Existence of renormalized solutions for some non-coercive anisotropic elliptic problems with Neumann boundary condition

Mohamed Badr Benboubker, Rajae Bentahar, Meryem El Lekhlifi and Hassane Hjiaj*

Abstract

The aim of this work is to prove the existence of renormalized solutions for the following anisotropic elliptic problem with Neumann boundary conditions

$$
\begin{cases}-\sum_{i=1}^{N} D^{i} a_{i}(x, u, \nabla u)+H(x, u, \nabla u)+\alpha(x)|u|^{r-1} u=f & \text { in } \Omega, \\ \sum_{i=1}^{N} a_{i}(x, u, \nabla u) \cdot n_{i}=g & \text { on } \partial \Omega,\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}(N \geq 2)$, the data f belong to $L^{1}(\Omega)$ and $g \in L^{1}(\partial \Omega)$, and the Carathéodory functions $a_{i}(x, s, \xi)$ and $H(x, s, \xi)$ verify some nonstandard conditions.

1. Introduction

Let Ω be an open bounded subset of $\mathbb{R}^{N}(N \geq 2)$, Boccardo et al. have studied in [10] the existence and uniqueness of solutions for the quasilinear elliptic equation

$$
\left\{\begin{array}{l}
-\operatorname{div}(a(x, u, \nabla u))+\lambda|u|^{p-2} u=f \quad \text { in } \quad \Omega \tag{1.1}\\
u \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

where $f \in W_{0}^{-1, p^{\prime}}(\Omega), \lambda \geq 0$. Moreover, the uniqueness result holds true under some additional conditions on p and λ, and fails for other conditions. Concerning the existence of renormalized solutions for elliptic equations with L^{1}-data, we refer the reader to [22], and for Radon measure-data to the paper [12].

The notion of renormalized solutions was introduced by Lions and DiPerna [13] for the study of Boltzmann equation. It was then adapted by Boccardo et al. [11], Lions and Murat [19] and Murat [22, 23] to nonlinear elliptic problems and by Lions [18] to evolution problems in fluid mechanics. At the same time the equivalent notion of entropy solutions have been developed independently by Bénilan et al. [7] for the study of nonlinear elliptic problems, we refer the reader to [9].

[^0]In [5], Ben Cheikh Ali and Guibé have treated some degenerate quasilinear elliptic problem of the type

$$
\begin{cases}\lambda(x, u)-\operatorname{div}(a(x, \nabla u)+\Phi(x, u))=f & \text { in } \Omega \\ (a(x, \nabla u)+\Phi(x, u)) \cdot \vec{n}=0 & \text { on } \Gamma_{n} \\ u=0 & \text { on } \Gamma_{d},\end{cases}
$$

where $A u=-\operatorname{div}(a(x, \nabla u))$ is a Leray-Lions type operator, $\lambda(x, s)$ and $\Phi(x, s)$ are two Carathéodory functions. The authors have proved existence and uniqueness of renormalized solution for this problem under some additional conditions.

Furthermore, Betta et al. have studied in [8] the existence of renormalized solution to the Neumann boundary value problem

$$
\begin{cases}-\Delta_{p} u-\operatorname{div}\left(c(x)|u|^{p-2} u\right)=f & \text { in } \Omega \\ \left(|\nabla u|^{p-2} \nabla u+c(x)|u|^{p-2} u\right) \cdot \vec{n}=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain of $\mathbb{R}^{N}, N \geq 2$ with Lipschitz boundary, $1<p \leq N$, and \vec{n} is the outer unit normal to $\partial \Omega$, the datum f belong to $L^{1}(\Omega)$ and satisfies the compatibility condition $\int_{\Omega} f=0$.

A significant interest and effort has been devoted in recent years to the study of the anisotropic elliptic and parabolic problems. This interest especially comes from their applications to the mathematical modeling of some physical processes in an anisotropic continuous medium (see [3, 24]).

In some sense, our paper is a natural continuation of the studies of these class of problems, in which we will study by using the variational method and some a priori estimates, the existence of at least one renormalized solutions to the following nonlinear and noncoercive elliptic problem

$$
\left\{\begin{array}{l}
A u+H(x, u, \nabla u)+\alpha(x)|u|^{r-1} u=f \quad \text { in } \Omega \tag{1.2}\\
\sum_{i=1}^{N} a_{i}(x, u, \nabla u) \cdot n_{i}=g \text { on } \partial \Omega
\end{array}\right.
$$

where Ω be a regular bounded domain of \mathbb{R}^{N}, and $A u=-\sum_{i=1}^{N} a_{i}(x, u, \nabla u)$ is a Leray-Lions operator acted from $W^{1, \vec{p}}(\Omega)$ into its dual. The Carathéodory function $H(x, s, \xi)$ verifying only some growth condition, where the data f belong to $L^{1}(\Omega)$ and $g \in L^{1}(\partial \Omega)$.

The main difficulties in studying existence of solutions for our problem are due to the presence of a lower order term, the lower summability of the datum f and the boundary Neumann condition. To overcome these difficulties, we proved our results by considering the term $\alpha(x)|u|^{r-1} u$ for the equation (1.2) with $\alpha(.) \in$ $L^{\infty}(\Omega)$ is a positive function, such that $\alpha(x) \geq \alpha_{0}$, a.e in Ω and $1<r \leq \underline{p}-1$.

This paper is organized as follows. In Section 2, we recall some definitions and properties concerning the anisotropic Sobolev spaces. In Section 3 we introduce the assumptions for which our problem has at least one solution. Section 4 is dedicated to study the existence of weak solutions for our equation with righthand side $|F(x)| \leq C_{0}$ almost everywhere in Ω, and $G(x) \in L^{\infty}(\partial \Omega)$. In the last section, we establish the existence of renormalized solutions for the non-coercive elliptic equation (1.2) with the right-hand side $f(x) \in L^{1}(\Omega)$ and $g(x) \in L^{1}(\partial \Omega)$. Finally we will present some example.

2. Preliminaries

Let Ω be an open bounded domain in $\mathbb{R}^{N}(N \geq 2)$, with smooth boundary $\partial \Omega$.
Let p_{1}, \ldots, p_{N} be N real constants numbers, with $1<p_{i}<\infty$ for $i=1, \ldots, N$. We denote

$$
\vec{p}=\left(1, p_{1}, \ldots, p_{N}\right), \quad D^{0} u=u \quad \text { and } \quad D^{i} u=\frac{\partial u}{\partial x_{i}} \quad \text { for } \quad i=1, \ldots, N
$$

We set

$$
\underline{p}=\min \left\{p_{1}, p_{2}, \ldots, p_{N}\right\} \quad \text { and } \quad \underline{p}^{+}=\max \left\{p_{1}, p_{2}, \ldots, p_{N}\right\}
$$

We define the anisotropic Sobolev space $W^{1, \vec{p}}(\Omega)$ as follows:

$$
W^{1, \vec{p}}(\Omega)=\left\{u \in W^{1,1}(\Omega) \quad \text { such that } \quad D^{i} u \in L^{p_{i}}(\Omega) \quad \text { for } \quad i=1,2, \ldots, N\right\}
$$

endowed with the norm

$$
\begin{equation*}
\|u\|_{1, \vec{p}}=\|u\|_{1,1}+\sum_{i=1}^{N}\left\|D^{i} u\right\|_{L^{p_{i}}(\Omega)} . \tag{2.1}
\end{equation*}
$$

The space $\left(W^{1, \vec{p}}(\Omega),\|\cdot\|_{1, \vec{p}}\right)$ is a separable and reflexive Banach space (cf. [21]). Let us recall the Poincaré and Sobolev type inequalities in the anisotropic Sobolev space.
Proposition 2.1 (cf. [17], [25]). Let $u \in W^{1, \vec{p}}(\Omega)$, we have
(i) Poincaré-Wirtinger inequality: there exists a constant $C_{p}>0$, such that

$$
\|u-m(u)\|_{L^{p_{i}}(\Omega)} \leq C_{p} \sum_{i=1}^{N}\left\|D^{i} u\right\|_{L^{p_{i}}(\Omega)},
$$

where

$$
m(u)=\frac{1}{|\Omega|} \int_{\Omega}|u(x)| d x
$$

is the mean-value of u.
(ii) Sobolev inequality: there exists an other constant $C_{s}>0$ such that

$$
\|u-m(u)\|_{q} \leq \frac{C_{s}}{N} \sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p_{i}}
$$

where

$$
\frac{1}{\bar{p}}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_{i}} \quad \text { and } \quad \begin{cases}q=\bar{p}^{*}=\frac{N \bar{p}}{N-\bar{p}} & \text { if } \quad \bar{p}<N \\ q \in[1,+\infty[& \text { if } \quad \bar{p} \geq N\end{cases}
$$

Lemma 2.2. Let Ω be a bounded open subset in $\mathbb{R}^{N}(N \geq 2)$, we set

$$
s=\max \left(q, \underline{p}^{+}\right)
$$

then, we have the following embedding :

- if $\bar{p}<N$ then the embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow \hookrightarrow L^{r}(\Omega)$ is compact for any $r \in[1, s[$,
- if $\bar{p}=N$ then the embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow \hookrightarrow L^{r}(\Omega)$ is compact for any $r \in[1,+\infty[$,
- if $\bar{p}>N$ then the embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow \hookrightarrow L^{\infty}(\Omega) \cap C^{0}(\bar{\Omega})$ is compact.

The proof of this lemma follows from the Proposition 2.1.
Definition 2.3. Let $k>0$, we consider the truncation function $T_{k}(\cdot): \mathbb{R} \longmapsto \mathbb{R}$, given by

$$
T_{k}(s)=\left\{\begin{array}{lll}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

and we define

$$
T^{1, \vec{p}}(\Omega):=\left\{u: \Omega \mapsto \mathbb{R} \text { measurable, such that } T_{k}(u) \in W^{1, \vec{p}}(\Omega) \text { for any } k>0\right\} .
$$

Proposition 2.4. Let $u \in T^{1, \vec{p}}(\Omega)$. For any $i \in\{1, \ldots, N\}$, there exists a unique measurable function $v_{i}: \Omega \mapsto \mathbb{R}$ such that

$$
\forall k>0 \quad D^{i} T_{k}(u)=v_{i} \cdot \chi_{\{|u|<k\}} \quad \text { a.e. } \quad x \in \Omega,
$$

where χ_{A} denotes the characteristic function of a measurable set A. The functions v_{i} are called the weak partial derivatives of u and are still denoted $D^{i} u$. Moreover, if u belongs to $W^{1,1}(\Omega)$, then v_{i} coincides with the standard distributional derivative of u, that is, $v_{i}=D^{i} u$.

The proof of the Proposition 2.4 follows the usual techniques developed in [7] for the case of Sobolev spaces. For more details concerning the anisotropic Sobolev spaces, we refer the reader to $[2,6,14,15]$.

Moreover, we introduce the set $T_{t r}^{1, \vec{p}}(\Omega)$ as a subset of $T^{1, \vec{p}}(\Omega)$ for which a generalized notion of trace may be defined (see also [1] for the case of constant exponent). More precisely, $T_{t r}^{1, \vec{p}}(\Omega)$ is the set of function u in $T^{1, \vec{p}}(\Omega)$, such that: there exists a sequence $\left(u_{n}\right)_{n}$ in $W^{1, \vec{p}}(\Omega)$ and a measurable function v on $\partial \Omega$ verifying
(a) $u_{n} \longrightarrow u$ a.e. in Ω,
(b) $D^{i} T_{k}\left(u_{n}\right) \longrightarrow D^{i} T_{k}(u)$ in $L^{1}(\Omega)$ for every $k>0$.
(c) $u_{n} \longrightarrow v$ a.e. on $\partial \Omega$.

