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On complex algebraic singularities of some genuinely
nonlinear PDEs

Denys Dutykh∗ and Éric Leichtnam

Abstract. In this manuscript, we highlight a new phenomenon of complex algebraic singularities
formation for solutions of a large class of genuinely nonlinear Partial Differential Equations

(PDEs). We start from a unique Cauchy datum which is holomorphic ramified like x
1

k + 1
1 (and

its powers) around the smooth locus x 1 = 0 and is sufficiently singular. Then, we expect
the existence of a solution which should be holomorphic ramified around the singular locus S

defined by the vanishing of the discriminant of an algebraic equation of degree k + 1 . Notice,
moreover, that the monodromy of the Cauchy datum is Abelian, whereas one of the solutions
is non-Abelian and that S depends on the Cauchy datum in contrast to the Leray principle
(stated for linear problems only). This phenomenon is due to the fact that the PDE is genuinely
nonlinear and that the Cauchy datum is sufficiently singular. First, we investigate the case of
the inviscid Burgers Equation (iBE). Later, we state a general Conjecture 9.2, which describes
the expected phenomenon. We view this Conjecture 9.2 as a working programme allowing us to
develop interesting new Mathematics. We also state Conjecture 7.1, which is a particular case
of the general Conjecture 9.2 but keeps all the flavour and difficulty of the subject. Then, we
propose a new algorithm with a map F such that a fixed point of F would give a solution to the
problem associated with Conjecture 7.1. Then, we perform convincing, elaborate numerical tests
which suggest that a Banach norm should exist for which the mapping F should be a contraction
so that the solution (with the above specific algebraic structure) should be unique. This work is
a continuation of [36].

Preface

In this manuscript, we investigate the process of singularity formation in two
examples of fully (or genuinely) nonlinear Partial Differential Equation (PDE)s
starting from a single algebraic singular Cauchy datum. Namely, we consider
specific ramified initial value (or Cauchy-type) problems. In order to better
understand the real singularities, our approach consists in looking at what happens
in the complex domain. Thus, we formally assume that space and time variables
take complex values. The analysis of the PDEs in the complex domain sheds
new light on the origin of familiar real singularities. In the case of the inviscid
Burgers Equation (iBE) (with an algebraic singular Cauchy datum), we are able
to carry out all computations analytically using two completely different methods:
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Cauchy–Kovalevskaya theory and contact geometry on the space of 1−jets.
We propose a generalisation to the case of genuinely nonlinear PDEs of orders two
or higher, and we state several conjectures. Moreover, for a second order PDE, we
propose an iterative scheme, which allows us to construct efficiently approximate
complex solutions. The convergence of this scheme is empirically demonstrated on
a sufficient number of numerical examples, which is a good indication in favour
of our conjectures. We stress that the proposed algorithm is entirely new. This
scheme might also be used to show the existence and uniqueness of solutions to
the ramified Initial Value Problem (IVP) corresponding to our conjectures.

In more precise mathematical terms, in this manuscript, we highlight a new
phenomenon of complex algebraic singularities formation for solutions of genuinely
nonlinear Partial Differential Equation (PDE)

P (u ) ( t, x ) = 0 , ( t, x ) ∈ C× Cn

starting from a unique Cauchy datum, which is sufficiently singular. More pre-
cisely, we start from a unique Cauchy datum u ( 0, x ) which is ramified near
the origin like x

1
k + 1
1 around the smooth hyper surface x 1 = 0 and assume that

P is simply characteristic with respect to the co-normal of x 1 = 0 . Then,
we expect the existence of a solution to P (u ) = 0 of a specific form (ansatz)
u ( t, x ) = A

(
t, x, z ( t, x )

)
, where A is a holomorphic function near the origin

and z ( t, x ) is a solution of an algebraic equation

z k + 1 ( t, x ) − a k − 1 ( t, x ) z k − 1 ( t, x ) − . . . − a 0 ( t, x ) = 0 . (∗)

Thus, the solution is holomorphic ramified around the singular locus defined by the
discriminant (swallow-tail) of Equation (∗). Since we search for a solution under
a special form which is ramified along a single (singular) hyper-surface, we need
only a single Cauchy datum. Actually, “morally” the solution is unique once we
have fixed the choice of a root to the polynomial equation defined by the simple
characteristic hypothesis. The fact that the solution is ramified around a singular
locus and has a non-Abelian monodromy, whereas the Cauchy datum is ramified
around a smooth locus and has Abelian monodromy is a (new) phenomenon which
is due to the facts that the Cauchy datum is sufficiently singular and that the
PDE P (u ) = 0 is genuinely nonlinear. Let us provide two examples to illustrate
the concept of genuine nonlinearity, while the more general definition will be given
in the formulation of Conjecture 9.2. Let u be a holomorphic function

u : Cn + 1 −→ C
( t, x 1, x 2, . . . , xn ) 7→ u ( t, x 1, x 2, . . . , xn ) .

Then, the following ‘initial’ value problem is genuinely nonlinear

u t t − u x 1 (u x 1 x 1 + u x 2 x 2 + . . . u x n x n) = 0 , u ( 0, x ) = c 1 x 1 + c 2 x
1 + 1

3
1 ,

and the next one is not

u t t − u x 2 (u x 1 x 1 + u x 2 x 2 + . . . u x n x n) = 0 , u ( 0, x ) = c 1 x 1 + c 2 x
1 + 1

3
1 ,
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where c 1, 2 ∈ C×.
The full generalization of this phenomenon is stated in Conjecture 9.2 for

genuinely nonlinear PDE of order greater or equal to two. Simpler versions of this
Conjecture are stated in Conjecture 7.1 and Conjecture 7.4. But Conjecture 7.1
keeps all the flavour and the conceptual difficulty of Conjecture 9.2. Conjecture 7.1
considers the following PDE

u t t − u x u x x = 0
along with the Cauchy datum

u ( 0, x ) =
N 0∑

j = 1
c j x

1 + j − 1
3 ,

where N 0 ∈ N> 2 , c 1, 2 ∈ C× and { c j }N 0
j = 3 ⊆ C are constants. Moreover, a

root of the polynomial equation associated with the simple characteristic hypothesis
is chosen. Then, Conjecture 7.1 states the existence of an algebraic solution u ( t, x )
ramified along a cusp

4 p 3 ( t, x ) − 27 q 2 ( t, x ) = 0
depending on the Cauchy datum and the previous choice. This conjecture is a
working programme that allows the development of interesting new mathematics.
The algebraic and geometric studies carried out in Sections 5 and 6 allow us to
construct, in Section 7, a new algorithm with a map F such that a fixed point
of F provides a solution to Conjecture 7.1. In Section 8, we carry out various
elaborate numerical experiments which show quite convincingly that the iterations
F ◦ m (w 0 ) seem to converge (as m → +∞) to a unique fixed point. This
suggests that a family of semi-norms should exist, allowing the construction of a
Banach norm for which F would be contracting. However, this is a very difficult
problem, much harder than the one treated successfully in [33] corresponding to the
case of algebraic equations of degree two (see also Section 2 for a short reminder).

In the case of the inviscid Burgers Equation (iBE), we are able to carry
out all the computations analytically using two completely different methods: the
Cauchy–Kovalevskaya theorem and the contact geometry approach on the
space of 1−jets. This new phenomenon is exhibited very clearly in the case of the
iBE. For the most general case of genuinely nonlinear PDEs of the order higher
or equal to two, we state the general Conjecture 9.2, which describes the new
phenomenon previously mentioned very precisely. Conjecture 9.2 is a very difficult
problem. We view it as a motivation to develop new Mathematics. Indeed, in this
paper, we try to lay the foundations of proof. We also state Conjectures 7.1 and
7.4, which are particular cases of the general Conjecture 9.2. The Conjecture 7.1
deals with the case k = 2 and

P (u ) := u t t − u x u x x = 0 , (∗∗1)

u ( 0, x ) =
N 0∑

j = 1
c j x

1 + j − 1
3 , (∗∗2)
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where N 0 ⩾ 3 , c 1, 2 ∈ C× and c j ∈ C , ( 3 ⩽ j ⩽ N 0 ) are constants, and
( t, x ) ∈ C 2 . Morally, Conjecture 7.1 is not much easier than Conjecture 9.2, but
its simpler formulation allows for direct numerical verifications.

We revisit and improve the geometric study of the algebra O [ z ] , where z 3 =
p z + q and O denotes the algebra of germs of holomorphic functions { a ( p, q ) }
near the origin 0 ∈ C 2 . This study allows us to construct a new algorithm
(and the corresponding ansatz) along with a mapping F such that a fixed point
of F gives a solution to the Problem (∗∗1), (∗∗2). We provide various numerical
experiments show that the iterations F ◦ m (w 0 ) seem to converge numerically
(when m → +∞) to a fixed point which does not depend on w 0 . This provides
strong empirical evidence that this algorithm will provide a unique solution to the
Problem (∗∗1), (∗∗2) of the form A

(
t, x, z ( t, x )

)
once a choice of a root to the

simply characteristic equation (of degree two here) has been chosen. It remains a
very difficult open problem to find appropriate a Banach (normed) algebra for
which

∥F (w ) − F ( v ) ∥ ⩽ c ∥w − v ∥ ,

with 0 < c < 1 , which would give a proof of Conjecture 7.1.

Abu Dhabi, UAE Denys Dutykh
Saint-Jean-de-Chevelu, France Eric Leichtnam
June 2024
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1. Introduction

The process of formation of singularities to solutions of nonlinear Partial Differential
Equations is a huge and important topic which has stimulated a lot of interesting
works (see e.g. [47, 54]). We begin by recalling some known results on this topic
in order to briefly describe the landscape in which our results and goals will be
realized.

Even infinitely smooth initial data under the dynamics of a nonlinear PDE
will not remain in general smooth for all times. Henceforth, the topic of the
singularity formation in solutions to nonlinear PDEs has been central in the study
of these equations. Perhaps the wave-breaking phenomenon is the most familiar
and far from being completely studied, natural singularity formation processes [4].
Moreover, everyone can easily see the wave-breaking process.

An attempt to classify various finite time singularities in PDEs has been made
in [12]. Physical (and several other) applications have clearly motivated this clas-
sification. The question of eventual blow-up in 3D incompressible Euler and
Navier–Stokes equations is open and central to many current theoretical and
numerical investigations [23, 30, 40, 46]. We also refer to [8] as an excellent review
of available numerical approaches to detect complex singularities of PDEs. Com-
plex singularities of the Lorenz dynamical system (with complex time) have been
studied in [52].

The present manuscript is devoted in the first place to the study of complex
algebraic singularities in the inviscid Burgers Equation (iBE). Namely, we study
the algebraic singularity blow-up under the dynamics of some first and second-order
genuinely nonlinear PDEs. Among the second-order PDEs, we focus on a particular
second-order PDE belonging to the celebrated family of p−systems described in
some detail below.

The iBE can be written as [7]:

u t − uu x = 0 , (1.1)

where in the (classical) real case

u : R⩾ t 0 × R −→ R ,
( t, x ) 7→ u ( t, x ) .

The subscripts (− ) t and (− ) x denote the usual partial derivatives ∂
∂t and ∂

∂x
respectively. In order to obtain an Initial Value Problem (IVP), Equation (1.1)
has to be completed by an appropriate initial condition:

u ( t 0, x ) = u 0 (x ) , x ∈ R .

It is well-known that the iBE will develop the gradient catastrophe in finite time
from a generic initial condition. More precisely, the existence time t 0 ⩽ t < t s

depends on the initial condition:

t s = 1
sup
x ∈ R

u 0, x (x ) .
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Please note that the real singularity never occurs (in forward time) if u 0, x takes
strictly negative values for all finite x ∈ R . Below, for the sake of simplicity, we
shall take t 0 = 0 .

The real singularity is point-like in the sense that it occurs locally at a single
point and at a fixed time t s . In contrast to real singularities, we shall demonstrate
below that complex algebraic singularities take place on sets of positive dimensions
(i.e. analytical hyper-surfaces in C 2 in our case). For the sake of completeness, we
would like to mention that some singularities may even happen on sets of fractional
Hausdorff dimensions [13]. This mechanism is conjectured for the Navier–
Stokes equations in 3D. We can also remember an old idea of J. Leray that
singularities in the Navier–Stokes equations could be related to the phenomenon
of turbulence [5]. However, this idea was not followed, up to now and to the best
of our knowledge, by any significant results.

In a similar line of thinking, we shall consider also in the present manuscript
the following second-order nonlinear hyperbolic equation:

u t t − u x u x x = 0 , (1.2)

whose IVP requires traditionally two data to be specified:

u ( 0, x ) = u 0 (x ) , x ∈ R , (1.3)
u t ( 0, x ) = u 1 (x ) , x ∈ R . (1.4)

However, we shall consider a ramified Cauchy problem with only one (algebraic)
Cauchy datum (1.3) and we shall seek a solution ( t, x ) 7→ u ( t, x ) of a very
special (algebraic) form so that only the first Cauchy datum is needed. Both con-
sidered Equations (1.1) and (1.2) come from the same family of PDEs discussed in
Section 3. Mathematically speaking, we discuss in the present study the hyperbolic
sub-family of genuinely nonlinear PDEs. The general notion of genuinely nonlinear
PDE that we use is stated as Assumption (2) in Conjecture 9.2. For example, the
following PDE

u t t − u x u x x = 0

is genuinely nonlinear, whereas

u t t − uu x x = 0

is not genuinely nonlinear but only quasilinear. Other examples will be given in
Section 3.

Example 1.1. Let us consider the following Cauchy ‘toy’ problem in C 2 :

∂u

∂t
= u 2 ,

u ( 0, x ) = 1
x
.
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It is not difficult to see that the exact solution to this problem is

u ( t, x ) = 1
x − t

.

This simple example shows that it is absolutely crucial to assume that Cauchy
data (1.3) is bounded if we want to establish the existence of a holomorphic solution
ramified along a characteristic hyper-surface. However, we mention that this toy
example is not representative of our study for the following reasons:

1. The singular locus S := { t ∈ C | ( t, t ) } is a regular hyper-surface.

2. The hyper-surface S is not characteristic for the differential operator ∂
∂t .

Henceforth, our example has some serious limitations.

It is well-known that the behaviour of the real-valued and complex-valued
solutions is quite different. We shall mention the example of the 2D viscid Burgers
system. For real-valued solutions O. Ladyzhenskaya proved1 in 1963 global
existence and uniqueness result in Sobolev spaces [29]. Later, it turned out
that complex-valued solutions differ drastically from real ones. In particular, Li
and Sinai proved in [37] using the renormalization group method that complex-
valued solutions (in nD) can develop finite time singularities. This was proven
earlier in [45] for gradient-like solutions. The 2D complex Burgers equation was
studied in [39], where an open set of a six-parameter family of initial conditions is
constructed such that the corresponding solutions exhibit blowups in finite time.
Finally, complex-valued initial conditions have been showing numerically to develop
a singularity in finite time in complete agreement with theory. These results have
also been extended to 3D complex-valued Navier–Stokes equations [38]. The
complex singularities in 2D Euler equations have been studied in [19].

