yq “ ζy ˝ SpGqp1q “ ϵδ ˝ ζy ˝ SpGq “ µy ˝ SpGq “ µ˚´1

y pGq.

In the particular case y “ 1,

ZGp´1, 1q “ µ˚´1
1 pGq “ αpGq.

By (2.2),
ZGp´1, 1q “ p´1qccpGqTGp0, 2q,

which directly implies the result.
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4.2. Values at negative integers

Proposition 4.7. Let x, y P N. For any graph G, we denote by OPCx,ypGq the
set of triples pH, cV , vEq such that:

• H is a totally acyclic partial orientation of G.

• cV : V pGq ÝÑ rxs and cE : EpHq ÝÑ t0, . . . , yu are maps such that for any
tv, wu P EpHq,

cEptv, wuq ‰ 0 ðñ cV pvq “ cV pwq.

Let G P G. For any x P N, for any y P Zě´1,

ZGp´x, yq “
ÿ

pH,cV ,cEqPOPCx,y`1pGq

p´1qccpgr0pHqq.

For any x P N, for any y P Ně1,

ZGp´x,´yq “
ÿ

pH,cV ,cEqPOPCx,y´1pGq

p´1qccpgr0pHqq`|c´1
E pry´1sq|.

Proof. Note that

OPCx,ypGq “ tpH, cV , cEq | H P POpGq, pcV , cEq P PCx,ypgr0pHqqu.

Therefore, using Proposition 2.16,

ZGp´x, yq “
ÿ

HPPOtacpGq

p´1qccpgr0pHqqZGpx, yq

“
ÿ

HPPOtacpGq,
pcV ,cEqPPCx,y`1pgr0pHqq

p´1qccpgr0pHqq

“
ÿ

pH,cV ,cEqPOPCx,y`1pGq

p´1qccpgr0pHqq,

whereas

ZGp´x,´yq “
ÿ

HPPOtacpGq

p´1qccpgr0pHqqZGpx,´yq

“
ÿ

HPPOtacpGq,
pcV ,cEqPPCx,y´1pgr0pHqq

p´1qccpgr0pHqq`|c´1
E pry´1sq|

“
ÿ

pH,vC ,vEqPOPCx,y´1pGq

p´1qccpgr0pHqq`|c´1
E pry´1sq|.
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From (2.2):

Corollary 4.8. Let G P G. For any x P N, y P Ně2,

TGp´x, yq “
p´1qccpGq

px ` 1qccpGqpy ´ 1q|V pGq|

ÿ

pH,cV ,cEqPOPCpx`1qpy´1q,ypGq

p´1qccpgr0pHqq.

For any x P Ně2, y P N,

TGpx,´yq “
p´1q|V pGq|

px ´ 1qccpGqpy ` 1q|V pGq|

ÿ

p´1qccpgr0pHqq`|c´1
E prysq|,

where the sum runs over pH, cV , cEq P OPCpx´1qpy`1q,ypGq.
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