The function v is the trace of u in the generalized sense introduced in [1].
Let $u \in W^{1, \vec{p}}(\Omega)$, the trace of u on $\partial \Omega$ will be denoted by $\tau(u)$. For any $u \in T_{t r}^{1, \vec{p}}(\Omega)$, the trace of u on $\partial \Omega$ will be denoted by $\operatorname{tr}(u)$ or u, the operator $\operatorname{tr}(\cdot)$ satisfied the following properties
(i) if $u \in T_{t r}^{1, \vec{p}}(\Omega)$, then $\tau\left(T_{k}(u)\right)=T_{k}(\operatorname{tr}(u))$ for any $k>0$.
(ii) if $\varphi \in W^{1, \vec{p}}(\Omega)$, then, for any $u \in T_{t r}^{1, \vec{p}}(\Omega)$, we have $u-\varphi \in T_{t r}^{1, \vec{p}}(\Omega)$ and $\operatorname{tr}(u-\varphi)=\operatorname{tr}(u)-\tau(\varphi)$.

In the case where $u \in W^{1, \vec{p}}(\Omega), \operatorname{tr}(u)$ coincides with $\tau(u)$. Obviously, we have

$$
W^{1, \vec{p}}(\Omega) \subset T_{t r}^{1, \vec{p}}(\Omega) \subset T^{1, \vec{p}}(\Omega)
$$

Lemma 2.5 (see [16, Theorem 13.47]). Let $\left(u_{n}\right)_{n}$ be a sequence in $L^{1}(\Omega)$ and $u \in L^{1}(\Omega)$ such that:
(i) $u_{n} \rightarrow u$ a.e. in Ω,
(ii) $u_{n} \geq 0$ and $u \geq 0$ a.e. in Ω,
(iii) $\int_{\Omega} u_{n} d x \rightarrow \int_{\Omega} u d x$,
then $u_{n} \rightarrow u$ in $L^{1}(\Omega)$.

3. Essential assumptions

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, with smooth boundary $\partial \Omega$. We consider the strongly nonlinear anisotropic elliptic problem

$$
\begin{cases}A u+H(x, u, \nabla u)+\alpha(x)|u|^{r-1} u=f & \text { in } \Omega \tag{3.1}\\ a(x, u, \nabla u) \cdot \vec{n}=g & \text { on } \partial \Omega\end{cases}
$$

with $0<r \leq p-1$, and the data $f(\cdot)$ is assumed to be a measurable function in $L^{1}(\Omega)$ and $\bar{g} \in L^{1}(\partial \Omega)$, and the positive function $\alpha(\cdot) \in L^{\infty}(\Omega)$ such that $\alpha(x) \geq \alpha_{0}>0$ a. e. in Ω.

The Leray-Lions operator A acted from $W^{1, \vec{p}}(\Omega)$ into its dual, defined by

$$
A u=-\sum_{i=1}^{N} D^{i} a_{i}(x, u, \nabla u)
$$

where $a_{i}: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \longmapsto \mathbb{R}$ are Carathéodory functions for $i=1, \ldots, N$ (measurable with respect to x in Ω for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$, and continuous with respect to (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$ for almost every x in Ω), which satisfy the following conditions:

$$
\begin{equation*}
\left|a_{i}(x, s, \xi)\right| \leq \beta\left(K_{i}(x)+|s|^{p_{i}-1}+\left|\xi_{i}\right|^{p_{i}-1}\right) \quad \text { for } \quad i=1, \ldots, N, \tag{3.2}
\end{equation*}
$$

where the nonnegative functions $K_{i}(\cdot)$ are assumed to be in $L^{p_{i}^{\prime}}(\Omega)$ for $i=1, \ldots, N$, with $\beta>0$.

$$
\begin{equation*}
a_{i}(x, s, \xi) \xi_{i} \geq b(|s|)\left|\xi_{i}\right|^{p_{i}} \quad \text { with } \quad \frac{b_{0}}{(1+|s|)^{\lambda}} \leq b(|s|) \quad \text { for any } \quad s \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

such that $b(|\cdot|): \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$is a decreasing function, with $b_{0}>0$ and $0 \leq \lambda<\underline{p}-1$.

$$
\begin{equation*}
\sum_{i=1}^{N}\left(a_{i}(x, s, \xi)-a_{i}\left(x, s, \xi^{\prime}\right)\right)\left(\xi_{i}-\xi_{i}^{\prime}\right)>0 \quad \text { for } \quad \xi_{i} \neq \xi_{i}^{\prime} \tag{3.4}
\end{equation*}
$$

for almost every $x \in \Omega$ and all (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$.
The strongly nonlinear term $H(x, s, \xi)$ is a Carathéodory function that verifying the growth condition:

$$
\begin{equation*}
|H(x, s, \xi)| \leq f_{0}(x)+\sum_{i=1}^{N} d(|s|)\left|\xi_{i}\right|^{p_{i}} \tag{3.5}
\end{equation*}
$$

where $f_{0}(\cdot) \in L^{1}(\Omega)$, and $d(|\cdot|): \mathbb{R} \mapsto \mathbb{R}^{+}$is a continuous decreasing function, such that $\frac{d(|\cdot|)}{b(|\cdot|)} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. As a consequence of (3.3) and the continuity of the function $a_{i}(x, s, \cdot)$ with respect to ξ, we have

$$
a_{i}(x, s, 0)=0
$$

We are going now to recall the following technical Lemma, useful to prove our main results.

Lemma 3.1 (see [4]). Let $k>0$, assuming that (3.2)-(3.4) hold true, and let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $W^{1, \vec{p}}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W^{1, \vec{p}}(\Omega)$ and

$$
\begin{align*}
& \int_{\Omega}\left(\left|u_{n}\right|^{\underline{p}-2} u_{n}-|u|^{\underline{p}-2} u\right)\left(u_{n}-u\right) d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla u\right)\right)\left(D^{i} u_{n}-D^{i} u\right) d x \rightarrow 0 \tag{3.6}
\end{align*}
$$

then $u_{n} \rightarrow u$ strongly in $W^{1, \vec{p}}(\Omega)$ for a subsequence.

4. Existence of weak solutions for L^{∞}-data

We consider the strongly nonlinear elliptic problem

$$
\begin{cases}-\sum_{i=1}^{N} D^{i} a_{i}\left(x, T_{n}(u), \nabla u\right)+H_{n}(x, u, \nabla u)+\alpha(x)|u|^{r-1} u=F(x) & \text { in } \Omega \tag{4.1}\\ \sum_{i=1}^{N} a_{i}\left(x, T_{n}(u), \nabla u\right) \cdot n_{i}=G(x) & \text { on } \partial \Omega\end{cases}
$$

where

$$
\begin{equation*}
G(x) \in L^{\infty}(\partial \Omega) \quad \text { and } \quad|F(x)| \leq C_{0}, \quad \text { for any } \quad x \in \Omega \tag{4.2}
\end{equation*}
$$

with C_{0} is a positive constant.
Definition 4.1. A measurable function u is called a weak solution for the strongly nonlinear anisotropic elliptic equation (4.1), if $u \in W^{1, \vec{p}}(\Omega)$ and $|u|^{r+1} \in L^{1}(\Omega)$, such that u verifies the following equality

$$
\begin{gather*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}(u), \nabla u\right) D^{i} v \mathrm{~d} x+\int_{\Omega} H_{n}(x, u, \nabla u) v \mathrm{~d} x+\int_{\Omega} \alpha(x)|u|^{r-1} u v \mathrm{~d} x \\
=\int_{\Omega} F v \mathrm{~d} x+\int_{\partial \Omega} G v \mathrm{~d} \sigma \tag{4.3}
\end{gather*}
$$

for any $v \in W^{1, \vec{p}}(\Omega)$.
Theorem 4.2. Assuming that (3.2)-(3.4) and (4.2) hold true. Then there exists at least one weak solution $u \in W^{1, \vec{p}}(\Omega)$ for the strongly nonlinear elliptic equation (4.1).

Proof of Theorem 4.2

Step 1: Approximate problem

We consider the following approximate problem for the strongly nonlinear elliptic equation (4.1), giving by

$$
\begin{cases}-\sum_{i=1}^{N} D^{i} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right)+H_{n}\left(x, u_{m}, \nabla u_{m}\right) & \tag{4.4}\\ \quad+\alpha(x)\left|T_{m}\left(u_{m}\right)\right|^{r-1} T_{m}\left(u_{m}\right)+\frac{1}{m}\left|u_{m}\right|^{\underline{p-2}} u_{m}=F(x) & \text { in } \Omega, \\ \sum_{i=1}^{N} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) \cdot n_{i}=G(x) & \text { on } \partial \Omega\end{cases}
$$

We define the operator A_{m} acted from $W^{1, \vec{p}}(\Omega)$ into its dual $\left(W^{1, \vec{p}}(\Omega)\right)^{\prime}$ giving by:

$$
\begin{align*}
\left\langle A_{m} u, v\right\rangle= & \left.\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}(u), \nabla u\right) D^{i} v \mathrm{~d} x+\frac{1}{m} \int_{\Omega} \right\rvert\, u \underline{\underline{p}}^{\underline{p}-2} u v \mathrm{~d} x \tag{4.5}\\
& -\int_{\partial \Omega} G(x) v \mathrm{~d} \sigma
\end{align*}
$$

We consider the operator $R_{m}: W^{1, \vec{p}}(\Omega) \mapsto\left(W^{1, \vec{p}}(\Omega)\right)^{\prime}$ given by

$$
\begin{equation*}
\left\langle R_{m} u, v\right\rangle=\int_{\Omega} H_{n}(x, u, \nabla u) v \mathrm{~d} x+\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r-1} T_{m}(u) v \mathrm{~d} x \tag{4.6}
\end{equation*}
$$

for any $u, v \in W^{1, \vec{p}}(\Omega)$. In view of Hölder's type inequality we have

$$
\begin{align*}
\left|\left\langle R_{m} u, v\right\rangle\right| & =\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}|v| \mathrm{d} x+\int_{\Omega}\left|H_{n}(x, u, \nabla u) \| v\right| \mathrm{d} x \\
& \leq\|\alpha\|_{L^{\infty}(\Omega)} m^{r} \int_{\Omega}|v| \mathrm{d} x+n \int_{\Omega}|v| \mathrm{d} x \tag{4.7}\\
& \leq C_{1}\|v\|_{1, \vec{p}} .
\end{align*}
$$