Our study differs at least in two important respects from the previously de-
scribed line of thinking:

1. We consider hyperbolic and inviscid equations starting with the iBE.

2. We complexify not only the dependent variables but also the independent
ones.

The viscous Burgers equation with real-time and complex spatial variables has
been considered in [17] in the context of semi-groups. Similarly, the linear wave
(or D’Alembert) and telegraph equations were treated in [16]. Perhaps the
complex view on PDEs can be traced back to the work of S. Kovalevskaya
who considered the Cauchy problem (CP) for the usual (linear) heat equation
with complex temporal and spatial variables [28]. In particular, she showed that
there are examples of holomorphic non-entire initial conditions such that the power
series solution does not converge in any neighbourhood of t 0 ∈ C . The Borel

1This result is a kind of folklore theorem because the original reference [29] does not contain a
very detailed proof.
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summability of these divergent solutions has been studied much later [41]. However,
our study’s goal is to shed new light from the complex geometry angle on the
formation of real singularities in fully nonlinear PDEs. The complex iBE appeared
surprisingly also in random matrix theory [43] and random surface models [27].

In the present work, we focus first on the classical iBE and the following ramified
IVP:

u t − uu x = 0 ,

u ( 0, x ) = x
1
3 .

We show that the last IVP possesses solutions of the form u = a + z , where a is
a regular holomorphic function and z verifies the cubic equation z 3 = p z + q .
The obtained solution can be analytically continued along any path in a small
neighbourhood of the origin 0 ∈ C 2 and originating from ( 0, x 0 ) ∈ C 2

and avoiding the cusp singularity 4 p 3 − 27 q 2 = 0 . This is explained in
detail in Section 4. Thus, the solution u is ramified along the singular locus
4 p 3 − 27 q 2 = 0 and its monodromy group2 (cf. Remarks 4.3 and 4.4) is the
(non-commutative) permutation group S 3 (cf. Remark 4.3) whereas the Cauchy
datum x

1
3 is ramified around a smooth locus with a commutative monodromy group,

namely Z / 3Z . This phenomenon (including the changing of the monodromy
group) is due both to the genuine nonlinearity of the iBE and the fact the algebraic
Cauchy datum is sufficiently singular (see Section 4.1 and Theorem 6.4).

However, the main goal of our study is to formulate a convincing
numerical convergence evidence along with the generalisation of this
phenomenon for genuinely nonlinear PDEs of the order two and higher
(see Conjectures 7.1, 7.4 and 9.2).

A first generalization is stated in Conjecture 7.1 which considers the Partial
Differential Equation (PDE) (1.2) with the initial condition

u ( 0, x ) =
N 0∑

j = 1
c j x

1 + j − 1
3 ,

2Informally speaking, the monodromy group is a group of transformations that encodes what
happens with data when we turn around the singularity. More formally, a monodromy is a
representation of the fundamental group. Let V be a holomorphic connected variety. Let us take
x 0 ∈ V and u be a holomorphic germ defined at point x 0 , which can be prolongated along any
closed loop issued from x 0 . If γ is any such closed loop at x 0 , by γ · u we denote the result of
this prolongation. Finally, by E, we denote the vector space generated by all such elements γ · u .
If dim E < +∞ , we say that u is of finite determination. The homotopy equivalence classes [ γ ]
form the fundamental group π 1 ( V ) . Finally, the monodromy is defined as the following map:

π 1 ( V ) −→ GL (E ) ,

γ 7→ ( u 7→ γ · u ) .

Of course, it has to be shown that all these maps are well-defined, and the result does not depend
on the representative γ of the homotopy class [ γ ] . Fortunately, it can be done without any
difficulties.
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where N 0 ∈ N> 2 , c 1, 2 ∈ C× and { c j }N 0
j = 3 ⊆ C are constants. It states

the existence of an algebraic solution u ( t, x ) ramified along a cusp 4 p 3 ( t, x ) −
27 q 2 ( t, x ) = 0 depending on the Cauchy datum. We strongly believe that
Conjectures 7.1, 7.4 and the most general Conjecture 9.2 are important problems
requiring the development of interesting new Mathematics.

This manuscript is the first step in which we shall provide solid mathematical
foundations and numerical evidence to believe that they are true. Especially
regarding the Conjecture 7.1, we shall construct in Section 7 a new (and highly
non-trivial) algorithm, allowing us to obtain quite convincing numerical tests
supporting the convergence of this new algorithm in Section 8. Moreover, we
sketch a tentative strategy to theoretically address the general Conjecture 9.2. In
Sections 5 and 6, we revisit the general results of [36] in the specific case of the
cubic equation z 3 = p z + q and make them more precise. The big advantage
here is that most computations can be done almost explicitly, which allows us to
highlight the underlying structures, which will allow us to construct a new practical
algorithm from Section 7. More precisely, in Section 5 we revisit the ring3 O J z K
(with z 3 = p z + q) and we introduce the primitive operator ∂ − 1

q . The reason
why the derivation ∂ q operator governs the structure of the ring O J z K is elucidated
in Section 6. In the same Section, we establish the fact that ( z, z 2 ) is a solution
of a holonomic D−module with the characteristic variety V which is included in
the union of the zero section and the co-normal4 to the cusp 4 p 3 − 27 q 2 = 0 :

V
⋂

T ∗
0 C 2 =

(
0, 0 ; 0, C

)
.

In fact, using a deep result of Kashiwara, we are able to prove an even stronger
result stating that the characteristic variety V is the union of the zero section and
the co-normal to the cusp. The characteristic variety is an important geometric
invariant of a D−module. The integrability of the characteristic variety is a central
result in the theory of D−modules. Loosely speaking, this result says that the
singular support of a D−module is an involutive sub-variety in the co-tangent
bundle. The involutivity property may be seen under the sheaf angle: the ideal
sheaf defining the singular support is closed with respect to the natural Poisson
bracket on the co-tangent bundle [50].

Let us remind you of some additional relevant background material that will
help you understand the sequel of this section. We denote by D the sheaf of
holomorphic differential operators on C 2 ∼= { ( p, q ) } . The vector space of
sections of D over an open subset U is denoted by D ( U ) .

Definition 1.2. Let M be a sheaf of D−modules (D−module for short) over an
open subset U of C 2 . The D−module M is said to be coherent if for any sheaf

3Throughout this article, the word “ring” means “ring with identity”.
4Let us remind that the co-normal is constituted of all co-tangent vectors which annihilate on

the tangent space to a given manifold (here, an analytic curve or surface). In the case of a
non-smooth manifold or variety V, the co-normal of V is defined as the closure of the co-normal
of V reg , where V reg designates the set of regular points of V .
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homomorphism of D−modules
ϕ : D m −→ M

and for any point z of U , one can find an open neighbourhood U z of z and a
finite number of sections s 1 , s 2 , . . . , s r (over U z) of the sheaf ( ker ϕ ) such that
for any open subset W ⊆ U z , the restrictions s 1 |W , s 2 |W , . . . , s r |W generate
( ker ϕ ) ( W ) as a module over D ( W ) .

The fact that above the origin, there is only one line (the co-normal to ∂ q) in
V is absolutely crucial for our constructions. In particular, it explains why the
primitive ∂ − 1

q exists and why the “micro-local singularities”5 of the product z 2

remain under the control above the origin 0 ∈ C 2 . This observation will constitute
one of the key ingredients in the future proof of Conjecture 7.1. However, before
engaging in this huge endeavour, we thought obtaining convincing numerical tests
to converge our new iterative algorithm was indispensable. Indeed, its convergence
was not obvious a priori, and its proof will constitute a big challenge. We end with
a short heuristic explanation of why we believe that if we impose a second Cauchy
datum to Conjecture 7.1, then there will be no solution in general. Indeed, from
the linear result [36], two cusps will show up. The products of u and its derivatives
will provide a spreading of singularities (associated with the co-normal of each of
the cusps) over the origin, which will not be possible to control. We shall return
to this question in the forthcoming works.

The present manuscript is organized as follows. In Section 2, we briefly review
some results of [33], which proves Conjecture 9.2 in the case of the algebraic equation
of degree two and which provides some foundational material for an approach of
Conjectures 7.1 and 7.4. In Section 3, we review an interesting family of genuinely
nonlinear PDE to which our Conjectures should apply. First, we understand the
formation of complex singularities in the iBE using the Cauchy–Kovalevskaya
theory in Section 4.2, then, for the sake of completeness, we obtain the same
results using completely different methods of contact geometry in Section 4.3. The
reason for tackling the same problem from two completely different angles is that
it allows us to explore different ideas underlying the general conjecture formulated
below. Some brief reminder on the ring of formal series with holomorphic germs6

coefficients are made in Section 5, and some remarks on holonomic D−modules
are presented in Section 6. The second order nonlinear PDE (1.2) is analyzed
in Section 7, and a completely new algorithm to approximate ramified solutions
is presented in Section 7.1. The convergence of this algorithm would prove a
particular case of the general Conjecture 9.2. We demonstrate numerically in
Section 8 that the proposed algorithm converges in practice, which constitutes one

5We take this expression in the quotes because the distributions z and z 2 are not yet well-defined
in the real case stricto sensu. It will be a topic of our future works.
6The notion of a germ of a mathematical object captures the local properties of that object. The

germ is precisely the equivalence class of objects that share the same local property. In order
to implement the idea of germs, the space has to be at least topological to give sense to the
word ‘local’. The name ‘germ’ was introduced into Mathematics in the continuation of the sheaf
metaphor.
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of the main achievements of the present work. Some possible further generalizations
are discussed in Section 9. This study’s main conclusions and perspectives are
outlined in Section 10. Finally, in Appendix C, we show how our theory relates to
the classical theory of shock waves in an elementary example, see also the end of
Subsection 4.3.1.

2. Review of existing results

In this Section, we remind the general theory of singular solutions to genuinely
nonlinear PDEs, which was initiated by the second author some thirty years ago,
and the construction of holomorphic ramified solutions that have been considered
even earlier, see e.g. [53, 22, 24]. Certain linear ramified Cauchy problems were
considered in [34] and second-order semi-linear problems in [35]. The linear rami-
fied differential operators were considered in [10] in the setting of sheaves theory.
They demonstrated independently a weaker version of the results presented in [36].
Hamada considered the homogeneous linear case even earlier in [21]. The micro-
local existence result was established in [6] for certain classes of linear differential
operators. The same homogeneous case was investigated later using the contact
transformation approach in [26]. The linear homogeneous case was also considered
using the tools of the micro-local theory of sheaves in [11].

The reminders will allow us to understand better the context and set up of
Conjectures 7.1, 7.4 and 9.2. Actually, Theorem 2.8 (to be recalled below) is
the particular case of Conjectures 7.1 and 9.2 obtained by restricting oneself to
algebraic equations of the second order. This is an additional good reason in favour
of Conjecture 7.1.

Let us consider an operator P of the order m :

u 7→ P (u ) def:=
∑

| σ | = m

Pσ ( x, u, ∂ β
x u ) ∂ σ

x u + R ( x, ∂ β
x u )

where we use the multi-indices7 σ and β with |β | ⩽ m − 1 . The use of
multi-index notation is often attributed in the literature to Laurent Schwartz.
All functions Pσ and R are supposed to be holomorphic in their arguments ∀x

in some vicinity U 0 of 0 ∈ Cn+1 , ∀ ∂ β
x u in some vicinity of u β

0
def:= ∂ β

x u ( 0 ) ,
β ∈ Nn+1 . The question of local solutions to equation P u = 0 can be naturally

7If β = ( β 0, β 1 . . . , β n ) ∈ Zn + 1 be a multi-index. By | · | we denote the height of the
multi-index defined as

| β |
def:=

n∑
j = 0

| β j | .

The derivation operator with respect to the variable x j , j ∈ ( n + 1)⊏ is denoted by ∂ x j . If
β ∈ Nn + 1 is a multi-index of derivation, then we shall write:

∂ β def:= ∂ β 0
x 0 ◦ ∂ β 1

x 1 ◦ . . . ∂ β n
x n .
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asked. The solution u ( x ) is holomorphic and ramified around a hyper-surface S
defined by equation s ( x ) = 0 and passing by 0 ∈ Cn+1 . This solution has the
following analytical form [33]:

u ( x ) = a ( x ) +
+∞∑
k = 0

b k ( x ) s γ k ( x ) , (2.1)

where the sequence { γ k }+∞
k = 0 takes its values in R> 0 and is strictly increasing and

tending to +∞ . The functions a and b k , ∀ k ∈ N are holomorphic in U 0 ∋ 0 .
The series (2.1) is convergent on the covering space of U 0 \ S . The following
assumption is also adopted: the hyper-surface S is simply characteristic for the
linearized equation Plin of the genuinely nonlinear operator P in every point a ( x ) .
In other words, the principal symbol pm of P

pm ( x, ξ̄ ) def:=
∑

| σ | = m

Pσ

(
x, a ( x ), ∂ β

x a ( x )
)
ξ̄ σ , |β | ⩽ m − 1 ,

verifies two conditions:

• pm

(
x, d s ( x )

) ∣∣
S
≡ 0 ,

• ∂ ξ̄ pm

(
0, d s ( 0 )

) ∣∣
S
̸= 0 .

The last condition means that S is simply characteristic for Plin . This condition
may be viewed as a holomorphic analogue of the condition for a real differential
operator to be strictly hyperbolic with respect to a real hypersurface containing
the Cauchy data.

We also suppose that we know the ‘initial’ data ∂ β
t a | t = 0 (∀ |β | ⩽ m − 1),

b k | t = 0 (∀ k ⩾ 0) and s | t = 0 , where t = 0 is the equation a complex smooth
hyper-surface T transversal to the vector field ∂ ξ̄ pm

(
x, d s ( x )

)
. Below, we

consider two separate cases.

2.1. Weakly singular solutions

In this case, we take a holomorphic function a and a hyper-surface S (given by
equation s ( x ) = 0) verifying preceding conditions, we assume P ( a ) ≡ 0 and
we seek for weakly singular solutions of type (2.1) with

γ k := m + ( k + 1 )µ , µ ∈ ] 0, 1 [

so that the constructed solution u admits m bounded derivatives. A change of
variables allows us to assume that S is defined by the equation

s ( x ) = y 1 = 0 ,

where we decompose x ≡ ( t, y ) and we introduce the following notation:

1 − y

R

def:=
n∏

j = 1

(
1 − y j

R

)
, R > 0 .
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By analogy,
1

1 − y
R

def:=
n∏

j = 1

1
1 − y j

R

, R > 0 .

Definition 2.1. Let u =
∑+ ∞

j = 1 u j y
j and v =

∑+ ∞
j = 1 v j y

j be two formal
power series with complex coefficients. We shall say that u ≼ v if and only if

|u j | ⩽ | v j | , ∀ j ∈ N .