Lemma 4.3. The bounded operator $B_{m}=A_{m}+R_{m}$ acting from $W^{1, \vec{p}}(\Omega)$ into $\left(W^{1, \vec{p}}(\Omega)\right)^{\prime}$ is a pseudo-monotone operator. Moreover, B_{m} is coercive in the following sense:

$$
\begin{equation*}
\frac{\left\langle B_{m} v, v\right\rangle}{\|v\|_{1, \vec{p}}} \longrightarrow \infty \quad \text { as } \quad\|v\|_{1, \vec{p}} \longrightarrow \infty \tag{4.8}
\end{equation*}
$$

for any $v \in W^{1, \vec{p}}(\Omega)$.
Indeed, in view of Hölder's inequality and (3.2), it is easy to see that the operator A_{m} is bounded, and by (4.7) we conclude that B_{m} is bounded.
For the coercivity, for any $u \in W^{1, \vec{p}}(\Omega)$ we have

$$
\begin{align*}
\left\langle B_{m} u, u\right\rangle= & \left\langle A_{m} u, u\right\rangle+\left\langle R_{m} u, u\right\rangle \\
= & \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}(u), \nabla u\right) D^{i} u \mathrm{~d} x+\int_{\Omega} H_{n}(x, u, \nabla u) u \mathrm{~d} x \\
& \quad+\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}|u| \mathrm{d} x+\frac{1}{m} \int_{\Omega}|u|^{\underline{p}} \mathrm{~d} x+\int_{\partial \Omega} G(x) u \mathrm{~d} \sigma \\
\geq & \sum_{i=1}^{N} \int_{\Omega} \frac{b_{0}\left|D^{i} u\right|^{p_{i}}}{\left(1+\left|T_{n}(u)\right|\right)^{\lambda}} \mathrm{d} x-n \int_{\Omega}|u| \mathrm{d} x+\alpha_{0} \int_{\Omega}\left|T_{m}(u)\right|^{r+1} \mathrm{~d} x \\
& \quad+\frac{1}{m} \int_{\Omega}|u|^{\underline{p}} \mathrm{~d} x-\|G(x)\|_{L^{\infty}(\partial \Omega)}\|u\|_{L^{1}(\partial \Omega)} \\
\geq & \frac{b_{0}}{(1+n)^{\lambda}} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u\right|^{p_{i}} \mathrm{~d} x+\frac{1}{m} \int_{\Omega}|u|^{\underline{p}} \mathrm{~d} x-n \int_{\Omega}|u| \mathrm{d} x \\
\geq & \quad-\|G(x)\|_{L^{\infty}(\partial \Omega)}\|u\|_{L^{1}(\partial \Omega)} \\
\geq & C_{3}\|u\|_{1, \vec{p}}^{\underline{p}}-C_{2}\|u\|_{1, \vec{p}}, \tag{4.9}
\end{align*}
$$

with $\underline{p}>1$. It follows that

$$
\begin{equation*}
\frac{\left\langle B_{m} u, u\right\rangle}{\|u\|_{1, \vec{p}}} \longrightarrow \infty \quad \text { as } \quad\|u\|_{1, \vec{p}} \longrightarrow \infty \tag{4.10}
\end{equation*}
$$

It remain to show that B_{m} is pseudo-monotone. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $W^{1, \vec{p}}(\Omega)$ such that

$$
\left\{\begin{array}{l}
u_{k} \rightharpoonup u \quad \text { in } W^{1, \vec{p}}(\Omega) \tag{4.11}\\
B_{m} u_{k} \rightharpoonup \chi_{m} \quad \text { in }\left(W^{1, \vec{p}}(\Omega)\right)^{\prime} \\
\limsup _{k \rightarrow \infty}\left\langle B_{m} u_{k}, u_{k}\right\rangle \leq\left\langle\chi_{m}, u\right\rangle
\end{array}\right.
$$

We will show that

$$
\chi_{m}=B_{m} u \quad \text { and } \quad\left\langle B_{m} u_{k}, u_{k}\right\rangle \longrightarrow\left\langle\chi_{m}, u\right\rangle \quad \text { as } \quad k \rightarrow+\infty
$$

In view of the compact embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow \hookrightarrow L^{\underline{p}}(\Omega)$ and the continuous embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow L^{1}(\partial \Omega)$, then there exists a subsequence still denoted $\left(u_{k}\right)_{k \in \mathbb{N}^{*}}$ such that $u_{k} \rightarrow u$ strongly in $L^{p}(\Omega)$ and $u_{k} \rightharpoonup u$ weakly in $L^{1}(\partial \Omega)$. As $\left(u_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence in $W^{1, \vec{p}}(\Omega)$, using the growth condition (3.2), it's clear that the sequence $\left(a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right)\right)_{k \in \mathbb{N}^{*}}$ is bounded in $L^{p_{i}^{\prime}}(\Omega)$, and there exists a measurable function $\varphi_{i} \in L^{p_{i}^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) \rightharpoonup \varphi_{i} \quad \text { weakly in } \quad L^{p_{i}^{\prime}}(\Omega) \text { as } k \rightarrow \infty . \tag{4.12}
\end{equation*}
$$

Moreover, since $u_{k} \rightarrow u$ a.e. in Ω, and in view of Lebesgue's dominated convergence theorem we conclude that

$$
\begin{equation*}
\left|T_{m}\left(u_{k}\right)\right|^{r-1} T_{m}\left(u_{k}\right) \rightharpoonup\left|T_{m}(u)\right|^{r-1} T_{m}(u) \quad \text { strongly in } \quad L^{\underline{p}^{\prime}}(\Omega) \tag{4.13}
\end{equation*}
$$

Similarly, there exists $\psi_{n} \in L^{\underline{p}^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
H_{n}\left(x, u_{k}, \nabla u_{k}\right) \longrightarrow \psi_{n} \quad \text { strongly in } \quad L^{\underline{p}^{\prime}}(\Omega) \tag{4.14}
\end{equation*}
$$

and since $u_{n} \rightarrow u$ strongly in $L^{\underline{p}}(\Omega)$, then

$$
\begin{equation*}
\frac{1}{m}\left|u_{k}\right|^{\underline{p}-2} u_{k} \longrightarrow \frac{1}{m}|u|^{\underline{p}-2} u \quad \text { strongly in } \quad L^{\underline{p}^{\prime}}(\Omega) \tag{4.15}
\end{equation*}
$$

Thus, for any $v \in W^{1, \vec{p}}(\Omega)$ we have

$$
\begin{align*}
\left\langle\chi_{m}, v\right\rangle= & \lim _{k \rightarrow \infty}\left\langle B_{m} u_{k}, v\right\rangle \\
= & \lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} v d x+\lim _{k \rightarrow \infty} \int_{\Omega} H_{n}\left(x, u_{k}, \nabla u_{k}\right) v d x \\
& +\lim _{k \rightarrow \infty} \int_{\Omega} \alpha(x)\left|T_{m}\left(u_{k}\right)\right|^{r-1} T_{m}\left(u_{k}\right) v d x+\lim _{k \rightarrow \infty} \frac{1}{m} \int_{\Omega}\left|u_{k}\right|^{\underline{p}-2} u_{k} v d x \\
& -\lim _{k \rightarrow \infty} \int_{\partial \Omega} G v d \sigma \\
= & \sum_{i=1}^{N} \int_{\Omega} \varphi_{i} D^{i} v d x+\int_{\Omega} \psi_{n} v d x+\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r-1} T_{m}(u) v d x \\
& +\frac{1}{m} \int_{\Omega}|u|^{\underline{p}-2} u v d x-\int_{\partial \Omega} G v d \sigma . \tag{4.16}
\end{align*}
$$

In view of (4.11) and (4.16), we conclude that

$$
\begin{align*}
\limsup _{k \rightarrow \infty}\left\langle B_{m}\left(u_{k}\right), u_{k}\right\rangle= & \limsup _{k \rightarrow \infty}\left(\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u_{k} d x\right. \\
& +\int_{\Omega} H_{n}\left(x, u_{k}, \nabla u_{k}\right) u_{k} d x+\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{k}\right)\right|^{r}\left|u_{k}\right| d x \\
& \left.+\frac{1}{m} \int_{\Omega}\left|u_{k}\right|^{\underline{p}} d x-\int_{\partial \Omega} G u_{k} d \sigma\right) \\
\leq & \sum_{i=1}^{N} \int_{\Omega} \varphi_{i} D^{i} u d x+\int_{\Omega} \psi_{n} u d x+\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}|u| d x \\
& +\frac{1}{m} \int_{\Omega}|u|^{\underline{p}} d x-\int_{\partial \Omega} G u d \sigma . \tag{4.17}
\end{align*}
$$

Thanks to (4.13) and (4.15) we have

$$
\begin{equation*}
\left.\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{k}\right)\right|^{r}\left|u_{k}\right| d x+\frac{1}{m} \int_{\Omega}\left|u_{k}\right|^{\underline{p}} d x \longrightarrow \int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}|u| d x+\frac{1}{m} \int_{\Omega} \right\rvert\, u \underline{\underline{p}}^{\underline{p}} d x, \tag{4.18}
\end{equation*}
$$

as k tends to infinity. Having in mind that the embedding $W^{1, \vec{p}}(\Omega) \hookrightarrow L^{1}(\partial \Omega)$ is continuous, then $u_{k} \rightharpoonup u$ weakly in $L^{1}(\partial \Omega)$, and since $G \in L^{\infty}(\partial \Omega)$ then

$$
\begin{equation*}
\int_{\partial \Omega} G u_{k} d \sigma \longrightarrow \int_{\partial \Omega} G u d \sigma \quad \text { as } \quad k \rightarrow \infty \tag{4.19}
\end{equation*}
$$

Moreover, thanks to (4.14) we have

$$
\begin{equation*}
\int_{\Omega} H_{n}\left(x, u_{k}, \nabla u_{k}\right) u_{k} \mathrm{~d} x \longrightarrow \int_{\Omega} \psi_{n} u \mathrm{~d} x \quad \text { as } \quad k \rightarrow \infty \tag{4.20}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u_{k} d x \leq \sum_{i=1}^{N} \int_{\Omega} \varphi_{i} D^{i} u d x . \tag{4.21}
\end{equation*}
$$

On the other hand, in view of (3.4) we have

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right)-a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right)\right)\left(D^{i} u_{k}-D^{i} u\right) d x \geq 0 \tag{4.22}
\end{equation*}
$$

then

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u_{k} d x \geq \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right)\left(D^{i} u_{k}-D^{i} u\right) d x
\end{aligned}
$$

In view of Lebesgue's dominated convergence theorem we have $T_{n}\left(u_{k}\right) \rightarrow T_{n}(u)$ strongly in $L^{p_{i}}(\Omega)$, thus $a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right) \rightarrow a_{i}\left(x, T_{n}(u), \nabla u\right)$ strongly in $L^{p_{i}^{\prime}}(\Omega)$, then

$$
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right)\left(D^{i} u_{k}-D^{i} u\right) d x \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

In view of (4.12) we get

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u_{k} d x \geq \sum_{i=1}^{N} \int_{\Omega} \varphi_{i} D^{i} u d x . \tag{4.23}
\end{equation*}
$$

Having in mind (4.21), we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) D^{i} u_{k} d x=\sum_{i=1}^{N} \int_{\Omega} \varphi_{i} D^{i} u d x . \tag{4.24}
\end{equation*}
$$

Therefore, by combining (4.16)-(4.19) and 4.24 we obtain

$$
\begin{equation*}
\left\langle B_{m} u_{k}, u_{k}\right\rangle \longrightarrow\left\langle\chi_{m}, u\right\rangle \quad \text { as } \quad k \rightarrow \infty \tag{4.25}
\end{equation*}
$$

On the other hand, thanks to (4.24) we can show that

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right)-a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right)\right)\left(D^{i} u_{k}-D^{i} u\right) d x=0 .
$$

Having in mind that $u_{k} \rightarrow u$ strongly in $L^{\underline{p}}(\Omega)$, it follows that

$$
\begin{align*}
& \int_{\Omega}\left(\left|u_{n}\right|^{\underline{p}-2} u_{n}-|u|^{\underline{p}-2} u\right)\left(u_{k}-u\right) d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right)-a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u\right)\left(D^{i} u_{k}-D^{i} u\right) d x \longrightarrow 0, \tag{4.26}
\end{align*}
$$

as k tends to infinity. In view of Lemma 3.1, we conclude that

$$
u_{k} \rightarrow u \quad \text { in } \quad W^{1, \vec{p}}(\Omega) \quad \text { and } \quad D^{i} u_{k} \rightarrow D^{i} u \quad \text { a.e. in } \Omega,
$$

and since $\left(a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right)\right)$ is bounded in $L^{p_{i}^{\prime}}(\Omega)$, and $a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) \rightarrow$ $a_{i}\left(x, T_{n}(u), \nabla u\right)$ a.e in Ω, then

$$
a_{i}\left(x, T_{n}\left(u_{k}\right), \nabla u_{k}\right) \rightharpoonup a_{i}\left(x, T_{n}(u), \nabla u\right) \quad \text { weakly in } \quad L^{p_{i}^{\prime}}(\Omega) \quad \text { for } \quad i=1, \ldots, N .
$$

Similarly, we have

$$
H_{n}\left(x, u_{k}, \nabla u_{k}\right) \rightarrow H_{n}(x, u, \nabla u) \quad \text { strongly in } \quad L_{\underline{p^{\prime}}}(\Omega)
$$

Having in mind (4.13)-(4.15) we obtain $\chi_{m}=B_{m} u$. Thus, the proof of the Lemma 4.3 is concluded.

In view of Lemma 4.3 (cf. [17, Theorem 8.2]) there exists at least one weak solution $u_{m} \in W^{1, \vec{p}}(\Omega)$ for the approximate problem (4.4), i.e.

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) D^{i} v d x+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right) v d x \\
& \quad+\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{m}\right)\right|^{r-1} T_{m}\left(u_{m}\right) v d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-2} u_{m} v d x \tag{4.27}\\
& =\int_{\Omega} F(x) v d x+\int_{\partial \Omega} G(x) v d \sigma
\end{align*}
$$

for any $v \in W^{1, \vec{p}}(\Omega)$.

Step 2: Weak convergence of the sequence $\left(u_{m}\right)_{m}$

Let $m \geq n \geq 1$, by taking $v=u_{m}$ as a test function for the approximate problem (4.4), we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) D^{i} u_{m} d x+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right) u_{m} d x \\
& \quad+\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}} d x \tag{4.28}\\
& =\int_{\Omega} F(x) u_{m} d x+\int_{\partial \Omega} G(x) u_{m} d \sigma
\end{align*}
$$

Thus, in view of (3.3) and (4.2) we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} b\left(\left|T_{n}\left(u_{m}\right)\right|\right)\left|D^{i} u_{m}\right|^{p_{i}(x)} d x+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right) u_{m} d x \\
& \quad+\alpha_{0} \int_{\Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}} d x \tag{4.29}\\
& \leq C_{0} \int_{\Omega}\left|u_{m}\right| d x+\|G\|_{L^{\infty}(\partial \Omega)} \int_{\partial \Omega}\left|u_{m}\right| d \sigma .
\end{align*}
$$

For the first term on the right-hand side of (4.29), by applying Young's inequality we have

$$
\begin{align*}
C_{0} \int_{\Omega}\left|u_{m}\right| d x & \leq C_{0} \int_{\left\{\left|u_{m}\right| \leq C_{1}\right\}}\left|u_{m}\right| d x+C_{0} \int_{\left\{\left|u_{m}\right|>C_{1}\right\}}\left|u_{m}\right| d x \\
& \leq C_{2}+\frac{\alpha_{0}}{4} \int_{\left\{\left|u_{m}\right|>C_{1}\right\}}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x \tag{4.30}\\
& \leq C_{2}+\frac{\alpha_{0}}{4} \int_{\Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x
\end{align*}
$$

with $C_{1}=\left(\frac{2}{\alpha_{0}} C_{0}\right)^{\frac{1}{r}}+1$. Similarly, we show that

$$
\begin{align*}
\int_{\Omega} H_{n}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) u_{m} d x & \leq n \int_{\Omega}\left|u_{m}\right| d x \tag{4.31}\\
& \leq C_{3}+\frac{\alpha_{0}}{4} \int_{\Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x
\end{align*}
$$

Concerning the second term on the right-hand of (4.29), we show that

$$
\begin{align*}
& \|G\|_{L^{\infty}(\partial \Omega)} \int_{\partial \Omega}\left|u_{m}\right| d \sigma \leq C_{4}\left\|u_{m}\right\|_{1,1} \\
& \quad=C_{4}\left(\left\|u_{m}\right\|_{L^{1}(\Omega)}+\sum_{i=1}^{N}\left\|D^{i} u_{m}\right\|_{L^{1}(\Omega)}\right) \tag{4.32}\\
& \quad \leq C_{5}+\frac{\alpha_{0}}{4} \int_{\partial \Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x+\frac{b}{2(1+n)^{\lambda}} \int_{\Omega}\left|D^{i} u_{m}\right|^{p_{i}} d x
\end{align*}
$$

By combining (4.29) and (4.30)-(4.32) we conclude that

$$
\begin{equation*}
\frac{b_{0}}{2(1+n)^{\lambda}} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{m}\right|^{p_{i}} d x+\frac{\alpha_{0}}{4} \int_{\Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}} d x \leq C_{6} . \tag{4.33}
\end{equation*}
$$

Moreover, we deduce that

$$
\begin{align*}
\left\|u_{m}\right\|_{1, \vec{p}} & =\left\|u_{m}\right\|_{L^{1}(\Omega)}+\sum_{i=1}^{N}\left\|D^{i} u_{m}\right\|_{L^{1}(\Omega)}+\sum_{i=1}^{N}\left\|D^{i} u_{m}\right\|_{L^{p_{i}}(\Omega)} \\
& \leq \int_{\Omega}\left|u_{m}\right| d x+2 \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{m}\right|^{p_{i}} d x+N(\operatorname{meas}(\Omega)+1) \tag{4.34}\\
& \leq \int_{\Omega}\left|T_{m}\left(u_{m}\right)\right|^{r}\left|u_{m}\right| d x+2 \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{m}\right|^{p_{i}} d x+C_{7} \\
& \leq C_{8}
\end{align*}
$$

with C_{8} is a constant that doesn't depend on m. Thus, the sequence $\left(u_{m}\right)_{m}$ is uniformly bounded in $W^{1, \vec{p}}(\Omega)$, and there exists a subsequence still denoted $\left(u_{m}\right)_{m}$
such that

$$
\left\{\begin{array}{lr}
u_{m} \rightharpoonup u & \text { weakly in } W^{1, \vec{p}}(\Omega), \tag{4.35}\\
u_{m} \longrightarrow u & \text { strongly in } L^{\underline{p}}(\Omega) \\
u_{m} \rightharpoonup u & \text { weakly in } L^{1}(\partial \Omega)
\end{array} \text { and a.e. in } \Omega,\right.
$$

It follows that

$$
\begin{equation*}
\frac{1}{m}\left|u_{m}\right|^{\underline{p}-2} u_{m} \longrightarrow 0 \quad \text { strongly in } \quad L^{\underline{p}^{\prime}}(\Omega) \tag{4.36}
\end{equation*}
$$

Moreover, in view of (4.33) we conclude that $\left(T_{m}\left(u_{m}\right)\right)_{m}$ is uniformly bounded in $L^{r+1}(\Omega)$, and since $T_{m}\left(u_{m}\right) \rightarrow u$ almost everywhere in Ω, we get

$$
\begin{equation*}
T_{m}\left(u_{m}\right) \rightharpoonup u \quad \text { weakly in } \quad L^{r+1}(\Omega) \tag{4.37}
\end{equation*}
$$

Step 3: The convergence almost everywhere of the gradient

By taking $v=u_{m}-u$ as a test function for the approximated problem (4.1) we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right)\left(D^{i} u_{m}-D^{i} u\right) d x+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right)\left(u_{m}-u\right) d x \\
& \quad+\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{m}\right)\right|^{r-1} T_{m}\left(u_{m}\right)\left(u_{m}-u\right) d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-2} u_{m}\left(u_{m}-u\right) d x \\
& =\int_{\Omega} F(x)\left(u_{m}-u\right) d x+\int_{\partial \Omega} G(x)\left(u_{m}-u\right) d \sigma \tag{4.38}
\end{align*}
$$

it follows that

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right)-a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\right)\left(D^{i} u_{m}-D^{i} u\right) d x \\
& \quad+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right)\left(u_{m}-u\right) d x \\
& \quad+\int_{\Omega} \alpha(x)\left(\left|T_{m}\left(u_{m}\right)\right|^{r-1} T_{m}\left(u_{m}\right)-\left|T_{m}(u)\right|^{r-1} T_{m}(u)\right)\left(u_{m}-u\right) d x \\
& =-\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\left(D^{i} u_{m}-D^{i} u\right) d x \\
& \quad-\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r-1} T_{m}(u)\left(u_{m}-u\right) d x \\
& \quad-\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-2} u_{m}\left(u_{m}-u\right) d x+\int_{\Omega} F(x)\left(u_{m}-u\right) d x+\int_{\partial \Omega} G(x)\left(u_{m}-u\right) d \sigma \\
& \leq \sum_{i=1}^{N} \int_{\Omega}\left|a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\right|\left|D^{i} u_{m}-D^{i} u\right| d x+\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}\left|u_{m}-u\right| d x \\
& \quad+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-1}\left|u_{m}-u\right| d x+\int_{\Omega}|F(x)|\left|u_{m}-u\right| d x+\int_{\partial \Omega}|G(x)|\left|u_{m}-u\right| d \sigma . \tag{4.39}
\end{align*}
$$

For the first term on the right-hand side of (4.39), we have $T_{n}\left(u_{m}\right) \rightarrow T_{n}(u)$ strongly in $L^{p_{i}}(\Omega)$ then $\left|a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\right| \longrightarrow\left|a_{i}\left(x, T_{n}(u), \nabla u\right)\right|$ strongly in $L^{p_{i}^{\prime}}(\Omega)$, and since $D^{i} u_{m} \rightarrow D^{i} u$ weakly in $L^{p_{i}}(\Omega)$, it follows that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega}\left|a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\right|\left|D^{i} u_{m}-D^{i} u\right| d x \longrightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{4.40}
\end{equation*}
$$

Concerning the second term on the right hand side of (4.39), we have $\left|T_{m}(u)\right|^{r} \in$ $L^{\frac{r+1}{r}}(\Omega)$ and since $u_{m} \rightharpoonup u$ weakly in $L^{r+1}(\Omega)$, it follows that

$$
\begin{equation*}
\int_{\Omega} \alpha(x)\left|T_{m}(u)\right|^{r}\left|u_{m}-u\right| d x \longrightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{4.41}
\end{equation*}
$$

Moreover, in view of (4.36) and (4.2), we deduce that

$$
\begin{equation*}
\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-1}\left|u_{m}-u\right| d x \longrightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{4.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|F(x)|\left|u_{m}-u\right| d x \longrightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{4.43}
\end{equation*}
$$

Furthermore, we have $G(x)$ belongs to $L^{\infty}(\partial \Omega)$, and since $u_{m} \rightharpoonup u$ weakly in $L^{1}(\partial \Omega)$ it follows that

$$
\begin{equation*}
\int_{\partial \Omega}|G(x)|\left|u_{m}-u\right| d \sigma \longrightarrow 0 \quad \text { as } \quad m \rightarrow \infty \tag{4.44}
\end{equation*}
$$

By combining (4.39) and (4.40)-(4.43) we conclude that

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left(\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right)-a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u\right)\right)\left(D^{i} u_{m}-D^{i} u\right) d x\right. \\
& \left.\quad+\alpha_{0} \int_{\Omega}\left(\left|u_{m}\right|^{\underline{p}-2} u_{m}-|u|^{\underline{p}-2} u\right)\left(u_{m}-u\right) d x\right)=0 \tag{4.45}
\end{align*}
$$

In view of Lemma 3.1, we conclude that

$$
\left\{\begin{array}{l}
u_{m} \rightarrow u \text { strongly in } W^{1, \vec{p}}(\Omega) \tag{4.46}\\
D^{i} u_{m} \rightarrow D^{i} u \quad \text { a.e. in } \Omega \text { for } i=1, \ldots, N
\end{array}\right.
$$