The last definition can be easily extended to the multi-variable case:

Definition 2.2. Let p ∈ N× and u =
∑

β ∈ N p u β y
β and v =

∑
β ∈ N p v β y

β

be two formal power series with complex coefficients. We shall say that u ≼ v if
and only if

|u β | ⩽ | v β | , ∀β ∈ N p .

Definition 2.3. Let Υ be a formal variable. Given R > 0 , ε > 0 , p ∈ N and
d ∈ N , we denote by A d (R, ε, p ) the set of formal power series of the type:

u = u ( x, Υ ) =
+ ∞∑
j = 0

+ ∞∑
k = 1

u k, j ( t, y ) Υ k µ + j + d , 0 < µ < 1 ,

where functions u k, j are holomorphic in some neighbourhood of 0 ∈ Cn + 1 and
verify

u k, j ≼
+ ∞∑
l = 0

t l(
1 − y

R

) k + j + l
· ( k + j + l )!
l! ( k + j + p )! · C

p
k j l (2.2)

such that
∥u ∥ p, d

def:=
∑

k, j, l ∈ N
C p

k j l ε
k + 2 j + l < +∞ , (2.3)

where C p
k j l (u ) are the smallest non-negative real constants allowing to bound

functions u k, j in (2.2). We also introduce the following related definitions:

A d (R ) def:=
⋃

ε > 0
A d (R, ε, p ) , A d def:=

⋃
R > 0

A d (R ) .

To each element u ∈ A d (R, ε, p ) we put non-injectively in correspondence
a function

u ( x ) =
+ ∞∑
j = 0

+ ∞∑
k = 1

u k, j y
k µ + j + d
1 .

It is not difficult to see that if u 1 ∈ A d 1 and u 2 ∈ A d 2 , then u 1 ·u 2 ∈ A d 1 + d 2 .
If β is a multi-index in Nn + 1 of the height ⩽ d then the operator ∂ β takes the
elements from A d and sends them to A d − | β | . Since S is characteristic, then Plin
sends A d to A d − m + 1 . The following property specifies the geometric domain of
the convergence associated with the norm ∥ · ∥ p, d defined in (2.3):
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Lemma 2.4 ([33]). Let u ∈ A d (R, ε, p ) . Then, every u k, j is a holomorphic
function in the domain

Ω def:=
{

( t, y ) ∈ Cn + 1
∣∣∣∣ | y j | < R , | t | < ε

n∏
j = 1

(
1 − | y j |

R

) }
,

and, for every compact K ⊂ Ω there exists a constant CK > 0 such that

sup
K
|u k, j | ⩽ C k + j + 1

K .

Conversely, let {u k, j } be a sequence of holomorphic functions defined on an open
neighbourhood U 0 of the point 0 ∈ Cn + 1 such that

sup
U 0

|u k, j | ⩽ C k + j + 1 .

Then,
+ ∞∑
j = 0

+ ∞∑
k = 1

u k, j Υ k µ + j + d ∈ A d .

Then, finally, we may state the first result:

Theorem 2.5 ([33]). Take u 0 ∈ Am and let T be an analytic hyper-surface
passing by 0 ∈ Cn + 1 being defined by the analytical equation t = 0 . This
hyper-surface is transversal to the field ∂ ξ̄ pm ( x, d y 1 ) (and, thus, to S). Then,
there exists r ∈ Am (Cn + 1 ) such that

P
(
a ( x ) + r ( x )

)
≡ 0 and r | t = 0 = u 0 .

The proof consists, roughly speaking, of applying the fixed point iterations.

Remark 2.6. The obtained solution a ( x ) + r ( x ) in the previous Theorem
is ramified around a smooth locus (independent of the value of µ) because the
Cauchy datum is not sufficiently singular.

2.2. Strongly singular solutions

In this Section we are looking for solutions of type (2.1) with

γ k
def:= m − 1

2 + k

2 .

We stress out that the function a is not necessarily a solution of equationP ( a ) = 0
anymore if b 0 ̸= 0 . In this Section, a and S will be considered as problem
unknowns on the same footing with { b k }+ ∞

k = 0 .
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Definition 2.7. Let S be a formal variable. By Bm − 1 (Cn + 1 ) we designate the
algebra of formal series of the form:

r ( x, S ) =
+ ∞∑
k = 0

b k ( x )S
k + 2 m − 1

2 .

We assume also that all { b k } k ∈ N are holomorphic functions defined on the same
neighbourhood U 0 of the point 0 ∈ Cn + 1 and there exists a constant C > 0
such that

| b k ( x ) | ⩽ C k + 1 , ∀ k ∈ N , ∀x ∈ U 0 .

Below, we shall substitute the formal variable S by the holomorphic function
s vanishing at the origin 0 ∈ Cn + 1 and defining the characteristic hyper-surface
for the operator Plin .

For any |β | = 1 , we define the action of ∂ β on Bm − 1 by conveying that

∂ β
(
S

k + 2 m − 1
2

)
= k + 2m − 1

2 S
k + 2 m − 3

2 ∂ β s ( x ) .

The action of ∂ β on Bm − 1 is defined recursively for any |β | ⩽ m . To each
element r ( x, S ) ∈ Bm − 1 (Cn + 1 ) we associate non-injectively a function x 7→
r
(

x, s ( x )
)
defined near the origin.

Let x ≡ ( t, y ) ∈ C× Cn and we assume that the operator P has the form
P = ∂m

t + Q ( t, y, ∂ β ) with |β | ⩽ m and β ̸= (m, 0, . . . , 0 ) . The principal
symbol of the linearized operator Plin ( a ) of P at a has the form pm ( t, y, ∂ β τ, ξ̄ )
with |β | ⩽ m − 1 . Finally, we consider a point ( τ 0, ξ̄

0 ) ∈ (C × Cn ) \ 0
together with Cauchy data { a j ( y ) }m − 1

j = 0 holomorphic in some neighbourhood
of 0 ∈ Cn . We assume that

pm

(
0, ∂ σa j ( 0 ), τ 0, ξ̄ 0 ) = 0 , ∂ τ pm

(
0, ∂ σa j ( 0 ), τ 0, ξ̄ 0 ) ̸= 0 ,

where j + |σ | ⩽ m − 1 . We choose also a root τ 1 ( x, u β , ξ̄ ) of the equation
τ 7→ pm ( x, u, τ, ξ̄ ) = 0 holomorphic near the point ( 0, ∂ σa j ( 0 ), ξ̄ 0 ) . Finally,
let s 1 be a holomorphic function near 0 ∈ Cn such that

s 1 ( 0 ) = 0 , d s 1 ( 0 ) = ξ̄ 0 .

We can state the main result:

Theorem 2.8 ([33]). Let
∑+ ∞

k = 0 b
0
k ( y )S k + 2 m − 1

2 ∈ Bm − 1 (Cn ) . Then, there
exists a neighbourhood of the point 0 ∈ Cn + 1 along with holomorphic functions
s , a , { b k }+ ∞

k = 0 defined on it such that s is characteristic for Plin and

b k ( 0, y ) ≡ b 0
k , ∀ k ∈ N ,

∂ j
t a ( 0, y ) ≡ a j , j ∈ (m + 1 )⊏ ,

s ( 0, y ) ≡ s 1 ,

∂ t s ( 0 ) ≡ τ 0 .
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The series

r ( x, S ) def:=
+ ∞∑
k = 0

b k ( x )S
k + 2 m − 1

2 ∈ Bm − 1

and x 7→ u ( x ) ≡ a ( x ) + r
(

x, s ( x )
)

is a solution of the equation P (u ) =
0 .

The space Bm − 1 (Cn + 1 ) is endowed with appropriate norm to define a Ba-
nach algebra. This Theorem is proved by applying the fixed point Picard iter-
ation, which also gives a practical algorithm converging to the required solution
[35].

Remark 2.9. Since the Cauchy datum u 0 ≡ u ( 0, y ) is sufficiently singular,
the hyper-surface s = 0 around which the solution is ramified depends on u 0

and cannot be prescribed in advance. Moreover, since u 0 is ramified like s
1
2
1 , the

algebraic equation z 2 + b z + c = 0 will inevitably show up in the construction
of the solution. The discriminant of this equation is equal to ∆ := b 2 − 4 c .
Observe that ∆ = 0 defines a smooth locus with respect to the variables ( b, c ) .
That is why Theorem 2.8 is easier to prove than its generalizations to the algebraic
equations of order k ⩾ 3 , cf. Conjectures 7.1, 7.4 and 9.2.

3. An interesting family of genuinely nonlinear PDEs

We consider a family of PDEs with the unknown function u : R × R⩾ 0 −→ R :

Lm (u ) def:= ∂m
t u − ∂m−1

x u ∂m
x u = 0 , (3.1)

where m ⩾ 1 is an integer parameter and ∂m
(−) denotes the mth order partial

derivatives with respect to independent variables t or x . Let us introduce the
auxiliary variables:

v 1 ( t, x ) def:= ∂m−1
x u ( t, x ) , vm ( t, x ) def:= ∂m−1

t u ( t, x ) .

Then, we have

∂m−1
t v 1 − ∂m−1

x vm = 0 ,
∂ t vm − ∂ x

( 1
2 v

2
1
)

= 0 .

We shall also introduce the functions { v j }m−1
j = 2 satisfying the following system:

∂ t v 1 − ∂ x v 2 = 0 ,
∂ t v 2 − ∂ x v 3 = 0 ,

...
...

∂ t vm − ∂ x

( 1
2 v

2
1
)

= 0 .



On complex algebraic singularities of nonlinear PDEs 79

For regular solutions (i.e. of the class C1 ), the last system can be rewritten under
the following matrix form:

∂ t


v 1
v 2
...
vm

 −


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

v 1 0 0 · · · 0

 · ∂ x


v 1
v 2
...
vm

 = 0 , (3.2)

where 0 is a function taking a constant (zero) vector value, i.e.

0 : R⩾ 0 × R −→ Rm ,

( t, x ) 7→ ( 0, 0, . . . , 0 ) ⊤ .

Formulations (3.1) and (3.2) are equivalent to each other on the set of sufficiently
regular solutions.

It is not difficult to see that this system matrix is nothing else but the transposed
companion matrix of the polynomial

λm − v 1 ∈ R [λ ] .

If we assume that v 1 > 0 (just for definiteness), the eigenvalues of this matrix
are all simple and given by:

λ k
def:= v

1
m

1 e i 2 π k
m , k ∈ m⊐ .

The eigenvector associated with the eigenvalue λ k is a direction in the kernel of
the following linear operator:

−λ k 1 0 · · · 0
0 −λ k 1 · · · 0
...

...
... . . . ...

v 1 0 0 · · · −λ k


or simply the following vector:

ω k
def:= ( 1, λ k, . . . , λ

m−1
k ) ⊤

We can easily verify that

⟨dλ k, ω k ⟩ = λ k

mv 1
̸= 0 ,

which means that the kth characteristic field is genuinely nonlinear according to
the definition from [31, Section 5]. It is also obvious that System (3.2) is not
hyperbolic since it admits complex characteristic speeds if m > 2 . Below, we
shall consider in some detail the two hyperbolic cases m ∈ 1 and m = 2 . The
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former corresponds to the familiar iBE. The latter deserves more attention. It can
be written as the following system of two equations:

∂ t v 1 − ∂ x v 2 = 0 , (3.3)
∂ t v 2 − ∂ x

(
σ ( v 1 )

)
= 0 . (3.4)

In the last system (also known as the p-system), we can recognize a particular
case of nonlinear elasticity written in Lagrangian variables, where v 1 is the
deformations field and v 2 corresponds to the velocity field. Finally, the mechanical
constraint σ (w) def:= 1

2 w
2 is induced by the deformation v 1 . See [9, Chapter 7]

and, in particular, Equation (7.1.11) therein for more details. It is known that
System (3.3) is hyperbolic when dσ

dw ≡ w > 0 , which becomes the condition
v 1 > 0 in our case. The two characteristic fields corresponding to speeds

λ± = ±
√
v 1

and to eigenvectors
ω± = ( 1, ±√v 1 ) ⊤

are genuinely nonlinear as in the general case (i.e. m > 2).

4. Inviscid Burgers equation

In this Section we consider a particular IVP for the iBE (1.1):

u t − uu x = 0 , (4.1a)

u ( 0, x ) = x
1
3 . (4.1b)

The main particularity of our study is that we consider the space and time variables
to be complex, including the unknown function u :

u : C × C −→ C .

The derivatives with respect to x and t are understood from now on in the sense
of complex analysis. The initial condition containing an algebraic branching point
in the complex domain was taken on purpose. Consequently, the IVP (4.1) is
called the ramified Cauchy problem. Solving the ramified Cauchy problem (4.1)
means by definition to find an open neighbourhood U 0 of 0 ∈ C 2 along with a
germ of the holomorphic function u ( t, x ) at a point of U 0 ∩ { t = 0 } (different
from the origin) satisfying (4.1a) and (4.1b) such that u ( t, x ) can be continued
holomorphically along any path in U 0 which does not meet a certain characteristic
hyper-surface which restricts to x = 0 when t = 0 . Below, we describe two
different approaches to study the IVP (4.1) because both of them contain the
foundational ideas to approach the Conjecture 7.1.
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4.1. A linear digression

It is often helpful to consider first the linear problem before tackling the fully
nonlinear formulation. It often brings some useful insight. The linear counterpart
to IVP (4.1) reads

u t − u x = 0 ,

u ( 0, x ) = x
1
3 .

It is clear to see that the last IVP has the following exact solution:

u ( t, x ) = ( t + x )
1
3 .

Moreover, the singular locus of this solution is the following affine algebraic variety:

S s
def:=

{
( t, x ) ∈ C 2 ∣∣ t + x = 0

}
.

It is clear to see that this locus is completely regular as a geometric object. This
is a characteristic property of linear equations. Below in Section 4.2, we shall
demonstrate that in the genuinely nonlinear case (4.1), the corresponding singular
locus is singular itself, and we shall describe its algebraic singularity explicitly.
We emphasize that Example 1.1 was (simply) nonlinear and also had a completely
regular locus. Also, the Galois group of the field extension of the Cauchy data
and of the solution is the same Abelian group:

Gal
(
C (x 1

3 ) : C (x )
)

= U 3 .

This observation is to be compared with the genuinely nonlinear case described
below. Moreover, the solution u ( t, x ) and the Cauchy datum u ( 0, x ) share the
same monodromy group.

Let us underline one more aspect in which linear and genuinely nonlinear
problems differ. If we remove from C 2 the singular locus and we compute the
fundamental group of the obtained domain, we shall obtain:8

π 1 (C 2 \ S s ) = Z ,

which is an Abelian group. In the genuinely nonlinear case, the fundamental
group will be non-commutative.