Thus, $a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) \rightarrow a_{i}\left(x, T_{n}(u), \nabla u\right)$ almost everywhere in Ω, and since $\left(a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right)\right)_{m}$ is uniformly bounded in $L^{p_{i}^{\prime}}(\Omega)$, it follows that

$$
\begin{equation*}
a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) \rightharpoonup a_{i}\left(x, T_{n}(u), \nabla u\right) \quad \text { weakly in } \quad L^{p_{i}^{\prime}}(\Omega) \tag{4.47}
\end{equation*}
$$

for $i=1, \ldots, N$. Moreover, in view of Lebesgue dominated convergence theorem, we obtain

$$
\begin{equation*}
H_{n}\left(x, u_{m}, \nabla u_{m}\right) \rightarrow H_{n}(x, u, \nabla u) \quad \text { strongly in } \quad L^{\underline{p^{\prime}}}(\Omega) \tag{4.48}
\end{equation*}
$$

Step 4: Passage to the limit

By taking $v \in W^{1, \vec{p}}(\Omega)$ as a test function for the approximate problem (4.1) we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{m}\right), \nabla u_{m}\right) D^{i} v d x+\int_{\Omega} H_{n}\left(x, u_{m}, \nabla u_{m}\right) v d x \\
& \quad+\int_{\Omega} \alpha(x)\left|T_{m}\left(u_{m}\right)\right|^{r-1} T_{m}\left(u_{m}\right) v d x+\frac{1}{m} \int_{\Omega}\left|u_{m}\right|^{\underline{p}-1} u_{m} v d x \tag{4.49}\\
& =\int_{\Omega} F(x) v d x+\int_{\partial \Omega} G(x) v d \sigma
\end{align*}
$$

In view of (4.36)-(4.37), (4.47) and (4.48), then letting m tends to infinity we conclude that

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}(u), \nabla u\right) D^{i} v d x+\int_{\Omega} H_{n}(x, u, \nabla u) v d x+\int_{\Omega} \alpha(x)|u|^{r-1} u v d x \\
& =\int_{\Omega} F(x) v d x+\int_{\partial \Omega} G(x) v d \sigma \tag{4.50}
\end{align*}
$$

Thus, the proof of the Theorem 4.2 is concluded.

5. Main result

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, with smooth boundary $\partial \Omega$.
Definition 5.1. A measurable function u is called renormalized solution to the strongly nonlinear anisotropic elliptic equation (3.1), If $u \in T_{t r}^{1, \vec{p}}(\Omega), H(x, u, \nabla u) \in$ $L^{1}(\Omega),|u|^{r-1} u \in L^{1}(\Omega)$, and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{1}{h} \sum_{i=1}^{N} \int_{\{|u| \leq h\}} a_{i}(x, u, \nabla u) D^{i} u d x=0 \tag{5.1}
\end{equation*}
$$

such that u verifies the following equality

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u)\left(S^{\prime}(u) \varphi D^{i} u+S(u) D^{i} \varphi\right) d x+\int_{\Omega} H(x, u, \nabla u) S(u) \varphi d x \tag{5.2}\\
& \quad+\int_{\Omega} \alpha(x)|u|^{r-1} u S(u) \varphi d x=\int_{\Omega} f S(u) \varphi d x+\int_{\partial \Omega} g S(u) \varphi d \sigma
\end{align*}
$$

for every $\varphi \in W^{1, \vec{p}}(\Omega) \cap L^{\infty}(\Omega)$ and any smooth function $S(\cdot) \in W^{1, \infty}(\mathbb{R})$ with a compact support.

Theorem 5.2. Let $f \in L^{1}(\Omega)$ and $g \in L^{1}(\partial \Omega)$. Assuming that (3.2)-(3.5) hold true, then there exists at least one renormalized solution u for the strongly nonlinear anisotropic elliptic Neumann problem (3.1).

Remark 5.3. Note that the uniqueness of renormalized solution for the problem (3.1) can be proved in the case of $H(x, s, \xi) \equiv 0$ and $a_{i}(x, s, \xi)=a_{i}(x, s)\left|\xi_{i}\right|^{p_{i-2}} \xi_{i}$. For more details, we refer the reader to $[9,14]$ and [15].

6. Proof of Theorem 5.2

Step 1: Approximate problems

We set $f_{n}(\cdot)=T_{n}(f(\cdot))$ and $g_{n}(\cdot)=T_{n}(g(\cdot))$, then $f_{n}(\cdot)$ is bounded in $L^{\infty}(\Omega) \cap$ $L^{1}(\Omega)$, and g_{n} is bounded in $L^{\infty}(\partial \Omega) \cap L^{1}(\partial \Omega)$ such that:

$$
f_{n} \rightarrow f \quad \text { strongly in } \quad L^{1}(\Omega) \quad \text { and } \quad g_{n} \rightarrow g \quad \text { strongly in } \quad L^{1}(\partial \Omega)
$$

We consider the approximate problem:

$$
\begin{cases}-\sum_{i=1}^{N} D^{i} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)+H_{n}\left(x, u_{n}, \nabla u_{n}\right)+\alpha(x)\left|u_{n}\right|^{r-1} u_{n}=f_{n}(x) & \text { in } \Omega \tag{6.1}\\ \sum_{i=1}^{N} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot n_{i}=g_{n}(x) & \text { on } \partial \Omega\end{cases}
$$

where $H_{n}(x, s, \xi)=T_{n}(H(x, s, \xi))$.
In view of Theorem 4.2, there exists at least one weak solution $u_{n} \in W^{1, \vec{p}}(\Omega)$ for the strongly nonlinear elliptic problem (6.1), i.e.,

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} v d x+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) v d x \\
& +\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r-1} u_{n} v d x=\int_{\Omega} f_{n} v d x+\int_{\partial \Omega} g_{n} v d \sigma \quad \text { for any } \quad v \in W^{1, \vec{p}}(\Omega) \tag{6.2}
\end{align*}
$$

Step 2: Weak convergence of truncations.

Let $n \in \mathbb{N}$ be large enough $(n \geq k>1)$, we define

$$
B(s)=2 \int_{0}^{s} \frac{d(|\tau|)}{b(|\tau|)} d \tau
$$

Note that, since the function $\frac{d(|\tau|)}{b(|\tau|)}$ is integrable on \mathbb{R}, then

$$
0 \leq B(\infty):=2 \int_{0}^{+\infty} \frac{d(|\tau|)}{b(|\tau|)} d t
$$

is a finite real number.
By taking $v=T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} \in W^{1, \vec{p}}(\Omega)$ as a test function for the approximate problem (6.2), we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+2 \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|T_{k}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r-1} u_{n} T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& =\int_{\Omega} f_{n} T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\partial \Omega} g_{n} T_{k}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d \sigma \tag{6.3}
\end{align*}
$$

In view of (3.3), (4.2) and (3.5), we obtain

$$
\begin{aligned}
b_{0} & \sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}}}{\left(1+\left|u_{n}\right|\right)^{\lambda}} d x+2 \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{p_{i}}\left|T_{k}\left(u_{n}\right)\right| d\left(\left|u_{n}\right|\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& +\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r}\left|T_{k}\left(u_{n}\right)\right| d x \\
\leq & \int_{\Omega}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right|\left|T_{k}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\Omega}\left|f_{n}\right|\left|T_{k}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& +\int_{\partial \Omega}\left|g_{n}\right|\left|T_{k}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d \sigma \\
\leq & k e^{B(\infty)}\left(\|f\|_{L^{1}(\Omega)}+\left\|f_{0}\right\|_{L^{1}(\Omega)}+\|g\|_{L^{1}(\partial \Omega)}\right) \\
& +\sum_{i=1}^{N} \int_{\Omega} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}}\left|T_{k}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x .
\end{aligned}
$$

Thus, for any $k \geq 1$ we have

$$
\begin{gather*}
b_{0} \sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}}}{\left(1+\left|u_{n}\right|\right)^{\lambda}} d x+\sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{p_{i}}\left|T_{k}\left(u_{n}\right)\right| d\left(\left|u_{n}\right|\right) d x \tag{6.4}\\
+\alpha_{0} \int_{\Omega}\left|u_{n}\right|^{r}\left|T_{k}\left(u_{n}\right)\right| d x \leq C_{1} k
\end{gather*}
$$

It follows that

$$
\begin{equation*}
\frac{b_{0}}{(1+k)^{\lambda}} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}} d x \leq b_{0} \sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}}}{\left(1+\left|u_{n}\right|\right)^{\lambda}} d x \leq C_{1} k \tag{6.5}
\end{equation*}
$$

Therefore, we conclude that

$$
\begin{align*}
& \left\|T_{k}\left(u_{n}\right)\right\|_{1, \vec{p}} \\
& =\left\|T_{k}\left(u_{n}\right)\right\|_{1,1}+\sum_{i=1}^{N}\left\|D^{i} T_{k}\left(u_{n}\right)\right\|_{p_{i}} \\
& =\int_{\Omega}\left|T_{k}\left(u_{n}\right)\right| d x+\sum_{i=1}^{N} \int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right| d x+\sum_{i=1}^{N}\left(\int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}} d x\right)^{\frac{1}{p_{i}}} \tag{6.6}\\
& \leq k \cdot \operatorname{meas}(\Omega)+2 \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}} d x+N+N \cdot|\Omega| \\
& \leq C_{2} k^{1+\lambda}
\end{align*}
$$

where C_{2} is a positive constant that does not depend on k and n. Thus $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W^{1, \vec{p}}(\Omega)$ uniformly in n, and there exists a subsequence still denoted $\left(T_{k}\left(u_{n}\right)\right)_{n}$ and a measurable function $v_{k} \in W^{1, \vec{p}}(\Omega)$ such that

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup v_{k} & \text { weakly in } W^{1, \vec{p}}(\Omega), \tag{6.7}\\ T_{k}\left(u_{n}\right) \rightarrow v_{k} & \text { strongly in } L^{1}(\Omega) \text { and a.e in } \Omega .\end{cases}
$$

Moreover, in view of (6.4) we conclude that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right|>k\right\}}\left|D^{i} u_{n}\right|^{p_{i}} d\left(\left|u_{n}\right|\right) d x \leq C_{1} \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{0} \int_{\Omega}\left|u_{n}\right|^{r} d x \leq \alpha_{0} \int_{\left\{\left|u_{n}\right| \geq 1\right\}}\left|u_{n}\right|^{r}\left|T_{k}\left(u_{n}\right)\right| d x+\alpha_{0}|\Omega| \leq C_{3} \tag{6.9}
\end{equation*}
$$

Thus, we obtain

$$
k^{r} \cdot \operatorname{meas}\left(\left\{k<\left|u_{n}\right|\right\}\right) \leq \int_{\left\{\left|u_{n}\right|>k\right\}}\left|u_{n}\right|^{r} d x \leq \int_{\Omega}\left|u_{n}\right|^{r} d x \leq \frac{C_{3}}{\alpha_{0}}
$$

it follows that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \operatorname{meas}\left(\left\{k<\left|u_{n}\right|\right\}\right) \leq \frac{C_{1}}{\alpha_{0} k^{r}} \longrightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{6.10}
\end{equation*}
$$

Now, we will show that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure.
For all $\delta>0$, we have

$$
\begin{aligned}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq & \operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\left\{\left|u_{m}\right|>k\right\} \\
& +\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} .
\end{aligned}
$$

Let $\varepsilon>0$, using (6.10) we may choose $k=k(\varepsilon)$ large enough such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leq \frac{\varepsilon}{3} \quad \text { and } \quad \text { meas }\left\{\left|u_{m}\right|>k\right\} \leq \frac{\varepsilon}{3} \tag{6.11}
\end{equation*}
$$