8Indeed, this result is not difficult to obtain

π 1 (C 2 \ S s ) = π 1 (C 2 \
{

x = 0
∣∣ ( t, x ) ∈ C 2

}
) = π 1 (C × C \ { 0 } )

= π 1 (C \ { 0 } ) = Z.
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4.2. The Cauchy–Kovalevskaya approach

In the present section, we employ the Cauchy–Kovalevskaya theory in order to
study the Initial Value Problem (IVP) (4.1). We shall even obtain a slightly more
general result by considering the following IVP:

u t − uu x = 0 , (4.2a)

u ( 0, x ) = a 0 (x ) + x
1
3 . (4.2b)

Theorem 4.1. Consider the IVP (4.1) for the iBE. Then, there exist three holo-
morphic functions ( t, x ) 7→ a ( t, x ) , ( t, x ) 7→ p ( t, x ) and ( t, x ) 7→ q ( t, x )
defined in some neighbourhood of the point ( 0, 0 ) ∈ C 2 such that

a ( 0, x ) = a 0 (x ) , p ( 0, x ) = 0 , q ( 0, x ) = x (4.3)

and
u ( t, x ) def:= a ( t, x ) + z ( t, x ) (4.4)

being a unique solution to Equation (4.1) with the complex auxiliary function
( t, x ) 7→ z ( t, x ) verifying the following algebraic relation9

z 3 = p z + q . (4.5)

Proof. First of all, we check that the ansatz (4.4) verifies the initial condition (4.2).
Indeed, by taking the limit t → 0 in Equation (4.5), we obtain

z 3 ( 0, x ) = p ( 0, x ) · z ( 0, x ) + q ( 0, x )
(4.3)
≡ x .

Thus, z ( 0, x ) = x
1
3 . Substituting this result into the solution ansatz (4.4), we

obtain:
u ( 0, x ) :⇒ a ( 0, x ) + z ( 0, x )

(4.3)
≡ a 0 (x ) + x

1
3 .

By differentiating the algebraic relation (4.5) with respect to t and x , we may
compute the partial derivatives of the function z :

z t = p t z + q t

3 z 2 − p
, z x = p x z + q x

3 z 2 − p
. (4.6)

Let us substitute the solution ansatz (4.4) into the iBE (4.1a):

a t + z t − ( a + z ) ( a x + z x ) = 0 .

9This cubic relation can be beneficially seen as an algebraic equation f ( z ) := z 3 − p z − q = 0
over some field k of characteristic different from 2 and 3 . We would like to mention here that
the Galois group associated with this equation depends on the fact whether its discriminant
4 p 3 − 27 q 2 is a square or not in k . In the former case, Gal k ( f ) = Z / 3Z and in the latter
case Gal k ( f ) = S 3 , i.e. the symmetric group over a finite set of 3 symbols. Since we are
working over the field of complex numbers k := C ( p, q ) , the Galois group is the latter.
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By substituting partial derivatives (4.6) and multiplying both sides by the denom-
inator 3 z 2 − p , we obtain:

( 3 z 2 − p ) a t + z p t + q t − ( a + z )
(
a x ( 3 z 2 − p ) + z p x + q x

)
= 0 .

Now, by equating the coefficients in front of equal powers of z , we have the following
sequence of equalities:

z 0 : − p a t + q t + ���a p a x − a q x = 0 ,
z 1 : p t + ���p a x − a p x − q x = 0 ,
z 2 : a t − ���a a x − 1

3 p x = 0 ,
z 3 : 3 a x = 0 .

The last equation can be substituted into three previous ones to obtain:

q t = a q x + p a t ≡ a q x + 1
3 p p x ,

p t = a p x + q x ,

a t = 1
3 p x .

(4.7)

The first two equations are not incompatible because co-tangent vectors d p and d q
are linearly independent by continuity in the vicinity of the point ( 0, 0 ) ∈ C 2 .
Indeed, (

p t, p x

)
( 0, 0 ) ≡ ( 1, 0 ) ,

(
q t, q x

)
( 0, 0 ) ≡

(
a 0 ( 0 ), 1

)
.

It is not difficult to see that the last two co-vectors are linearly independent for any
value of a 0 ( 0 ) ∈ C . Thus, after applying the classical Cauchy–Kovalevskaya
theorem to System (4.7), we obtain the required local existence and uniqueness
result.

Corollary 4.2. The local existence and uniqueness for the IVP (4.1) is obtained
by simply choosing a 0 := 0 .

Remark 4.3. It is instructive to have a look at the obtained solution from the
point of view of Galois theory. We already established above that the Galois
group associated with the initial data is the Abelian group U 3 . The dynamics
of the iBE transforms this initial data into the local analytic solution (4.4). The
Galois group associated to the solution u can be easily computed:

Gal
(
C ( p, q ) [ z ] : C ( p, q )

)
= S 3 .

We stress that the last group is obviously different from U 3 and, additionally, it is
non-commutative.

Investigating the situations where the solution established in the last The-
orem 4.1 becomes singular is also very interesting. Let us fix some values of
( p 0, q 0 ) of ( p, q ) ∈ C 2 for which z 0 is a simple root of Equation (4.5). Then,
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by the classical implicit function theorem, there exists a holomorphic function
( p, q ) 7→ z ( p, q ) defined in the vicinity of the point ( p 0, q 0 ) of the complex
plane. Henceforth, the singular locus for Equation (4.5) will consist of the following
points:

∆ def:=
{

( p, q ) ∈ C 2 ∣∣ Equation (4.5) has a double root
}
.

It is not difficult to describe this set analytically. For this, we eliminate z from the
following system of equations:{

z 3 − p z − q = 0 ,
3 z 2 − p = 0 .

The last two equations can be seen as a system of linear equations with respect to
parameters ( p, q ) . It admits the following parametric solution:{

q = −2 z 3 ,

p = 3 z 2 .

Henceforth, the singular locus is
∆ :⇒

{
( p, q ) ∈ C 2 ∣∣ 4 p 3 − 27 q 2 = 0

}
.

It is not difficult to recognize here the swallow tail (cusp) singularity [55], which
coincides with the cusp in this particular case (n = 2 , see below).
Remark 4.4. The Theorem 4.1 establishes the local existence of the solution in
some polydisc D around the origin ( 0, 0 ) ∈ C 2 . Let us take the solution germ
u ( t, x ) at ( t 0, x 0 ) ∈ D \ ∆ < ( {0 } ) . If γ denotes a closed loop around the
point ( t 0, x 0 ) which does not intersect the singular locus ∆ < ( {0 } ) , then one
can obtain the analytical continuation of the germ u ( t, x ) along the loop γ [14].
In other terms, this defines the action of the first homotopy (or fundamental) group
π 1
(
U 0 \ ∆ < ( {0 } )

)
on the solution (4.4):

γ · u := a + γ · z ,
since the regular part a is not ramified. We note that this group action turns out
to be transitive (see below Theorem 4.8). We say that γ · z is the monodromy
action of γ on z . Depending on the chosen loop γ ∈ D \ ∆ < ( {0 } ) , this action
may bring us to a different root of the algebraic Equation (4.5). This situation is
schematically depicted in Figure 1. We also mention that this action can be lifted
to the universal covering.

It is well-known (see e.g. [1]) that the fundamental group10 of the complex

10Both Authors of this manuscript are deeply convinced that the mathematical reality is connected.
We have some reasons to think that there are some deep hidden connections between the problem
considered in our study and the number theory. Indeed, it is known that the braid group Br 3 is
the universal central extension of the modular group PSL 2 (Z )

def:= SL 2 (Z ) / Z
(

SL 2 (Z )
)

≡
SL 2 (Z ) / { ±1 } (here by 1 we understand the unit element of SL 2 (Z )). The last modular group
is deeply rooted in the theory of modular forms and newforms in the number theory. However,
at the current stage, we are unable to make this statement more precise.
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Figure 1: A schematic illustration for the analytical continuation of a solution germ
defined at x 0 ∈ D along a closed path γ ⊆ D .

plane without the cusp is
π 1
(
C 2 \ ∆ < ( {0 } )

)
= Br 3 ,

the braid group with three strands is an infinite non-commutative group (in contrast
to the linear case discussed above).

Let us clarify our terminology. Consider the following polynomial equation:11

F ( x, z ) := z n + 1 − xn z
n − 1 − x k − 1 z

n − 2 − . . . − x 2 z − x 1 = 0 , (4.8)

where x
def:= (x 1, x 2, . . . , xn ) ∈ Cn . By ∆ ( x ) we denote the discriminant

of the polynomial Equation (4.8) [18]. By swallow tail we shall designate the
analytical hyper-surface ∆ < ( { 0 } ) . We provide below the most general definition
of the swallow tail which suits our purposes:
Definition 4.5 ([36]). An analytical hyper-surface S in Cn + 1 defined in some
open neighbourhood U 0 is called the swallow tail with the edge 0 ∈ Cn + 1 if
there exists k ∈ N⩾ 1 and k holomorphic functions

g j : U 0 −→ C , g j ( 0 ) = 0 , j ∈ k⊐ ,

such that the differentials { d g j ( 0 ) } k
j = 1 are linearly independent andS is defined

as the locus of the equation
∆
(
g 1 ( x ), g 2 ( x ), . . . , g k ( x )

)
= 0 ,

11We would like to mention that the Galois group of this polynomial equation is the symmetric
group S n + 1 over a finite set of n + 1 symbols, which is the most non-commutative finite
group, in the sense that the centre of Z ( S n ) is trivial ∀ n ⩾ 3 . The point is that if the
underlying Galois group is non-commutative, then the analytical prolongation of the solution
will be non-commutative as well, i.e. the solution value will depend on the order of loops starting
and returning to a given point.
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where, as above, ∆ ( g 1, g 2, . . . , g k ) denotes the discriminant of the following
polynomial equation in z [18]:

z k + 1 − g k z
k − 1 − . . . − g 2 z − g 1 = 0 .

We define the co-normal N (S ) of S to be the closure in T ∗ U 0 \ 0 of the
co-normal N (S reg ) , where S reg is the smooth (regular) part of S , i.e.

S reg
def:=

{
y ∈ C k

∣∣ ∆ ( y ) = 0, d ∆ ( y ) ̸= 0
}
.

It can be also shown that for any polydisc D centered around 0 ∈ C k , D
⋂

S reg
is a connected domain. This property is important from the topological point of
view.

Remark 4.6. Let x 0 ∈ U 0 \ S . Consider a holomorphic germ12 at the point(
g

( 0 )
1 , g

( 0 )
2 , . . . , g

( 0 )
n

)
:=

(
g 1 ( x 0 ), g 2 ( x 0 ), . . . , gn ( x 0 )

)
:(

g 1, g 2, . . . , gn

)
7→ z ( g 1, g 2, . . . , gn ) ,

where z is the solution to the polynomial Equation (4.8). The classical implicit func-
tion theorem ensures the existence of this germ. The germ z ( g 1, g 2, . . . , gn ) is a
holomorphic function ramified around ∆ < ( { 0 } ) and it can be prolonged holomor-
phically along any path starting from the point

(
g 1 ( x 0 ), g 2 ( x 0 ), . . . , gn ( x 0 )

)
and avoiding the swallow tail ∆ < ( { 0 } ) . Then, the germ in x 0 :

x 7→ z
(
g 1 ( x ), g 2 ( x ), . . . , gn ( x )

)
can be prolongated holomorphically along any path starting from x 0 and belonging
to U 0 \ S . These facts are rigorously established in [36, Theorem 3.2]:

Theorem 4.7. Let { z j }n + 1
j = 1 denote the set of solutions to polynomial Equa-

tion (4.8). Then, for ∀ j ∈ (n + 1 )⊐ , the germ z j defined at x 0 can be
holomorphically prolongated along any path starting from x 0 and belonging to
Cn \ ∆ < ( { 0 } ) .

12Consider a point x of a complex topological manifold V . Consider also two maps f, g :
U

(f), (g)
x −→ C defined on some neighbourhoods (not necessarily the same) of the point x ∈ V .

These functions define the same germ (or they belong to the same equivalence class) if there is
an open neighbourhood U ⊆ U

(f)
x

⋂
U

(g)
x such that

f ( u ) = g ( u ) , ∀ u ∈ U .

This fact can be denoted as f ∼ x g and the germ generated by the function f is defined as

[ f ] x
def:= { g : U x −→ C | f ∼ x g } .

The set of germs at a point x can be obviously endowed with the ring structure over the field C .
Here, we discussed the scalar case. The generalization to the vectorial case is straightforward. We
would like to mention that the set of germs does not possess a non-trivial topology. Henceforth,
it makes little sense to speak of the convergence of sequences of germs.
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Proof. See [36, p. 40].

Basically, we came to the point where we may define a group epimorphism from
the fundamental group on the permutation group of simple roots to the algebraic
Equation (4.8):

Theorem 4.8 ([36]). Let D be a polydisc of some positive radius centered around
0 ∈ Cn and γ is a closed path drawn in D \ ∆ < ( {0 } ) starting and ending at
x 0 :

[ 0, 1 ] −→ D \ ∆ < ( {0 } ) ,
t 7→ γ ( t )

such that γ ( 0 ) = γ ( 1 ) ≡ x 0 . By γ · z ( x 0 ) we denote the holomorphic
germ obtained from z ( x 0 ) after the analytical continuation along the loop γ .
The implicit function theorem and the fact that the roots of (4.8) are simple in
D \ ∆ < ( {0 } ) allow us to define the mapping:

Sn + 1 −→ Sn + 1

z ( x 0 ) 7→ γ · z ( x 0 ) ,

where Sn + 1 is the permutation group on n + 1 symbols { z 1, z 2, . . . , zn + 1 } .
Then, the following mapping

π 1
(
D \ ∆ < ( {0 } )

)
−→ Sn + 1 ,

γ 7→
(
z j ( x 0 ) 7→ γ z j ( x 0 )

)
defines the desired group epimorphism.

4.2.1. Uniformization of the local solution

It is known that the Cauchy–Kovalevskaya theory provides only the local
analytic solutions. However, we work in a complex analytic setting where a germ
can be continued along any path, avoiding singularities. Henceforth, the local
solution obtained in the previous Section can be continued analytically along
any path starting in some neighbourhood in origin and avoiding the swallow tail
singularity ∆ < ( { 0 } ) . The analytical continuation theorem ensures that two
solution germs at a point x obtained from two homotopic paths starting at x 0 are
identical. This fundamental theorem of the analytical continuation guarantees that
the uniform solution is well-defined in each homotopy class of paths [14].

We shall use this analytical continuation technique in order to lift the obtained
local solution to the global one on the universal covering. Let us denote the
universal covering13 of X

def:= C 2 \ ∆ < ( { 0 } ) by Y . In the previous Section,
we already mentioned that the fundamental group of X is Br 3 and the Galois

13Let X be a connected topological manifold. We shall say that a topological manifold Y is a
covering of X if there exists a surjection π : X ↠ Y such that ∀ x ∈ X , ∃ U x an open
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group associated to Equation (4.5) is S 3 . It is known from the theory of groups
that there exists a group epimorphism14

χ : Br 3 ↠ S 3 .

It is also a well-known fact that kerχ ⊴ Br 3 is a normal sub-group and
Br 3 / kerχ ∼= S 3 . Moreover, for every γ ∈ kerχ , the monodromy action
of χ ( γ ) fixes each solution z of (4.5). We introduce also an intermediate covering
R

def:= Y / kerχ . It is composed of Y elements orbits by the (sub-)group action
kerχ . It is also the Riemann surface which defines the Galois covering of the
structural automorphisms group (i.e. kerχ). This situation is represented in the
following commutative diagram:

π 1 ( X ) Y

R

X

π

π χ

Hence, the solution germ u on X induces a uniform holomorphic function u ◦πχ

on the intermediate covering R . In a similar way, the solution germ u can be lifted
to the universal covering Y by taking the composition u ◦π . We added a little
illustration of the uniformization process in Figure 2. This completes our short
description of the solution uniformization.

4.3. The contact geometry approach

In this Section, we recover the same swallow tail singularity using the contact
geometry approach. It can also be seen as a holomorphic method of characteristics.

Consider a complex space15

C 5 ≡ C 2 + 2 + 1 def:=
{

( t, x, u, τ, ξ ) ∈ C 5 } ,
together with a holomorphic contact form

ω
def:= du − τ d t − ξ dx ,

neighbourhood with the property that π <
(

{ U x }
)

= ∪i ∈ I V i is open in Y and ∀ i ∈ I the
maps π i : V i −→ U x are diffeomorphisms. A covering is said to be the universal covering
if Y is also simply connected (we also remind that a space is called ‘simply connected’ if any
closed loop is homotopic to a point). The equivalence classes of homotopic paths basically give
universal covering. The term ‘the universal covering’ is not an abuse of the language because all
universal coverings of space are isomorphic to each other.
14An epimorphism is simply a surjection subject to some additional properties.
15We may think of it as a 1-jet space of a complex function ( t, x) 7→ u ( t, x ) .
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Figure 2: Illustration of the solution uniformization on the universal covering Y .

which defines the contact structure on C 5 . Let us also consider a first-order
holomorphic PDE:

F ( t, x, u, u t, u x ) ≡ F ( t, x, u, τ, ξ ) = 0 .

Typically, the practical application we are interested in is given by the inviscid
Burgers Equation (iBE):

F ( t, x, u, τ, ξ ) := τ − u ξ = 0 . (4.9)

It is assumed that the family { dF, ω } is free16 and F is a real smooth function
of its arguments.

The contact field HF is defined by the following condition [2]:

dω ( HF, h ) ≡ dF h , ∀h ∈ ker ω .

In our case, the contact field can be easily computed explicitly [32, Chapter V,
Section §1]:

HF :⇒
(
∂F

∂τ
,
∂F

∂ξ
, τ

∂F

∂τ
+ ξ

∂F

∂ξ
, (4.10)

−
( ∂F
∂t

+ τ
∂F

∂u

)
, −
( ∂F
∂x

+ ξ
∂F

∂u

))
. (4.11)

By ϕ t we denote the flow map along the vector field HF :
d
dt ϕ

t ( z )
∣∣∣

t = 0
= HF ( z ) ,

ϕ 0 ( z ) = z .

16In the contrary case, the contact field HF will be identically equal to zero.
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The integral curves of this flow are called the characteristics. By construction, the
function F is constant along this flow. We can easily check it by direct computation:

d
dt

(
F
(
ϕ t ( z )

) ) (4.10)= Ft Fτ + Fx Fξ + Fu ( τ Fτ + ξFξ )

+ Fτ (−Ft − τ Fu ) + Fξ (−Fx − ξFu ) ≡ 0 .

Obviously, the last identity is the consequence of the fact that

dF ·HF :⇒ dω ( HF, HF ) = 0 .

It is not difficult to check that HF ∈ ker ω .
We recall that the Legendrian sub-variety V in our case is a holomorphic,

possibly singular, integral sub-variety of ker ω of dimension dim V = 2 such that

TV ⊆ ker ω ,
V ⊆ F−1 ( 0 ) .

(4.12)

We shall say that V is the generalized solution in the sense of Lie. We know that
a contact transformation allows obtaining a classical solution locally given by the
function graph. If the canonical projection

π : V −→ C 2 ,

( t, x, u, τ, ξ ) 7→ ( t, x )

is of (maximal) rank 2 , then V is a 1−jet j 1 (u ) of a complex holomorphic function
u , i.e.

V ≡
{

( t, x ) ∈ C 2 ∣∣ ( t, x, u ( t, x ), u t ( t, x ), u x ( t, x )
) }

.

We remind that all considerations in this article are local in the vicinity of ( 0, 0 ) ∈
C 2 . The Legendrian V should be understood in the same sense.

The Legendrian V can be also defined by a generating function [2], i.e.
( τ, x ) 7→ S ( τ, x ) :

V =
{

( τ, x ) ∈ C 2 ∣∣ (−Sτ , τ, S − τSτ , x, Sx

) }
.

It is not difficult to check that conditions (4.12) hold. For example,

d
(
S − τ Sτ

)
− τ d

(
−Sτ

)
− Sx dx = dS − Sτ d τ − Sx dx ≡ 0 .

4.3.1. Application to the iBE

In this case, the first order holomorphic PDE was defined above in Equation (4.9).
In this case, the contact field becomes:

HF :⇒
(

1, −u, τ − u ξ︸ ︷︷ ︸
≡ 0 by (4.9)

, τ ξ, ξ 2 ) . (4.13)



On complex algebraic singularities of nonlinear PDEs 91

Using the iBE (4.9) and Cauchy data (4.2), we may reconstruct the 1−jet of the
function u at t = 0 :

j 1 (u )
⋂
{ t = 0 } ≡

(
0, x, x

1
3 ,

1
3 x− 1

3 ,
1
3 x− 2

3

)
def=: z 0 .

The last point z 0 will be used as an initial condition in finding the flow ϕ s ( z 0 )
(we change the flow parameter t to s , because t is already employed in the iBE).
To simplify computations, we notice also that the third component in HF vanishes
(cf. Equation (4.13)) since F conserves its value along the flow trajectories:

d
dt ϕ

s ( z 0 )
∣∣∣

s = 0
= HF ( z 0 ) ≡

(
1, −u, 0, τ ξ, ξ 2 ) ,

ϕ 0 ( z 0 ) = z 0 .

The flow can be explicitly written in this case:

ϕ s ( z 0 ) ≡
(
t ( s ), x ( s ), u ( s ), τ ( s ), ξ ( s )

)
:=
(
s, x − x

1
3 s, x

1
3 ,

x
1
3

3x
2
3 − s

,
1

3x
2
3 − s

)
.

Hence, u ≡ x
1
3 . We introduce a new variable

y
def:= x − x

1
3 t ≡ u 3 − u t .

In these new variables, the flow becomes:

ϕ s ( z 0 ) ≡
(
t, y, u,

u

3u 2 − t
,

1
3u 2 − t

)
,

with an additional algebraic relation:

u 3 − u t − y = 0 . (4.14)

The singularity occurs when t → 3u 2 . It is not difficult to see that by definition
of variably y, and we have in the limit y → − 2u 3 . After eliminating u , we
obtain an important algebraic relation between t and y on the singularity:

4 t 3 − 27 y 2 = 0 . (4.15)

It corresponds to the swallow tail (cusp) singularity seen above in Section 4.2.
Going back to Equation (4.14), we can write:

u 3 − u t − y = (u − z ) (u 2 + z u − t + z 2 ) , (4.16)
y = z ( z 2 − t ) , (4.17)



92 D. Dutykh and E. Leichtnam

where z is a chosen zero of the polynomial (4.14) of the variable u . The discriminant
of the trinomial u 7−→ u 2 + z u − t + z 2 is equal to 4 t − 3 z 2 . Therefore,
Equation (4.16) (in variable u) has a double root either when 4 t − 3 z 2 = 0 (i.e.
the trinomial has a double root) or when z is also zero of the trinomial, namely
t ≡ 3 z 2 .

Now, we are going to explain schematically how the holomorphic ramification
of the solution (in the complex domain) can explain the appearance of a shock
of the iBE u t − uu x = 0 in the real domain, i.e. ( t, x ) ∈ R 2 . Indeed,
consider two small enough real numbers 0 < x 1 < x 0 . Then, the real solution
R 2 ∋ ( t, x ) 7−→ u ( t, x ) of the real iBE with Cauchy datum u ( 0, x ) = x

1
3

will have a shock at time t 0 > 0 if

x 0 − x
1
3
0 t 0 = x 1 − x

1
3
1 t 0 (4.18)

since, in this case, the solution u will have two different values x
1
3
0 and x

1
3
1 at the

same location ( t 0, x 0 − x
1
3
0 t 0 ) . From Equation (4.18) we deduce

t 0 = x 0 − x 1

x
1
3
0 − x

1
3
1

≡ x
2
3
0 + x

1
3
0 x

1
3
1 + x

2
3
1 .

Therefore, since 0 < x 1 < x 0 , we get the following inequalities:

3x
2
3
1 < t 0 < 3x

2
3
0 .

Now consider the holomorphic germ u ( t, x ) of the solution to the iBE such that

u ( 0, x ) = x
1
3 . First, we consider the line

(
t, y ≡ x 0 − x

1
3
0 t
)
for t ∈ [ 0, t 0 ]

and consider (4.16) with z = x
1
3
0 . Along this line, z = x

1
3
0 will never be a

double root of Equation (4.16) because t 0 < 3x
2
3
0 . Consequently, along this

line, the determination of the solution will not change when we cross the vanishing
locus of the discriminant (4.15) of Equation (4.16). Now, consider the other line(
t, y ≡ x 1 − x

1
3
1 t
)
for t ∈ [ 0, t 0 ] and consider (4.16) with z = x

1
3
1 . Then,

along this line at the time instance t 1 = 3x
2
3
1 we cross the locus (4.15) and

z = x
1
3
1 becomes a double root of Equation (4.16) as explained above. Then,

for t > t 1 ≡ 3x
2
3
1 , the determination of the solution of the inviscid Burgers

Equation (iBE) changes along the remaining part of the line, which will explain
the appearance of a shock wave taking place at time t = t 0 . In Appendix C we
explain this phenomenon on a simpler example. Overall, we may conclude that
holomorphic ramified singularities do not allow us to predict what will happen
after the shock wave appearance in the real solution.
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Remark 4.9. If in Cauchy problem (4.1) we take another ramified initial data

u ( 0, x ) = x
1
5 ,

then direct computations show that the algebraic relation between u , t and y
would be

u 5 − u t − y = 0 .

4.4. Generalizations

A natural multidimensional generalization of the IVP (4.2) for an unknown function

u : C× Cn −→ C ,
( t, x1, x2, . . . , xn ) 7→ u ( t, x1, x2, . . . , xn )

is the following one:

u t − u
(
u x1 + u x2 + . . . + u xn

)
= 0 , (4.19a)

u ( 0, x1, x2, . . . , xn ) = u 0 (x1, x2, . . . , xn ) + x
1
p

1 , (4.19b)

for some holomorphic function u 0 in the vicinity of ( 0, 0, . . . , 0 ) ∈ Cn . The
right-hand side in the multi-dimensional PDE could be a polynomial in variables
t , x and u . In the homogeneous case, it is not difficult to show the following

Theorem 4.10. Consider the IVP (4.19). Then, there exist p germs of holo-
morphic functions a 0 , a 1 , . . . , a p−1 in the vicinity of ( t, x1, x2, . . . , xn ) ≡
( t, x ) := (0, 0, . . . , 0) ∈ Cn+1 along with a holomorphic function ( t, x ) 7→
v ( t, x ) defined in the vicinity of the origin such that u ( t, x ) def:= v ( t, x ) +
z ( t, x ) is the unique solution to (4.19). The function ( t, x ) 7→ z ( t, x ) is
defined as a solution to the following algebraic equation (with t and x being seen
as parameters):

z p = a p−1 ( t, x ) z p−1 + . . . a 1 ( t, x ) z + a 0 ( t, x )

together with ‘initial’ conditions:

a 0 ( 0, x1, x2, . . . , xn ) = x 1 ,

a j ( 0, x1, x2, . . . , xn ) = 0 , j ∈ ( p − 1 )⊐ .

Proof. This can be done by analogy with the proof of Theorem 4.1.

5. A ring of algebraic convergent power series

In the present Section, we glimpse the very rich and complex geometry of the ring17

of formal power series. The goal of this Section is to provide a differential study

17If necessary, this ring can also be considered an algebra over the field of complex numbers C .
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of the algebra O J z K (with z 3 = p z + q). This study will exhibit some of the
tools allowing us to construct the Algorithm of Section 7.1, which will provide a
test of our Conjecture 7.1.

To fix the ideas, let us consider the following ring [51]:
Definition 5.1. We define

O J z K
def:=


+ ∞∑
j = 0

a j ( p, q ) z j

 ,

where the coefficients { a j ( p, q ) } j ∈ N are the germs of analytic functions at the
origin18 ( 0, 0 ) ∈ C 2 and the complex variable z satisfies the algebraic equation
(4.5). The algebra of these germs is denoted by O . We require also that there
exists ∃ ε > 0 (depending on the { a j ( p, q ) } j ∈ N) such that

+ ∞∑
j = 0

sup
| p | < ε
| q | < ε

| a j ( p, q ) | ε j < +∞ .

By applying the Weierstraß division theorem [44], we may show that this
ring is isomorphic to the following reduced form:

O [ z ] def:=
{
a ( p, q ) + b ( p, q ) z + c ( p, q ) z 2 ∣∣ z 3 = p z + q

}
,

for some germs of analytic functions a , b and c . Our goal consists of building some
form of the differential and integral calculus on O J z K (or, in our case, equivalently
on O [ z ]).
Remark 5.2. Notice that we may remove the explicit dependence on variable
q in coefficients a , b and c since according to Equation (4.5), q = z 3 − p z
and the coefficients (a , b , c) may be re-expanded in the second variable q 7→
{ a, b, c } ( p, q ) after the substitution of the new expression for q . Finally, after
collecting all the terms, we obtain the equivalent representation of the ring using
a formal power series:

O [ z ] def:=


+ ∞∑
j = 0

b j ( p ) z j

∣∣∣∣∣∣ z 3 = p z + q

 .

It is not difficult to see that the same remark applies also to the ring O J z K that
we considered from the beginning:

+ ∞∑
j = 0

a j ( p, q ) z j ≡
+ ∞∑
j = 0

b j ( p ) z j .

Namely, we have demonstrated the following

18All germs in this study are implicitly supposed to be defined at the origin ( 0, 0 ) ∈ C 2 .
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Proposition 5.3. Every element
∑+ ∞

j = 0 a j ( p, q ) z j ∈ O J z K may be written
under the form

∑+ ∞
j = 0 b j ( p ) z j for some appropriately chosen holomorphic coeffi-

cients { b j ( p ) }+ ∞
j = 0 .