On the other hand, thanks to (6.7) we have $T_{k}\left(u_{n}\right) \rightarrow v_{k}$ strongly in $L^{1}(\Omega)$ and a.e. in Ω. Thus, we can assume that $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is a Cauchy sequence in measure, and for all $k>0$ and $\varepsilon, \delta>0$, there exists $n_{0}=n_{0}(k, \varepsilon, \delta)$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} \leq \frac{\varepsilon}{3} \quad \text { for all } m, n \geq n_{0}(k, \varepsilon, \delta) \tag{6.12}
\end{equation*}
$$

By combining (6.11)-(6.12), we conclude that
$\forall \varepsilon, \delta>0$ there exists $n_{0}=n_{0}(\varepsilon, \delta) \quad$ such that \quad meas $\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \varepsilon$,
for any $n, m \geq n_{0}(\varepsilon, \delta)$. It follows that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure, then converges almost everywhere, for a subsequence, to some measurable function u. Consequently, we have

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { weakly in } W^{1, \vec{p}}(\Omega), \tag{6.13}\\ T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { strongly in } L^{1}(\Omega) \text { and a.e in } \Omega, \\ T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { strongly in } L^{1}(\partial \Omega) \text { and } \text { a.e in } \Omega .\end{cases}
$$

In view of Lebesgue's dominated convergence theorem, we obtain

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { strongly in } L^{p_{i}}(\Omega) \text { and a.e. in } \Omega \text { for } i=1, \ldots, N . \tag{6.14}
\end{equation*}
$$

Moreover, thanks to (6.5) it's clear that: for any $i=1, \ldots, N$

$$
\int_{\Omega} \frac{\left|D^{i} T_{k}\left(u_{n}\right)\right|^{p_{i}}}{k^{p_{i}}} d x \leq \frac{C_{1} k(1+k)^{\lambda}}{b_{0} k^{p_{i}}} \longrightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

and in view of (6.10) we have $\left\|\frac{T_{k}\left(u_{n}\right)}{k}\right\|_{L^{1}(\Omega)} \longrightarrow 0$ as k tends to infinity, then

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|\frac{T_{k}\left(u_{n}\right)}{k}\right\|_{L^{1}(\partial \Omega)} & \leq \lim _{k \rightarrow \infty} C\left\|\frac{T_{k}\left(u_{n}\right)}{k}\right\|_{W^{1,1}(\Omega)} \\
& \leq C \lim _{k \rightarrow \infty}\left\|\frac{T_{k}\left(u_{n}\right)}{k}\right\|_{L^{1}(\Omega)}+C \lim _{k \rightarrow \infty} \sum_{i=1}^{N}\left\|\frac{D^{i} T_{k}\left(u_{n}\right)}{k}\right\|_{L^{1}(\Omega)} \\
& \leq C \lim _{k \rightarrow \infty}\left\|\frac{T_{k}\left(u_{n}\right)}{k}\right\|_{L^{1}(\Omega)}+C^{\prime} \lim _{k \rightarrow \infty} \sum_{i=1}^{N}\left\|\frac{D^{i} T_{k}\left(u_{n}\right)}{k}\right\|_{L^{p_{i}}(\Omega)} \\
& =0 .
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
\frac{T_{k}\left(u_{n}\right)}{k} \longrightarrow 0 \quad \text { weak }-* \text { in } L^{\infty}(\partial \Omega) \tag{6.15}
\end{equation*}
$$

Step 3: Some a priori estimates.

In this section, we will show that:

$$
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \sum_{i=1}^{N} \frac{1}{h} \int_{\left\{\left|u_{n}\right| \leq h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x=0 .
$$

By taking $v=\frac{T_{h}\left(u_{n}\right)}{h} e^{B\left(\left|u_{n}\right|\right)}$ as a test function in the approximate problem (6.2), we obtain

$$
\begin{align*}
& \frac{1}{h} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i}\left(T_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)}\right) d x \\
& \quad+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \frac{T_{h}\left(u_{n}\right)}{h} e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r-1} u_{n} \frac{T_{h}\left(u_{n}\right)}{h} e^{B\left(\left|u_{n}\right|\right)} d x \\
& =\int_{\Omega} f_{n} \frac{T_{h}\left(u_{n}\right)}{h} e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\partial \Omega} g_{n} \frac{T_{h}\left(u_{n}\right)}{h} e^{B\left(\left|u_{n}\right|\right)} d \sigma \tag{6.16}
\end{align*}
$$

using (3.3), (4.2) and (3.5), it follows that

$$
\begin{aligned}
& \frac{1}{h} \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right| \leq h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} T_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& +\frac{2}{h} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{p_{i}} d\left(\left|u_{n}\right|\right)\left|T_{h}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r} \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} e^{B\left(\left|u_{n}\right|\right)} d x \\
& \leq \int_{\Omega}\left|f_{n}\right| \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} e^{B\left(\left|u_{n}\right|\right)} d x+\int_{\partial \Omega}\left|g_{n}\right| \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} e^{B\left(\left|u_{n}\right|\right)} d \sigma \\
& +\frac{1}{h} \int_{\Omega}\left|H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right|\left|T_{h}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& \leq e^{B(\infty)} \int_{\Omega}\left(|f|+\left|f_{0}\right|\right) \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d x+e^{B(\infty)} \int_{\partial \Omega}\left|g_{n}\right| \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d \sigma \\
& +\frac{1}{h} \sum_{i=1}^{N} \int_{\Omega}\left|D^{i} u_{n}\right|^{p_{i}} d\left(\left|u_{n}\right|\right)\left|T_{h}\left(u_{n}\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x .
\end{aligned}
$$

We conclude that

$$
\begin{align*}
& \frac{1}{h} \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right| \leq h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x+\frac{1}{h} \sum_{i=1}^{N} \int_{\Omega} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}}\left|T_{h}\left(u_{n}\right)\right| d x \\
& \quad+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{\mid} \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d x \\
& \leq e^{B(\infty)} \int_{\Omega}\left(|f|+\left|f_{0}\right|\right) \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d x+e^{B(\infty)} \int_{\partial \Omega}|g| \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d \sigma . \tag{6.17}
\end{align*}
$$

Thanks to (6.10) we have: meas $\left\{\left|u_{n}\right|>h\right\} \rightarrow 0$ as h tends to infinity, thus $\frac{\left|T_{h}\left(u_{n}\right)\right|}{h} \rightharpoonup 0$ weak $-*$ in $L^{\infty}(\Omega)$. Thanks to Lebesgue's dominated convergence theorem, we obtain

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\Omega}\left(|f|+\left|f_{0}\right|\right) \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d x=0 \tag{6.18}
\end{equation*}
$$

Similarly, thanks to (6.15) we have $\frac{\left|T_{h}\left(u_{n}\right)\right|}{h} \rightharpoonup 0$ weak $-*$ in $L^{\infty}(\partial \Omega)$, and since $g_{n} \rightarrow g$ strongly in $L^{1}(\partial \Omega)$ we get

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\partial \Omega}|g| \frac{\left|T_{h}\left(u_{n}\right)\right|}{h} d \sigma=0 \tag{6.19}
\end{equation*}
$$

Thus, by letting h tends to infinity in (6.17) we conclude that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{1}{h} \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right| \leq h\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x=0 \tag{6.20}
\end{equation*}
$$

Moreover, we obtain

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right|>h\right\}} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}} d x=0 \tag{6.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\left\{\left|u_{n}\right|>h\right\}} \alpha(x)\left|u_{n}\right|^{r} d x=0 \tag{6.22}
\end{equation*}
$$

Step 4: Strong convergence of truncations.

In the sequel, we denote by $\varepsilon_{i}(n), i=1,2, \ldots$, various real-valued functions of real variables that converges to 0 as n tends to infinity. Similarly, we define $\varepsilon_{i}(h)$, and $\varepsilon_{i}(n, h)$.

In this step, we will show the convergence of the sequence $\left(D^{i} u_{n}\right)_{n}$ almost everywhere in Ω to $D^{i} u$ for any $i=1, \ldots, N$. We set

$$
S_{h}(\tau)=1-\frac{\left|T_{2 h}(\tau)-T_{h}(\tau)\right|}{h} \quad \text { and } \quad \varphi(s)=s \cdot \exp \left(\frac{\gamma^{2} s^{2}}{2}\right)
$$

where $\gamma=3\left\|\frac{d(|\cdot|)}{b(|\cdot|)}\right\|_{L^{\infty}(\mathbb{R})}$, note that $\varphi^{\prime}(s)-\gamma|\varphi(s)| \geq \frac{1}{2} \quad$ for any $s \in \mathbb{R}$.
By taking $v=\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)}$ as a test function in the approximate problem (6.2), we have

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& -\sum_{i=1}^{N} \frac{1}{h} \int_{\left\{h<\left|u_{n}\right| \leq 2 h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+2 \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)} \operatorname{sign}\left(u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{r-1} u_{n} \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& =\int_{\Omega} f_{n} \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad+\int_{\partial \Omega} g_{n} \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d \sigma .
\end{aligned}
$$

We have $a_{i}(x, r, 0)=0$, and $S_{h}\left(u_{n}\right)=1$ on the set $\left\{\left|u_{n}\right| \leq h\right\}$. Moreover, $\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ have the same sign as u_{n} on the set $\left\{\left|u_{n}\right|>k\right\}$. By using (3.3) and (3.5) we obtain

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& -\sum_{i=1}^{N} \int_{\left\{k<\left|u_{n}\right| \leq 2 h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} T_{k}(u) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& -2 \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right| \leq k\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& +2 \sum_{i=1}^{N} \int_{\left\{k<\left|u_{n}\right| \leq 2 h\right\}}\left|D^{i} u_{n}\right|^{p_{i}} d\left(\left|u_{n}\right|\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& +\int_{\left\{k<\left|u_{n}\right| \leq 2 h\right\}} \alpha(x)\left|u_{n}\right|^{r}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \leq e^{B(\infty)} \int_{\Omega}\left(\left|f_{n}\right|+\left|f_{0}\right|\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \\
& +e^{B(\infty)} \int_{\partial \Omega}\left|g_{n}\right|\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d \sigma \\
& +e^{B(\infty)}\|\alpha(\cdot)\|_{L^{\infty}(\Omega)} \int_{\left\{\left|u_{n}\right| \leq k\right\}}\left|T_{k}\left(u_{n}\right)\right|^{r}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \\
& +\sum_{i=1}^{N} \int_{\Omega} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| S_{h}\left(u_{n}\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& +\frac{\varphi(2 k) e^{B(\infty)}}{h} \sum_{i=1}^{N} \int_{\left\{h<\left|u_{n}\right| \leq 2 h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& \quad-e^{B(\infty)} \varphi^{\prime}(2 k) \sum_{i=1}^{N} \int_{\left\{k<\left|u_{n}\right| \leq 2 h\right\}}\left|a_{i}\left(x, T_{2 h}\left(u_{n}\right), \nabla T_{2 h}\left(u_{n}\right)\right)\right|\left|D^{i} T_{k}(u)\right| d x \\
& \quad-3 \sum_{i=1}^{N} \int_{\left\{\left|u_{n}\right| \leq k\right\}} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) D^{i} u_{n} \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& \leq e^{B(\infty)} \int_{\Omega}\left(|f|+\left|f_{0}\right|\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x+e^{B(\infty)} \int_{\partial \Omega}|g|\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d \sigma \\
& \quad+e^{B(\infty)}\|\alpha(\cdot)\|_{L^{\infty}(\Omega)} \int_{\left\{\left|u_{n}\right| \leq k\right\}}\left|T_{k}\left(u_{n}\right)\right|^{r}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \\
& \quad+\frac{\varphi(2 k) e^{B(\infty)}}{h} \sum_{i=1}^{N} \int_{\left\{h<\left|u_{n}\right| \leq 2 h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x . \tag{6.23}
\end{align*}
$$