Now, we start to construct the differential calculus over the rings O J z K and
O [ z ] :

Lemma 5.4. The partial derivatives of the solution z with respect to coefficients
p and q are given by:

∂z

∂p
= z

3 z 2 − p
,

∂z

∂ q
= 1

3 z 2 − p
.

Proof. By taking the differential of Equation (4.5), we obtain:

( 3 z 2 − p ) d z = z dp + dq

or
d z = z

3 z 2 − p
dp + 1

3 z 2 − p
dq .

After identifying the left and right-hand sides, we obtain the required result.

Remark 5.5. Lemma 5.4 (and Section 4.2) shows that the derivatives of a branch
of z ( p, q ) blow up when the point ( p, q ) tends to a point of the discriminant
locus ∆ < ( { 0 } ) .

5.1. Primitivization

For the reasons which will become clearer below, the goal of this Section is to
introduce and study the primitive of the ring O [ z ] with respect to the variable q :

∂ − 1
q O [ z ] def:=

{
a + b z + c z 2 ∈ O [ z ]

∣∣ ∂ q ( a + b z + c z 2 ) ∈ O [ z ]
}
.

The following lemma shows that the derivative ∂ q of an element of O [ z ] belongs
to O [ z ] only under certain conditions:

Lemma 5.6. Let z be a solution to Equation (4.5) and ∆ :⇒ 4 p 3 − 27 q 2 be
its discriminant. Take an element a + b z + c z 2 ∈ O [ z ] . Then,

∂ q ( a + b z + c z 2 ) ∈ O [ z ]

if and only if the discriminant ∆ divides 6 c q − 2 bp and 9 b q − 4 cp 2 .

Proof. Let us show the main steps of computations which yield the required result.
First of all, we differentiate the element a + b z + c z 2 ∈ O [ z ] with respect to
q and we use the result from Lemma 5.4:

∂ q ( a + b z + c z 2 ) = a q + b q z + c q z
2 + b + 2 c z

3 z 2 − p
.
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It is clear that the derivative ∂ q ( a + b z + c z 2 ) ∈ O [ z ] if and only if the last
fraction can be presented as

b + 2 c z
3 z 2 − p

≡ α + β z + γ z 2

for some holomorphic germs α , β and γ . The system of algebraic equations to
determine these germs is obtained from the following obvious relation:

b + 2 c z = (α + β z + γ z 2 ) ( 3 z 2 − p ) .

After expanding the powers of z higher than two using Equation (4.5) and identi-
fying the coefficients in front of z 0 , z 1 and z 2 , we obtain the following system of
equations:

3β q − αp = b ,

3 γ q + 2β p = 2 c ,
3α + 2 γ p = 0 .

Simple algebraic manipulations yield:

α := − 2 p ( 6 c q − 2 b p )
∆ ,

β := 9 b q − 4 c p 2

∆ ,

γ := 3 ( 6 c q − 2 b p )
∆ .

This yields the conclusion of this Lemma.

Similar conditions can be formulated for the derivation with respect to p .
However, it is out of the scope of our study.

The next question we have to discuss is the integral calculus on O [ z ] in the
sense of the operation inverse to the differentiation. Let us focus on the independent
variable19 q and introduce the following

Definition 5.7. An element w ( z ) ∈ O [ z ] is called a primitive of v ( z ) ∈ O [ z ]
if two conditions20 are satisfied:

• ∂ q w = v ,

• w ( 0 ) = 0 .

This fact will be denoted as w = ∂ − 1
q v and, by definition, we have ∂ q ◦ ∂ − 1

q =
1O [ z ] .

19The reason is that the integration only with respect to this variable q can be shown to be
well-defined.
20The second condition is imposed to remove any ambiguity with respect to constant terms.
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To illustrate this definition, we provide one concrete example:

∂ − 1
q z = 3 q z + p z 2

4 .

The last formula can be obtained by specifying Equation (5.1) to z . Otherwise, it
can be checked by a direct verification.21

In the following two Lemmas 5.8 and 5.9, we show that this definition is
meaningful and effective. However, first of all, we make use of the Remark 5.2 and
switch back to the isomorphic ring object O J z K since it is directly used in our
construction presented in Section 7.1:

Lemma 5.8. The primitive ∂ − 1
q v , ∀ v ∈ O J z K is unique.

Proof. In order to show this statement, it is enough to demonstrate that ∂ q w = 0
and w ( 0 ) = 0 imply that w = 0 ∈ O J z K . Indeed, from the second condition,
we conclude that

w =
∞∑

j = 1
c j ( p ) z j

for some germs { c j ( p ) }∞
j = 1 . Let us compute its derivative (which exists because

w is a primitive):

∂ q w =
∞∑

j = 1
j c j ( p ) z j − 1

3 z 2 − p
= 0 .

We multiply both sides of the last equality by 3 z 2 − p :
∞∑

j = 1
j c j ( p ) z j − 1 = 0 .

By using the unicity theorem for power series, we conclude that

c j ( p ) ≡ 0 , ∀ j ⩾ 1 .

Lemma 5.9. Let
∑∞

j = 0 a j ( p ) z j ∈ O J z K . Then, the primitive ∂ − 1
q of this

element with respect to q belongs also to O J z K and can be explicitly computed (see
Equation (5.1)).

21Indeed, the following sequence of equalities holds:

∂ q ◦ ∂ − 1
q z = ∂ q

( 3 q z + p z 2

4

)
= 1

4

( 2 p z

3 z 2 − p
+ 3 z + 3 q

3 z 2 − p

)
= 9 z 3 − p z + 3 q

4 (3 z 2 − p)
= 9 z 3 − p z + 3 ( z 3 − p z )

4 (3 z 2 − p)

= 12 z 3 − 4 p z

4 (3 z 2 − p)
= 4 z ( 3 z 2 − p )

4 (3 z 2 − p)
≡ z .
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Proof. The proof is constructive. Let us assume that there exists another element∑∞
j = 0 b j ( p ) z j ∈ O J z K such that

∂ q

( ∞∑
j = 0

b j ( p ) z j

)
=

∞∑
j = 0

a j ( p ) z j

and we shall construct it. By interchanging the summation and derivation operators,
and using Lemma 5.4, we obtain:

∞∑
j = 1

b j ( p ) j z j − 1

3 z 2 − p
=

∞∑
j = 0

a j ( p ) z j .

By multiplying both sides by 3 z 2 − p and rearranging the terms, we obtain:
∞∑

j = 0
( j + 1 ) b j + 1 ( p ) z j =

∞∑
j = 0

(
3 a j − 2 − p a j ( p )

)
z j ,

where we assume the following convention a− 1 ≡ a− 2
def:= 0 . It can be readily

deduced that

b j + 1 ( p ) := 1
j + 1

(
− p a j ( p ) + 3 a j − 2 ( p )

)
, ∀ j ∈ N .

Henceforth, we obtain the required result:

∂ − 1
q

( ∞∑
j = 0

a j ( p ) z j

)
=

∞∑
j = 1

1
j

(
− p a j − 1 ( p ) + 3 a j − 3 ( p )

)
z j

︸ ︷︷ ︸
def=: w ∈ O J z K

. (5.1)

Once we constructed the primitive given in the right-hand side of the above equa-
tion, it is not difficult to check by the direct calculation that we have found the
desired element in O J z K :

∂ q w :⇒ ∂ q

( ∞∑
j = 1

1
j

(
− p a j − 1 ( p ) + 3 a j − 3 ( p )

)
z j

)
=

∞∑
j = 0

a j ( p ) z j .

This is left to the reader as a simple exercise22. The found primitive w in Equa-

22For the sake of completeness of our manuscript, we provide here this simple computation:

∂ q w =
∞∑

j = 1

1
j

(
3 a j − 3 − p a j − 1

) j z j − 1

3 z 2 − p
=

∞∑
j = 1

(
3 a j − 3 − p a j − 1

) z j − 1

3 z 2 − p

= 1
3 z 2 − p

(
3

∞∑
j = 1

a j − 3 z j − 1 − p

∞∑
j = 1

a j − 1 z j − 1
)

= 1
3 z 2 − p

(
3 z 2

∞∑
j = 0

a j z j − p

∞∑
j = 0

a j z j
)

≡
∞∑

j = 0

a j z j .
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tion (5.1) satisfies also obviously the second condition w ( 0 ) = 0 .

It is worthwhile to observe that one cannot define the primitive with respect
to the other independent variable p . It is due, in particular, to the non-uniqueness
as it follows from this simple example (employing again Lemma 5.4):

∂p q ≡ ∂p ( z 3 − p z ) = 3 z 2 z

3 z 2 − p
− z − p

z

3 z 2 − p
≡ 0 = ∂p 0 .

Hence, we just showed the following

Proposition 5.10. Let w ∈ O J z K . Then, two conditions

• ∂p w ≡ 0 ,

• w ( 0 ) = 0

do not necessarily imply that w ≡ 0 .

Proof. See above.

A conceptual explanation of the non-existence of the primitive ∂ − 1
p will be

given at the very end of Section 6.
The primitive with respect to q has another good property that deserves to be

mentioned here: p−differentiable in the ring O J z K . The following computation
demonstrates this property and gives explicitly the formula for the p−derivative:

∂p ◦ ∂ − 1
q

( ∞∑
j = 0

a j z
j

)
= ∂p

( ∞∑
j = 1

1
j

(
3 a j − 3 − p a j − 1

)
z j

)

=
∞∑

j = 1

1
j

(
3 a ′

j − 3 − p a ′
j − 1 − a j − 1

)
z j

︸ ︷︷ ︸
( ∗ )

+
∞∑

j = 1

z j

3z 2 − p
(

3 a j − 3 − p a j − 1
)

︸ ︷︷ ︸
( ∗ ∗ )

,

where by prime (·) ′ we denote the derivative with respect to p . The first term ( ∗ )
is regular and belongs to O J z K . The second term ( ∗ ∗ ) can be further transformed
to the regular form:

( ∗ ∗ ) :⇒
∞∑

j = 1

z j

3 z 2 − p

(
3 a j − 3 − p a j − 1

)
= 1

3 z 2 − p

(
3

∞∑
j = 0

a j z
j + 3 − p

∞∑
j = 0

a j z
j + 1

)

= z

3 z 2 − p

(
3 z 2

∞∑
j = 0

a j z
j − p

∞∑
j = 0

a j z
j

)
≡ z

∞∑
j = 0

a j z
j .
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Hence, to summarize, we just demonstrated the following result:

∂p ◦ ∂ − 1
q

( ∞∑
j = 0

a j z
j

)
=

∞∑
j = 1

1
j

(
3 a ′

j − 3 − p a ′
j − 1 − a j − 1

)
z j + z

∞∑
j = 0

a j z
j .

More generally, one can similarly show that

Proposition 5.11. Let u = ∂ − k
q v for some element v ∈ O J z K and k ∈ N.

Then, ∂ α
p ◦ ∂ β

q u ∈ O J z K provided that α + β ⩽ k .

6. Holonomic coherent D−modules

In this Section we perform the explicit construction of a coherent23 holonomic24

D−module whose geometry is underlying our solution strategy of Conjecture 7.1.
The goal is to study the singularities of the obtained solution. More precisely, we
show that the vector25 ( z, z 2 ) ⊤ is a solution of a holonomic D−module whose
characteristic variety V is included into the union of the zero section and of the
co-normal to the swallow tail. In the case of a smooth hyper-surface defined by
x = 0 , the multivalued function x 1

3 is a solution of the equation

xu x −
u

3 = 0 .

So, morally, the “micro-local” singularities of x 1
3 live in the co-normal of x = 0

and this property is one of the ingredients of the proof of Theorem 2.8. Therefore,
in order to understand the Conjecture 7.1, it is important to work out the analogue
of this property in the case of z satisfying z 3 = p z + q . This is the goal of this
section.

23We remind that a D−module M is said to be coherent if for any m ∈ N× and any D−module
homomorphism

D m def:= D × D × · · · × D︸ ︷︷ ︸
m times

−→ M

has a kernel which is locally a D−module of finite type.
24As a reminder, a coherent D−module is said to be holonomic if its characteristic variety V is
Lagrangian. In other words, in every regular point x ∈ V , we have

T x V = ( T x V ) ⊤ ,

where the orthogonal complement (·) ⊤ is taken in the sense of the natural symplectic structure
on the co-tangent bundle T ∗ V . We remind that in general one has only the involution property
of the characteristic variety [15]:

( T x V ) ⊤ ⊆ T x V .

This is a symplectic geometry view on the involutivity. More algebraic points of view are also
possible, see e.g. [15, 50].
25After some simplification, the solution ansatz we consider looks like a + b z + c z 2 . So,
one could be inclined to consider instead the vector ( 1, z, z 2 ) ⊤ . However, the first component
is completely regular, and since we are interested in singularities, we retain only the two last
components.



On complex algebraic singularities of nonlinear PDEs 101

So, we consider the algebraic Equation (4.5) whose discriminant ∆ is given by

∆ :⇒ 4 p 3 − 27 q 2 .

The co-normal26 N to S
def:= ∆ < ( { 0 } ) can be easily computed:

N (S ) :⇒ N (S reg ) =
{

( 3 z 2, − 2 z 3, z λ, λ )
∣∣ ( z, λ ) ∈ C 2 } ⊆ T ∗ C 2 ,

(6.1)
where we use the following coördinates to parametrize the co-tangent bundle:

T ∗ C 2 ≡ { ( p, q, ξ 1, ξ 2 ) } ∼= C 4 .

In the sequel, the co-normal N (S ) will be always understood as the closure
N (S reg ) according to its definition.

Remark 6.1. The fact that the co-normal N (S ) to the swallow tail contains only
one complex direction27 above the origin is absolutely crucial in our study).

Lemma 6.2. Let us define the following polynomials on the co-tangent bundle
T ∗ C 2 :

P 1 ( p, q; ξ 1, ξ 2 ) def:= p

3 ξ
2
2 − ξ2

1 , m 1
def:= deg (P 1 ) = 2 , (6.2a)

P 2 ( p, q; ξ 1, ξ 2 ) def:= q

2 ξ
3
2 + ξ3

1 , m 2
def:= deg (P 2 ) = 3 , (6.2b)

P 3 ( p, q; ξ 1, ξ 2 ) def:= ( 4 p 3 − 27 q 2 ) ξ2
1 , m 3

def:= deg (P 3 ) = 2 , (6.2c)

whose respective degrees in variables ( ξ 1, ξ 2 ) are denoted by m k , j ∈ 3⊐ . Then,

3⋂
j = 1

P <
j ( { 0 } ) = N (S )

⋃
{ ( p, q, 0, 0 ) } ⊆ T ∗ C 2 .

Proof. Due to the continuity of polynomial functions, it is enough to check the
statement on the regular part of the co-normal N (S ) . First, let us prove the
inclusion ⊆ . So, consider a point

( p, q; ξ 1, ξ 2 ) ∈
3⋂

j = 1
P <

j ( { 0 } ) .

Observe that if ξ 2 = 0 , then P 1 ( p, q; ξ 1, ξ 2 ) = 0 implies that ξ 1 = 0 .
Consequently, the point ( p, q; ξ 1, ξ 2 ) belongs to the zero section. If we assume
now that 4 p 3 − 27 q 2 ̸= 0 , then P 3 ( p, q; ξ 1, ξ 2 ) = 0 implies ξ 1 = 0 . We draw
similarly the conclusion that the point ( p, q; ξ 1, ξ 2 ) belongs to the zero section

26Informally speaking, the co-normal N (S ) plays the rôle of the characteristic variety for the
quasi-linear operator (7.1a) defined below.
27It would be more accurate to speak about a line, of course. In the real case the singular
directions are ( 0, ± 1 ) , which lie along the same line.
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again. Now assume that ξ 2 ̸= 0 and 4 p 3 − 27 q 2 = 0 . Then, there exists z ∈ C
such that ( p, q ) ≡ ( 3 z 2, −2 z 3 ) . If z = 0 , then from P 1 ( p, q; ξ 1, ξ 2 ) = 0
we deduce that ξ 1 = 0 and ( 0, 0; 0, ξ 2 ) belongs to N (S ) as desired. If z ≠ 0 ,
then we can deduce from the equalities P 1, 2 ( p, q; ξ 1, ξ 2 ) = 0 :

ξ 1 = ξ3
1
ξ2

1
=
− q

2 ξ
3
2

p
3 ξ

2
2

= z ξ 2 .

This proves the inclusion. Now let us prove the reverse inclusion ⊇ . The zero
section is clearly included in ∩3

j = 1 P
<
j ( { 0 } ) .

So, let us consider instead ( 3 z 2, − 2 z 3, z λ, λ ) ∈ N (S ) . Then, an easy
computation shows that

P j

(
3 z 2, − 2 z 3, z λ, λ

)
≡ 0 , ∀ j ∈ 3⊐ .

This proves the Lemma.

Theorem 6.3. There exists an open polydisc D centered around 0 ∈ C 2 such
that ∀ k ∈ 3⊐ and ∀ ( i, j ) ∈ 2⊐ × 2⊐ we can find a differential operator R k

i j

with holomorphic coefficients on D such that:

1. The operator R k
i j , ∀ ( i ̸= j ) is of the order m k − 1 at most.

2. The differential operator R k
i i is of the order m k and admits the polynomial

P k ( p, q; ξ 1, ξ 2 ) as its principal symbol.

3. The following identity holds:

(
R k

1 1 R k
1 2

R k
2 1 R k

2 2

)
·

(
z

z 2

)
≡

(
0
0

)
.

Proof. This theorem can be proved along the same lines as [36, Theorem 4.37].

6.1. The holonomic D−module construction

The holonomic D−module M will be constructed in the proof of the following
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Theorem 6.4. The characteristic variety28 V of M is included in

3⋂
j = 1

P <
j ( { 0 } ) ≡ N (S )

⋃
{ ( p, q, 0, 0 ) }

and

1. The D− module M is holonomic.

2. The vector ( z, z 2 ) defines a holomorphic solution to M on every simply
connected open subset of C 2 \ ∆ < ( { 0 } ) .

Proof. We denote by D (respectively by D ( j )) the sheaf of holomorphic differential
operators (of the order not greater than j , respectively) on the polydisc D . The
grading of D is defined as

gr D
def:=

+ ∞⊕
j = −1

D ( j + 1 )

D ( j ) , D ( − 1 ) ≡ { 0 } .

Algebraically speaking, this object is isomorphic to the polynomial algebra O[ξ1, ξ2].
We consider a D−module morphism ϕ defined as:

ϕ : D 6 −→ D 2

(Q k
ℓ ) k ∈ 3 ⊐

ℓ ∈ 2 ⊐

7→
∑

k ∈ 3 ⊐

ℓ ∈ 2 ⊐

(
Q k

ℓ R
k
ℓ, 1, Q

k
ℓ R

k
ℓ, 2
)
.

We are particularly interested in the co-kernel of this morphism:

M
def:= coker ϕ :⇒ codom ϕ /ϕ> ( {dom ϕ } ) ≡ D 2 / ϕ> ( {D 6 } )

along with the canonical projection

π : D 2 −→ M .

28It might be useful to say a few words about the characteristic variety of a D−module in case a
reader is not familiar with this notion. The annihilator of M is defined as

Ann M
def:= { P ∈ gr D | P · m = 0 , ∀ m ∈ gr M } .

It is an ideal in gr D . However, this ideal generally depends on the choice of a good filtration.
So, one has to consider instead its radical:

√
Ann M

def:=
{

P ∈ gr D
∣∣ P k ∈ Ann M for some ∃ k ∈ N

}
.

It can be shown that the object
√

Ann M does not depend on the filtration. The set of common
zeros of

√
Ann M is referred to as the characteristic variety V of M :

V
(√

Ann M
) def:=

{
( x 0, ξ̄ 0 )

∣∣ P ( x 0, ξ̄ 0 ) ≡ 0 , ∀ P ∈
√

Ann M
}

.
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We stress out that M is a D−module by construction. Theorem 6.3 allows us to
define a D−module sheaf homomorphism by the formula:

M −→ O [ z ]
( A , B ) 7→ A z + B z 2 ,

where the right-hand side is a ramified solution existing on D \ ∆ < ( { 0 } ) defined
by the pair ( z, z 2 ) . Then part (2) of the Theorem follows from Theorem 4.7. We
introduce also a good29 filtration {M j } j ∈ Z⩾ − 1

on M in the following way [42]:

M− 1
def:= { 0 } , M j

def:= π (D ( j ), D ( j ) ) ∀ j ⩾ 0 , M ≡
+∞⋃

j = −1
M j .

Consider k ∈ 3⊐ and ( A , B ) ∈ M j + 1 with j ⩾ − 1 . The grading of M is

gr M
def:=

+ ∞⊕
j = −1

M ( j + 1 )

M ( j ) .

The action of D on M induces the action of gr D on gr M in the obvious way. In
Mk + 1 + m k

/Mk + m k
we have:

P k · ( A , B ) = A · (R k
1, 1, R

k
1, 2 ) + B · (R k

2, 1, R
k
2, 2 ) = 0 .

Hence, the multiplication of Mk + 1 /Mk by P k induces a zero mapping into
Mk + 1 + m k

/Mk + m k
.

The characteristic variety ofM minus the zero section { ( p, q, 0, 0 ) } is included
into a Lagrangian sub-variety of T ∗C 2 \ { ( p, q, 0, 0 ) } , so M is holonomic.
This completes the proof of the Theorem.

Of course, a couple of holomorphic ramified functions ( z, z 2 ) does not define
a (uniform) distribution, but morally, Theorem 6.4 means that the “micro-local
singularities” of ( z, z 2 ) live in the co-normal to the swallow tail N (S ) .

29A filtration of M is an increasing sequence of sub-modules {M j } j ∈ Z⩾ − 1
of M verifying two

properties:
• M ≡

⋃+∞
j = −1 M j .

• D ( k ) · M j ⊆ M j + k , ∀ ( k, j ) ∈ N 2 .
We say that a filtration {M j } j ∈ Z⩾ − 1

on M is good if M j is coherent ∀ j ∈ Z⩾ − 1 and
there exists ∃ k 0 ∈ Z⩾ − 1 such that ∀ k ⩾ k 0 :

D ( k ) · M j = M k + j .

We remind that, in general, one only has a weaker property:

D ( k ) · M j ⊆ M k + j .
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We reiterate the important fact there exists only one direction30 in N (S ) above
( 0, 0 ) ∈ C 2 , namely ( 0, λ ) , λ ∈ C . The principal symbol of ∂ q (respectively,
∂ p) does not vanish (respectively, vanishes) on { ( 0, 0; 0, λ ) | λ ∈ C× } . This
explains why the primitive ∂ − 1

q exists on O J z K whereas ∂ − 1
p does not exist as we

saw above in Section 5. Lastly, Theorem 6.4 shows morally that the singularities
of the product z · z do not spread over the origin and remain confined in N (S ) .

6.2. A computational digression

Let P i and P j (i, j ∈ 3⊐) be any two polynomials from Lemma 6.2. Theorem 6.4
shows that the characteristic variety V is contained in

V ⊆ P <
i ( { 0 } ) , V ⊆ P <

j ( { 0 } ) .

Hence, T x V ⊆ ker dP i, j ( x ) , where x ∈ V is a smooth point of the character-
istic variety V . Then, if ω def:=

∑2
k = 1 dx k ∧ dξ k denotes the standard symplectic

2−form on T x V , then ∀h ∈ T x V :

dP i, j ( x ) · h ≡ ω
(
HP i, j ( x ), h

)
= 0 , (6.3)

where HP i, j
is the following vector field:

HP i, j

def:=
2∑

k = 1

( ∂P i, j

∂ξ k

∂

∂x k
− ∂P i, j

∂x k

∂

∂ξ k

)
.

The second equality in (6.3) shows thatHP i, j
( x ) ∈

(
T x V

)⊥ , where the orthog-
onal complement is taken in the sense of the natural symplectic structure on the
(co-)tangent bundle T ∗ V . Due to the involutivity31 property of the characteristic
variety V [15], we have that (

T x V
)⊥ ⊆ T x V .

Henceforth, HP i, j ( x ) ∈ T x V . Consequently, we obtain the following result:

ω
(
HP i

( x ), HP j
( x )

)
≡ {P i , P j } ( x ) = 0 ,

where the Poisson bracket operator definition is implied by the symplectic struc-
ture:

{P , Q } def:=
2∑

k = 1

( ∂P
∂ξ k

∂Q

∂x k
− ∂P

∂x k

∂Q

∂ξ k

)
.

Since x is a smooth point of V , Theorem 6.4 allows to show that
⋂3

j = 1 P
<
j ( { 0 } )

and V coincide in a small neighbourhood of x . Then, by Hilbert Nullstellensatz

30It would be more accurate to speak about a line, of course. In the real case the singular
directions are ( 0, ± 1 ) , which lie along the same (complex) line.
31We remind that if the characteristic variety V is Lagrangian, then one has an even stronger
property

(
T x V

)⊥ = T x V .
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and Theorem 6.4, one deduces that the Poisson brackets {P i , P j } (i, j ∈ 3⊐)
must belong at least to the radical ideal

√
I , where I

def:= ⟨P 1, P 2, P 3 ⟩ . We are
going to check this property using modern computer algebra methods which are
deeply based on the Gröbner bases methods [48].

First of all, let us initialize and load the library to work with polynomial ideals:

r e s t a r t :
with ( Po lynomia l Idea l s ) :

Then, we define the polynomials from Lemma 6.2:

P [ 1 ] := (p , q , r , s ) −> 1/3∗p∗ s ^2 − r ^2 ;
P [ 2 ] := (p , q , r , s ) −> 1/2∗q∗ s ^3 + r ^3;
P [ 3 ] := (p , q , r , s ) −> (4∗p^3 − 27∗q^2)∗ r ^2 ;

along with the procedure which allows to compute the Poisson bracket of two
smooth functions:

PBracket := proc (P,Q)
description " Returns␣ the ␣Poisson ␣ bracket ␣ o f ␣two␣

func t i on s ␣P␣and␣Q" ;
return s imp l i f y ( d i f f (P(p , q , r , s ) , r ) ∗ d i f f (Q(p , q , r ,

s ) , p ) − d i f f (P(p , q , r , s ) , p ) ∗ d i f f (Q(p , q , r , s ) ,
r ) + d i f f (P(p , q , r , s ) , s ) ∗ d i f f (Q(p , q , r , s ) , q )
− d i f f (P(p , q , r , s ) , q ) ∗ d i f f (Q(p , q , r , s ) , s ) ) ;

end proc ;

Then, we define the polynomial ideal I:

I := Polynomia l Idea l (P [ 1 ] ( p , q , r , s ) , P [ 2 ] ( p , q , r , s ) ,
P [ 3 ] ( p , q , r , s ) ) ;

and check whether the ideal I is radical:

I sRad i ca l ( I ) ;

The last function returns the logical value false. Henceforth, we construct its
radical:

RI := Radica l ( I ) ;

We have to compute also the corresponding pairwise Poisson brackets of polyno-
mials P 1, 2, 3 :

P12 := (p , q , r , s ) −> PBracket (P [ 1 ] , P [ 2 ] ) ;
P13 := (p , q , r , s ) −> PBracket (P [ 1 ] , P [ 3 ] ) ;
P23 := (p , q , r , s ) −> PBracket (P [ 2 ] , P [ 3 ] ) ;

Finally, we can check whether the Poisson brackets belong to the radical ideal√
I :
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IdealMembership (P12(p , q , r , s ) , RI ) ;
IdealMembership (P13(p , q , r , s ) , RI ) ;
IdealMembership (P23(p , q , r , s ) , RI ) ;

All these functions return the value true. This motivates us to establish an even
stronger result comparing to Theorem 6.4.

It is also interesting to note that {P 1 , P 2 } and {P 2 , P 3 } belong even to the
ideal I . However, it is not the case for {P 1 , P 3 } . These facts can be simply
checked as follows:

IdealMembership (P12(p , q , r , s ) , I ) ;
IdealMembership (P23(p , q , r , s ) , I ) ;
IdealMembership (P13(p , q , r , s ) , I ) ;

The first two calls return true while the last one returns the value false. However,
it is not difficult to check that {P 1 , P 3 } 2 already belongs to I :

IdealMembership (P13(p , q , r , s ) ^2 , I ) ;

which returns the value true.

6.3. A stronger result

In fact, we were able to prove a stronger result compared to Theorem 6.4. One
actually has the equality in Theorem 6.4:

Theorem 6.5. Under conditions of Theorem 6.4, one has

V \ { ( p, q, 0, 0 ) } = N (S ) \ { ( p, q, 0, 0 ) } ,

where { ( p, q, 0, 0 ) } refers to the zero section.

Proof. In Theorem 6.4 we already established the inclusion V \ { ( p, q, 0, 0 ) } ⊆
N (S ) \ { ( p, q, 0, 0 ) } and from it we deduce that M is holonomic. Let

π : T ∗C 2 −→ C 2

( x, ξ̄ ) 7→ x

denote the standard projection. We shall prove our statement by contradiction. So,
let us assume that N (S ) \ { ( p, q, 0, 0 ) } is not included in V \ { ( p, q, 0, 0 ) }
and let us deduce a contradiction. Consider a point(

p 0, q 0; ξ 0
1 , ξ

0
2
)
∈ N (S ) \

(
V ∪ { ( p, q, 0, 0 ) }

)
.