Concerning the second term on the left-hand side of (6.23), it's clear that the sequence $\left(a_{i}\left(x, T_{2 h}\left(u_{n}\right), \nabla T_{2 h}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $L^{p_{i}^{\prime}}(\Omega)$, then there exists a measurable function $\vartheta_{i} \in L^{p_{i}^{\prime}}(\Omega)$ such that $a_{i}\left(x, T_{2 h}\left(u_{n}\right), \nabla T_{2 h}\left(u_{n}\right)\right) \rightharpoonup \vartheta_{i}$ in
$L^{p_{i}^{\prime}}(\Omega)$ for any $i=1, \ldots, N$, we conclude that

$$
\begin{align*}
\varepsilon_{1}(n) & =\sum_{i=1}^{N} \int_{\left\{k<\left|u_{n}\right| \leq 2 h\right\}}\left|a_{i}\left(x, T_{2 h}\left(u_{n}\right), \nabla T_{2 h}\left(u_{n}\right)\right)\right|\left|D^{i} T_{k}(u)\right| d x \tag{6.24}\\
& \longrightarrow \sum_{i=1}^{N} \int_{\{k<|u| \leq 2 h\}}\left|\vartheta_{i}\right|\left|D^{i} T_{k}(u)\right| d x=0 \quad \text { as } \quad n \rightarrow \infty
\end{align*}
$$

For the terms on the right-hand side of (6.23), we have $|f(x)|$ and $\left|f_{0}(x)\right|$ belongs to $L^{1}(\Omega)$, and since $\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \rightharpoonup 0$ weak $-\star$ in $L^{\infty}(\Omega)$, it follows that

$$
\begin{equation*}
\varepsilon_{2}(n)=\int_{\Omega}\left(|f(x)|+\left|f_{0}(x)\right|\right)\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6.25}
\end{equation*}
$$

Also, thanks to Lebesgue Dominated Convergence theorem, we have $\left|T_{k}\left(u_{n}\right)\right|^{r} \rightarrow$ $\left|T_{k}(u)\right|^{r}$ strongly in $L^{1}(\Omega)$, it follows that

$$
\begin{equation*}
\varepsilon_{3}(n)=\int_{\left\{\left|u_{n}\right| \leq k\right\}}\left|T_{k}\left(u_{n}\right)\right|^{r}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6.26}
\end{equation*}
$$

Similarly, we have $\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \rightharpoonup 0$ weak-^ in $L^{\infty}(\partial \Omega)$, then

$$
\begin{equation*}
\varepsilon_{4}(n)=\int_{\partial \Omega}|g(x)|\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d \sigma \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{6.27}
\end{equation*}
$$

Moreover, thanks to (6.20) we have

$$
\begin{equation*}
\varepsilon_{5}(h)=\frac{\varphi(2 k) e^{B(\infty)}}{h} \sum_{i=1}^{N} \int_{\left\{h<\left|u_{n}\right| \leq 2 h\right\}} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n} d x \longrightarrow 0 \text { as } h \rightarrow \infty . \tag{6.28}
\end{equation*}
$$

By combining (6.23) and (6.24)-(6.28) we conclude that

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
& -3 \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) D^{i} T_{k}\left(u_{n}\right) \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| e^{B\left(\left|u_{n}\right|\right)} d x \\
& \leq \varepsilon_{6}(n, h) \tag{6.29}
\end{align*}
$$

It follows that

$$
\left.\begin{array}{l}
\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \\
\quad \times\left(\varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)-3 \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
-e^{B(\infty)}\left(\varphi^{\prime}(2 k)+3\left\|\frac{d(|\cdot|)}{b(|\cdot|)}\right\|_{L^{\infty}(\mathbb{R})} \varphi(2 k)\right) \\
\quad \times \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) d x
\end{array}\right] \begin{aligned}
& -3 e^{B(\infty)}\left\|\frac{d(|\cdot|)}{b(|\cdot|)}\right\|_{\infty} \sum_{i=1}^{N} \int_{\Omega}\left|a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right|\left|D^{i} T_{k}(u) \| \varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x
\end{aligned}
$$

For the second term on the left-hand side of (6.30), in view of (6.14) we have $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $L^{p_{i}}(\Omega)$, then

$$
a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \rightarrow a_{i}\left(x, T_{k}(u), \nabla T_{k}(u)\right) \quad \text { strongly in } \quad L^{p_{i}^{\prime}}(\Omega)
$$

and since $D^{i} T_{k}\left(u_{n}\right)$ tends to $D^{i} T_{k}(u)$ weakly in $L^{p_{i}}(\Omega)$, we obtain

$$
\begin{align*}
\varepsilon_{7}(n) & =\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) d x \\
& \leq \sum_{i=1}^{N}\left|\int_{\Omega} a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) d x\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{6.31}
\end{align*}
$$

Concerning the last term on the left-hand side of (6.30), we have $\left(\mid a_{i}\left(x, T_{k}\left(u_{n}\right)\right.\right.$, $\left.\left.\nabla T_{k}\left(u_{n}\right)\right) \mid\right)_{n}$ is bounded in $L^{p_{i}^{\prime}}(\Omega)$, then there exists a measurable function $\nu_{i} \in$ $L^{p_{i}^{\prime}}(\Omega)$ such that $\left|a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right| \rightharpoonup \nu_{i}$ weakly in $L^{p_{i}^{\prime}}(\Omega)$, and we have $\left|D^{i} T_{k}(u)\right|\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|$ tends strongly to 0 in $L^{p_{i}}(\Omega)$ for any $i=1, \ldots, N$, it follows that

$$
\begin{equation*}
\varepsilon_{9}(n)=\sum_{i=1}^{N} \int_{\Omega}\left|a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right|\left|D^{i} T_{k}(u)\right|\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right| d x \rightarrow 0 \tag{6.32}
\end{equation*}
$$

as n tends to infinity. By combining (6.31)-(6.32) we conclude that

$$
\begin{align*}
0 \leq & \frac{1}{2} \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) d x \\
\leq & \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) \\
& \times\left(\varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)-3 \frac{d\left(\left|u_{n}\right|\right)}{b\left(\left|u_{n}\right|\right)}\left|\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right|\right) e^{B\left(\left|u_{n}\right|\right)} d x \\
\leq & \varepsilon_{10}(n, h) \longrightarrow 0 \quad \text { as } \quad n, h \rightarrow 0 . \tag{6.33}
\end{align*}
$$

In view of Lebesgue dominated convergence theorem, we have $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $L^{\underline{p}}(\Omega)$. Thus, by letting n then h tend to infinity we deduce that

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(D^{i} T_{k}\left(u_{n}\right)-D^{i} T_{k}(u)\right) d x \\
& \quad+\int_{\Omega}\left(\left|T_{k}\left(u_{n}\right)\right|^{r-1} T_{k}\left(u_{n}\right)-\left|T_{k}(u)\right|^{r-1} T_{k}(u)\right)\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \rightarrow 0 \tag{6.34}
\end{align*}
$$

as $n \rightarrow \infty$.
Thanks to Lemma 3.1, we conclude that

$$
\begin{cases}T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { strongly in } \quad W^{1, \vec{p}}(\Omega), \tag{6.35}\\ D^{i} u_{n} \rightarrow D^{i} u & \text { a.e. in } \Omega \quad \text { for } \quad i=1, \ldots, N\end{cases}
$$

Moreover, we have $a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) D^{i} u_{n}$ tends to $a_{i}(x, u, \nabla u) D^{i} u$ almost everywhere in Ω, and in view of Fatou's lemma and (6.20) we conclude that

$$
\begin{align*}
& \lim _{h \rightarrow \infty} \frac{1}{h} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{h}(u), \nabla T_{h}(u)\right) D^{i} T_{h}(u) d x \\
& \leq \lim _{h \rightarrow \infty} \liminf _{n \rightarrow \infty} \frac{1}{h} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{h}\left(u_{n}\right), \nabla T_{h}\left(u_{n}\right)\right) D^{i} T_{h}\left(u_{n}\right) d x \tag{6.36}\\
& \leq \lim _{h \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{1}{h} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{h}\left(u_{n}\right), \nabla T_{h}\left(u_{n}\right)\right) D^{i} T_{h}\left(u_{n}\right) d x=0,
\end{align*}
$$

which prove (5.1).

Step 4: The equi-integrability of the sequences $\left(H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right)_{n}$ and $\left(\alpha(x)\left|u_{n}\right|^{r-1} u_{n}\right)_{n}$.

In order to pass to the limit in the approximate problem (6.2), we shall show that

$$
\begin{equation*}
H_{n}\left(x, u_{n}, \nabla u_{n}\right) \longrightarrow H(x, u, \nabla u) \text { and } \alpha(x)\left|u_{n}\right|^{r-1} u_{n} \longrightarrow \alpha(x)|u|^{r-1} u \tag{6.37}
\end{equation*}
$$

strongly in $L^{1}(\Omega)$.
Thanks to (6.35) we have $H_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow H(x, u, \nabla u)$ and $\left|u_{n}\right|^{r-1} u_{n} \rightarrow$ $|u|^{r-1} u$ a.e. in Ω. Then, in view of Vitali's theorem, it suffices to prove that the sequences $\left(H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right)_{n}$ and $\left(\alpha(x)\left|u_{n}\right|^{r-1} u_{n}\right)_{n}$ are uniformly equi-integrable.

For any measurable subset $E \subseteq \Omega$ we have

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{E} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}} d x+\int_{E} \alpha(x)\left|u_{n}\right|^{r} d x \\
& \leq \sum_{i=1}^{N} \int_{E} d\left(\left|T_{h(\eta)}\left(u_{n}\right)\right|\right)\left|D^{i} T_{h(\eta)}\left(u_{n}\right)\right|^{p_{i}} d x+\int_{E} \alpha(x)\left|T_{h(\eta)}\left(u_{n}\right)\right|^{r} d x \tag{6.38}\\
& \quad+\sum_{i=1}^{N} \int_{\left\{h(\eta)<\left|u_{n}\right|\right\}} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}} d x+\int_{\left\{h(\eta)<\left|u_{n}\right|\right\}} \alpha(x)\left|u_{n}\right|^{r} d x
\end{align*}
$$

Thanks to (6.35), there exists $\beta(\eta)>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{E} d\left(\left|T_{h(\eta)}\left(u_{n}\right)\right|\right)\left|D^{i} T_{h(\eta)}\left(u_{n}\right)\right|^{p_{i}} d x+\int_{E} \alpha(x)\left|T_{h(\eta)}\left(u_{n}\right)\right|^{r} d x \leq \frac{\eta}{2} \tag{6.39}
\end{equation*}
$$

for any $E \subset \Omega$ with meas $(E) \leq \beta(\eta)$. Moreover, in view of (6.21) and (6.22) we obtain: for all $\eta>0$, there exists $h(\eta)>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\left\{h(\eta)<\left|u_{n}\right|\right\}} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}} d x+\int_{\left\{h(\eta)<\left|u_{n}\right|\right\}} \alpha(x)\left|u_{n}\right|^{r} d x \leq \frac{\eta}{2} \quad \text { for all } h \geq h(\eta) . \tag{6.40}
\end{equation*}
$$

By combining (6.38), (6.39) and (6.40), one easily has

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{E} d\left(\left|u_{n}\right|\right)\left|D^{i} u_{n}\right|^{p_{i}} d x+\int_{E} \alpha(x)\left|u_{n}\right|^{r} d x \leq \eta \tag{6.41}
\end{equation*}
$$

for all E such that meas $(E) \leq \beta(\eta)$.
Then, the sequences $\left(\alpha(x)\left|u_{n}\right|^{r-1} u_{n}\right)_{n}$ is uniformly equi-integrable. Moreover, thanks to (3.5) we conclude that the sequence $\left(H_{n}\left(x, u_{n}, \nabla u_{n}\right)\right)_{n}$ is also equiintegrable. In view of Vitali's theorem, the convergence (6.37) is concluded.

Step 5: Passage to the limit

Let $\varphi \in W^{1, \vec{p}}(\Omega) \cap L^{\infty}(\Omega)$, and choosing $S(\cdot)$ a smooth function in $W^{1, \infty}(\mathbb{R})$ such that $\operatorname{supp}(S(\cdot)) \subseteq[-M, M]$ for some $M \geq 0$. By choosing $S\left(u_{n}\right) \varphi \in W^{1, \vec{p}}(\Omega) \cap$ $L^{\infty}(\Omega)$ as a test function in the approximate problem (6.2), we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\left(S^{\prime}\left(u_{n}\right) \varphi D^{i} u_{n}+S\left(u_{n}\right) D^{i} \varphi\right) d x \\
& \quad+\int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) S\left(u_{n}\right) \varphi d x+\int_{\Omega} \alpha(x)\left|u_{n}\right|^{s-1} u_{n} S\left(u_{n}\right) \varphi d x \tag{6.42}\\
& =\int_{\Omega} f_{n} S\left(u_{n}\right) \varphi d x+\int_{\partial \Omega} g_{n} S\left(u_{n}\right) \varphi d \sigma
\end{align*}
$$

In view of (6.35), we have $\left(a_{i}\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $L^{p_{i}^{\prime}}(\Omega)$, and since $a_{i}\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)$ tends to $a_{i}\left(x, T_{M}(u), \nabla T_{M}(u)\right)$ almost everywhere in Ω, it follows that

$$
a_{i}\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \rightharpoonup a_{i}\left(x, T_{M}(u), \nabla T_{M}(u)\right) \quad \text { weakly in } \quad L^{p_{i}^{\prime}}(\Omega),
$$

and since $S^{\prime}\left(u_{n}\right) \varphi D^{i} T_{M}\left(u_{n}\right)+S\left(T_{M}\left(u_{n}\right)\right) D^{i} \varphi$ tends strongly to $S^{\prime}(u) \varphi D^{i} T_{M}(u)+$ $S\left(T_{M}(u)\right) D^{i} \varphi$ in $L^{p_{i}}(\Omega)$, we deduce that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\left(S^{\prime}\left(u_{n}\right) \varphi D^{i} u_{n}+S\left(u_{n}\right) D^{i} \varphi\right) d x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)\left(S^{\prime}\left(u_{n}\right) \varphi D^{i} T_{M}\left(u_{n}\right)+S\left(T_{M}\left(u_{n}\right)\right) D^{i} \varphi\right) d x \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{M}(u), \nabla T_{M}(u)\right)\left(S^{\prime}(u) \varphi D^{i} T_{M}(u)+S\left(T_{M}(u)\right) D^{i} \varphi\right) d x \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u)\left(S^{\prime}(u) \varphi D^{i} u+S(u) D^{i} \varphi\right) d x \tag{6.43}
\end{align*}
$$

Concerning the second and third terms on the left-hand side of (6.42), we have $S\left(u_{n}\right) \varphi \rightharpoonup S(u) \varphi$ weak -* in $L^{\infty}(\Omega)$, and thanks to (6.37) we deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} H_{n}\left(x, u_{n}, \nabla u_{n}\right) S\left(u_{n}\right) \varphi d x=\int_{\Omega} H(x, u, \nabla u) S(u) \varphi d x \tag{6.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \alpha(x)\left|u_{n}\right|^{r-1} u_{n} S\left(u_{n}\right) \varphi d x=\int_{\Omega} \alpha(x)|u|^{r-1} u S(u) \varphi d x \tag{6.45}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} S\left(u_{n}\right) \varphi d x=\int_{\Omega} f S(u) \varphi d x \tag{6.46}
\end{equation*}
$$

Similarly, we have $S\left(u_{n}\right) \varphi \rightharpoonup S(u) \varphi$ weak-* in $L^{\infty}(\partial \Omega)$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\partial \Omega} g_{n} S\left(u_{n}\right) \varphi d \sigma=\int_{\partial \Omega} g S(u) \varphi d \sigma \tag{6.47}
\end{equation*}
$$

Hence, putting all the terms (6.42) and (6.43)-(6.47) together, we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u)\left(S^{\prime}(u) \varphi D^{i} u+S(u) D^{i} \varphi\right) d x+\int_{\Omega} H(x, u, \nabla u) S(u) \varphi d x \\
& \quad+\int_{\Omega} \alpha(x)|u|^{r-1} u S(u) \varphi d x=\int_{\Omega} f S(u) \varphi d x+\int_{\partial \Omega} g S(u) \varphi d \sigma \tag{6.48}
\end{align*}
$$

which conclude the proof of Theorem 5.2.

Example:

Let $f \in L^{1}(\Omega)$ and $g \in L^{1}(\partial \Omega)$, we consider the following Carathéodory functions

$$
a_{i}(x, u, \nabla u)=\frac{\left|D^{i} u\right|^{p_{i}-2} D^{i} u}{(1+|u|)^{\lambda}} \quad \text { and } \quad H(x, u, \nabla u)=-\sum_{i=1}^{N} \frac{\left|D^{i} u\right|^{p_{i}}}{(1+|u|)^{p_{i}+\lambda}} .
$$

It is clear that the functions $a_{i}(x, u, \nabla u)$ and $H(x, u, \nabla u)$ verify the conditions (3.2)-(3.4) and (3.5) respectively. In view of the Theorem 4.2, the strongly nonlinear elliptic problem

$$
\begin{cases}-\sum_{i=1}^{N} D^{i}\left(\frac{\left|D^{i} u\right|^{p_{i}-2} D^{i} u}{(1+|u|)^{\lambda}}\right)+|u|^{\underline{p}-2} u=f+\sum_{i=1}^{N} \frac{\left|D^{i} u\right|^{p_{i}}}{(1+|u|)^{p_{i}+\lambda}} & \text { in } \Omega \tag{6.49}\\ \sum_{i=1}^{N} \frac{\left|D^{i} u\right|^{p_{i}-2} D^{i} u}{(1+|u|)^{\lambda}} \cdot n_{i}=g & \text { on } \partial \Omega\end{cases}
$$

has at least one renormalized solution $u \in T_{t r}^{1, \vec{p}}(\Omega)$, i.e.

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} u\right|^{p_{i}-2} D^{i} u}{(1+|u|)^{\lambda}}\left(S^{\prime}(u) \varphi D^{i} u+S(u) D^{i} \varphi\right) d x \\
& \quad-\sum_{i=1}^{N} \int_{\Omega} \frac{\left|D^{i} u\right|^{p_{i}}}{(1+|u|)^{p_{i}+\lambda}} S(u) \varphi d x+\int_{\Omega}|u|^{\underline{p}-2} u S(u) \varphi d x \tag{6.50}\\
& =\int_{\Omega} f S(u) \varphi d x+\int_{\partial \Omega} g S(u) \varphi d \sigma
\end{align*}
$$

for every $\varphi \in W^{1, \vec{p}}(\Omega) \cap L^{\infty}(\Omega)$ and any smooth function $S(\cdot) \in W^{1, \infty}(\Omega)$ with a compact support.

References

[1] F. Andreu, J. M. Mazón, S. Segura de León, J. Toledo: Quasi-linear elliptic and parabolic equations in L^{1} with non-linear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), pp. 183-213.
[2] S. Antontsev, M. Chipot: Anisotropic equations: uniqueness and existence results, J. Differential and Integral Equations Volume 21, Numbers 5-6 (2008), 401-419.
[3] S. N. Antontsev, J. F. Rodrigues: On stationary thermorheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 19-36.
[4] M. B. Benboubker, H. Hijaj, S. Ouaro: Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent. J. Appl. Anal. Comput. 4 (2014), no. 3, 245-270.
[5] M. Ben Cheikh Ali, O. Guibé: Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), no. 1, 275-297.
[6] M. Bendahmane, M. Chrif, S. El Manouni: An Approximation Result in Generalized Anisotropic Sobolev Spaces and Application. Z. Anal. Anwend. 30 (2011), no. 3, 341-353.
[7] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vázquez: An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, (1995), 241-273.
[8] M. F. Betta, O. Guibé, A. Mercaldo: Neumann problems for nonlinear elliptic equations with L^{1}-data. J. Differential Equations, 259(3) (2015), 898-924.
[9] D. Blanchard, F. Murat, H. Redwane: Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems, J. Differential Equations, 177 (2001), 331-374.
[10] L. Boccardo, T. Gallouêt, F. Murat: Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1159-1164.
[11] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat: Existence and regularity of renormalized solutions for some elliptic problems involving derivations of nonlinear terms, J. Differential Equations 106 (1993), 215-237.
[12] G. Dal Maso, F. Murat, L. Orsina, A. Prignet: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Vol. 28 (4) (1999), 741808.
[13] R.-J. DiPerna, P.-L. Lions: On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. 130 (1989), 321-366.
[14] R. Di Nardo, F. Feo: Existence and uniqueness for nonlinear anisotropic elliptic equations. Archiv der Mathematik, 2014, 102(2), 141-153.
[15] R. Di Nardo, F. Feo, O. Guibé: Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differential Equations 18 (2013), no. 5-6, 433-458.
[16] E. Hewitt, K. Stromberg: Real and abstract analysis. Springer-Verlag, Berlin Heidelberg New York, 1965.
[17] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars, Paris 1969.
[18] P.-L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible models, Oxford Univ. Press, Oxford, 1996.
[19] P.-L. Lions, F. Murat: Solutions renormalisées d'équations elliptiques, Manuscript for C.R.A.S. (juin 1992).
[20] J. Leray, J.-L. Lions: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
[21] M. Mihailescu, P. Pucci, V. Radulescu: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl., 340 (2008), 687-698.
[22] F. Murat: Soluciones normalizadas de EDP elipticas non lineales, Tech. Report R93023, Laboratoire d'Analyse Numérique, Paris VI, 1993, Cours à l'Université de Séville.
[23] F. Murat: Équations elliptiques non linéaires avec second membre L^{1} ou mesure, in Comptes Rendus du 26ème Congrès National d'Analyse Numérique, Les Karellis, pp. A12A24, 1994.
[24] M. Růžička: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000.
[25] L. Tartar: Imbedding theorems of Sobolev spaces into Lorentz spaces, BUMI Serie 8 (1988), 479-500.
[26] V. V. Zhikov: Averaging of functionals in the calculus of variations and elasticity, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710.

Received: 8 July 2023/Accepted: 16 April 2024/Published online: 31 May 2024
Mohamed Badr Benboubker
Higher School of Technology of Fez, Sidi Mohamed Ben Abdellah University, BP 2427 Route d'Imouzzer Fez, Morocco
simo.ben@hotmail.com
Rajae Bentahar
Department of Mathematics, Faculty of Sciences Tétouan, University Abdelmalek Essaadi, BP 2121, Tétouan, Morocco
rbentahar77@gmail.com

Meryem El Lekhlifi
Ecole Nationale des Arts et Métiers, Moulay Ismail University, Meknes, Morocco
ellekhlifim@gmail.com
Hassane Hjiaj
Department of Mathematics, Faculty of Sciences Tétouan, University Abdelmalek Essaadi, BP 2121, Tétouan, Morocco
hjiajhassane@yahoo.fr
(C) The copyright of this article is retained by the Author(s).

Open Access. This article is published in open access form and licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) (http://creativecommons.org/licenses/by-nc-sa/4.0/).

[^0]: 2020 Mathematics Subject Classification: 35J60, 46E30, 46E35.
 Keywords: Anisotropic Sobolev spaces, renormalized solutions, elliptic problem, Neumann boundary condition.

 * Corresponding author