By homogeneity, for any µ ∈ C× , the point
(
p 0, q 0; µ ξ 0

1 , µ ξ
0
2
)
does not be-

long to V . Since π− 1 { ( p 0, q 0 ) } ∩ N (S ) is a complex line and since V \
{ ( p, q, 0, 0 ) } ⊆ N (S ) \ { ( p, q, 0, 0 ) } , we immediately deduce that ( p 0, q 0 ) ̸∈
π
(

V \ { ( p, q, 0, 0 ) }
)
. Now recall that the characteristic variety minus the zero
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section is (always) a homogeneous closed subset of T ∗ C 2 \ { ( p, q, 0, 0 ) } . There-
fore, there exists an open neighbourhood U ( 0 ) of ( p 0, q 0 ) ∈ C 2 such that

π
(

V \ { ( p, q, 0, 0 ) }
) ⋂

U ( 0 ) = ∅ .

Consider now a Whitney stratification of C 2 :

C 2 =
⋃

λ ∈ Λ
X λ

such that V ⊆
⋃

λ ∈ Λ N ∗X λ , where X λ are smooth (open) sub-manifolds and
N ∗X λ denotes the co-normal bundle to X λ . Recall also that {X λ }λ ∈ Λ form a
partition of C 2 . Since π

(
V \ { ( p, q, 0, 0 ) }

)
∩ U ( 0 ) = ∅ , we can assume that

( p, q, 0, 0 ) ∈ X λ 0 , where X λ 0 is an open subset of C 2 so that its co-normal is
the zero section. Then, consider an open simply connected neighbourhood U ( λ 0 )

of ( p 0, q 0 ) which is included in X λ 0 . Consider also an open simply connected
subset W ( λ 0 ) included in U ( λ 0 ) \ ∆ < ( { 0 } ) . Now we can apply to M the first
theorem of Kashiwara [25, Theorem 3.1] (see also a brief reminder below). It
states, in particular, that the restriction of

Ext 0
D (M, O ) ≡ HomD (M, O )

to X λ 0 is a local system. Since by Theorem 6.4, the vector ( z, z 2 ) is a holomorphic
solution of M on W ( λ 0 ) , Kashiwara’s theorem implies that one can analytically
continue ( z, z 2 ) to W ( λ 0 ) . But this is impossible because if we make the analytic
continuation of ∂ q z = 1

3 z 2 − p
along a path which ends up at ( p 0, q 0 ) , it will

blow up. This contradiction, therefore, shows that the reverse inclusion is satisfied,
and this Theorem is proved.

For the sake of the exposition completeness, we formulate the following funda-
mental result of M. Kashiwara on which our Theorem 6.5 is based:

Theorem 6.6 ([25]). Let M by a maximally overdetermined system on a complex
manifold X and X =

⋃
X α be a stratification of X satisfying the regularity

conditions of H. Whitney such that the singular support of M is contained in
the union of co-normal projective bundles of the strata. Then, the restriction of
Ext i

D X
(M, OX ) to each stratum is a locally constant sheaf of finite rank.

In the Theorem above, the following notations were used:

DX The sheaf of differential operators of finite order on the complex manifold X .

OX The sheaf of holomorphic functions on X , which is a left coherentDX−module.

M The coherent DX−module.

Ext The right derived functor of the hom-functor.
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7. Second order PDE

In this section, we study the next representative of the PDE family (3.1) with
m = 2 . Typically, we would like to develop the methods which would allow us to
study the following ramified CP32 for a genuinely nonlinear second order PDE:

u t t − u x u x x = 0 , (7.1a)

u ( 0, x ) =
N 0∑

j = 1
c j x

1 + j − 1
3 , (7.1b)

with N 0 ∈ N> 2 , c 1, 2 ∈ C× and { c j }N 0
j = 3 ⊆ C some constants. Namely, we

would like to provide sufficient evidence that the following conjecture holds. This
is the main goal of this section:

Conjecture 7.1. Consider the ramified IVP (7.1). Then, for each choice of a root
to the algebraic equation33 τ 2 − u x ( 0, 0 ) ·12 = 0 (where we put ξ ← 1 ̸= 0 by
homogeneity of the principal symbol), there exist holomorphic functions p ( t, x ) ,
q ( t, x ) and { a j ( t, x ) } 2

j = 0 defined in a neighbourhood of ( 0, 0 ) ∈ C 2 with

p ( 0, x ) = 0 , q ( 0, x ) = x

such that the following assertion holds: the problem (7.1) admits a local solution
of the form:

u ( t, x ) = ∂ −1
q

( 2∑
j = 0

a j ( t, x ) z j

)
, (7.2)

where z ( t, x ) satisfies the following algebraic equation:

z 3 = p ( t, x ) z + q ( t, x ) .

Proof. Open problem.

Remark 7.2. Please notice that the second order ramified IVP (7.1) contains
only one Cauchy data. To compensate this fact, we impose a special form (i.e.
ansatz) for the solution that we are seeking. The condition c 1 ̸= 0 is necessary in
order to ensure that the equation τ 2 − u x ( 0, 0 ) · 12 = 0 has two distinct roots.
The condition c 2 ̸= 0 means that the Cauchy datum is sufficiently singular. It
is crucial to ensure that the matrix M defined in Equation (7.11) in the eikonal
Equation (7.10) is invertible. Actually, the Theorem 2.5 from Section 2.1 shows
that if the constant c 2 is equal to zero, then the solution will be ramified around
a smooth hyper-surface.

32We underline the fact that the term Cauchy problem (CP) is understood here in the incomplete
(or loose) sense specified in the Introduction Section 1 since our Cauchy datum contains only
one initial condition for a second order problem in time (7.1a).
33We have to assume that u x ( 0, 0 ) ̸= 0 in order to have two distinct roots.
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The choice of a root in the algebraic equation will allow fixing the value of
q t ( 0, 0 ) . Then, it is very likely that the solution under the form (7.2) will be
unique. Notice that the functions p ( t, x ) and q ( t, x ) will depend on the Cauchy
datum.

Despite the fact that we do not have proof for this conjecture, we shall present
in this Section strong evidence that it is true. Our symbolic–numeric computations
will be performed in the case of c 1 = 1 and c 2 = 3

4 for the sake of convenience.
In the sequel, we shall rather write the solution ansatz without applying the

Weierstraß division theorem [44], i.e.
2∑

j = 0
a j ( t, x ) z j ≡

∞∑
k = 0

b k ( t, x ) z k .

Despite the apparent complication, expressing the iterative process in this way will
be easier.

7.1. Construction of iterations

Motivated by Lemma 5.8 and Theorem 6.5, we extract from the PDE (7.1a) the
following characteristic equation:

q t ( 0, 0 ) 2 − u x ( 0, 0 ) q x ( 0, 0 ) = 0 .

Observe that q x ( 0, 0 ) = 1 and that the choice c 1 = 1 necessarily implies
u x ( 0, 0 ) = 1 . Then, in the previous equation, we shall choose the root
q t ( 0, 0 ) = 1 for the rest of this section.

The approach we adopt in this section is greatly inspired by Sections 5 and 6.
We would like to construct a solution to Equation (7.1a) in the following form,
motivated by Lemma 5.9:

u ( t, x ) =
∞∑

k = 1

1
k

(
− p ( t, x ) b k−1 ( t, x ) + 3 b k−3 ( t, x )

)
z k ∈ O J z K , (7.3)

where p ( t, x ) , q ( t, x ) and { b k ( t, x ) }∞
k = 0 are holomorphic functions of its two

variables ( t, x ) ∈ C 2 defined in the vicinity U ( 0, 0 ) of ( 0, 0 ) ∈ C 2 that verify
the following ‘initial’ conditions:

p ( 0, x ) ≡ 0 , q ( 0, x ) ≡ x , q t ( 0, 0 ) = 1 , (7.4a)

b 0 ( 0, x ) ≡ 1 , b 1 ( 0, x ) ≡ 1 , b k ( 0, x ) ≡ 0 , ∀ k ⩾ 2 , (7.4b)
and

z 3 = p z + q , ∀ ( t, x ) ∈ U ( 0, 0 ) ⊆ C 2 .

The ‘initial’ conditions (7.4) correspond to the Cauchy datum (7.1b) with c 1 = 1
and c 2 = 3

4 :

u ( 0, x ) = x + 3
4 x

4
3 . (7.5)
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Several other initial conditions will be considered below in Section 8.
It seems impossible to construct directly such a solution u ( t, x ) having a

property that the series (7.3) is convergent ∀ ( t, x ) ∈ U ( 0, 0 ) . Instead, we
propose to construct this solution u ( t, x ) using the fixed point iterative scheme.

Using the ansatz (7.3) and this scheme, we shall see that the solution is com-
pletely determined if we have the following collection of holomorphic functions:

C
def:=

(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

) ⋂
(7.4) . (7.6)

By construction, the functions from this collection C verify the ‘initial conditions’
(7.4). Thus, if we know these functions, we can easily recover the solution u ( t, x )
thanks to (7.3). Hence, the collection (7.6) will be called the solution data.

Now, we will give several computations in order to understand this situation
better. First, one has:

z t

(
p ( t, x ), q ( t, x )

)
= z p t + q t

3 z 2 − p
.

Next, for u ( t, x ) as defined in Equation (7.3), one checks that

u t =
∞∑

k = 0

((
1 − 1

k

)
b k−1 p t + b k q t + 1

k

(
3 b k−3, t − p b k−1, t

))
z k ,

where by convention b j ≡ 0 for j < 0 , so the terms proportional to 1
k

with
k = 0 are absent from the sum above. One can easily obtain a similar formula
for u x . Next, after a lengthy computation, one gets:

u t t =
∞∑

k = 0

(
2
(

1 − 1
k

)
p t b k −1, t

)
+
(

1 − 1
k

)
b k −1 p

2
t + b k q t t +

2 q t b k, t + 1
k

(
3 b k −3, t t − p b k −1, t t

))
z k +

1
3 z 2 − p

∞∑
k = 0

(
( k − 1 ) p 2

t b k −1 + 2 k b k p t q t + (k + 1) q 2
t b k +1

)
z k .

Naturally, a similar formula holds for u x x as well. Then, one checks that the
coefficient of 1

3 z 2 − p
in u t t − u x u x x is equal to

∞∑
k = 0

(
( k − 1 ) p 2

t b k −1 + 2 k b k p t q t + ( k + 1 ) q 2
t b k +1

−
k∑

j = 0

[ (
1 − 1

j

)
b j −1 p x + b j q x + 1

j

(
3 b j −3, x − p b j −1, x

) ]
·

[
( k− j− 1 ) p 2

x b k − j −1 + 2 ( k− j ) b k −j p x q x + ( k− j+ 1 ) q 2
x b k − j +1

])
z k .

(7.7)
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The first naive tentative to solve Conjecture 7.1 consists in replacing u ( t, x )
by (7.3) in the nonlinear differential operator u 7→ u t t − u x u x x . One obtains
a certain expression (✠ ) . Unfortunately, it seems extremely difficult to construct
directly u ( t, x ) as in Equation (7.3) such that (✠ ) ≡ 0 and (7.7) be divisible
by 3 z 2 − p in O J z K . Henceforth, we introduce an iterative procedure where we
replace in one specific place of the expression (✠ ) the function p ( t, x ) by p̂ ( t, x ) ,
respectively, q ( t, x ) by q̂ ( t, x ) and { b k ( t, x ) }∞

k = 0 by
{
b̂ k ( t, x )

}∞

k = 0
. This

procedure is better explained in Appendix B. As a result, we obtain the new
expression:

( ✠̂ ) =
∞∑

k = 0
α k z

k +
∑∞

k = 0 β k z
k

3 z 2 − p
.

Then, by requiring that 3 z 2 − p divides
∑∞

k = 0 β k z
k we obtain the eikonal Equa-

tion (7.10) which gives us the new components ( p̂, q̂ ) . Roughly speaking, (7.10)
means that the cusp is characteristic for the PDE. By requiring that ( ✠̂ ) vanishes,
we obtain the following discrete ‘time’ (but infinite dimensional) dynamical system:(
p̂ ( t, x ), q̂ ( t, x ), { b̂ k ( t, x ) }∞

k = 0

)
:= F

(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
.

Henceforth, we may say that the ideas of geometric optics inspire the construction
of iterations. A similar procedure was employed by Wagschal in [53].

Then, by the construction of the mapping F , its fixed point gives us the desired
solution to Conjecture 7.1. In this Section we shall construct the mapping F and
implement it in a computer algebra system Maple™:

F : C −→ C , (7.8)(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
7→

(
p̂ ( t, x ), q̂ ( t, x ), { b̂ k ( t, x ) }∞

k = 0

)
.

As we already mentioned, the mapping F is constructed such that if we have a
fixed point

F
(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
≡
(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
,

then the solution (7.3) reconstructed from this data verifies (7.1a) (cf. Lemma 7.3).
Additionally, since we impose Conditions (7.4b), this mapping will yield that(
q t ( 0, 0 )

) 2 = 1 . The fact that we have chosen q t ( 0, 0 ) = 1 corresponds
to the choice of a root to equation τ 2 − ∂ x u ( 0, 0 ) · 12 = 0 in Conjecture 7.1
(where we replaced ξ ← 1 ̸= 0 by homogeneity of the principal symbol).

We define the following family of functions:

B k
def:=

k∑
j = 0

[(
1 − 1

j

)
p x b j − 1 + q x b j + 1

j

(
− p b j − 1, x + 3 b j − 3, x

)]
×[

( k − j − 1 ) p 2
x b k − j − 1 + 2 ( k − j ) p x q x b k − j + ( k − j + 1 ) q 2

x b k − j + 1

]
− ( k − 1 ) · p 2

t b k − 1 , ∀ k ∈ N ,
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where we additionally use the convention:

b−j ≡ 0 ,∀ j ⩾ 1 . (7.9)

The eikonal equation34 is defined as

(
p̂ t

q̂ t

)
= M− 1 ·


∑+ ∞

k = 0

( p
3

) k

B 2 k∑+ ∞
k = 0

( p
3

) k

B 2 k + 1

 . (7.10)

Since functions p̂ and q̂ belong to the class C , they verify the following initial
conditions:

p̂ ( 0, x ) = 0 , q̂ ( 0, x ) = x .

The functional 2× 2 matrix M is defined as

M
def:=

 4
∑+ ∞

k = 0

( p
3

) k

k q t b 2 k

∑+ ∞
k = 0

( p
3

) k

( 2 k + 1 ) q t b 2 k + 1

2
∑+ ∞

k = 0

( p
3

) k

( 2 k + 1) q t b 2 k + 1 2
∑+ ∞

k = 0

( p
3

) k

( k + 1 ) q t b 2 k + 2

.
(7.11)

We underline that the inversion of the last matrix is necessary to obtain an explicit
form of the eikonal System (7.10) solved with respect to the time derivatives. It
is not difficult to see (by substituting the necessary initial data and conventions)
that the first Equation in (7.10) yields p̂ t ( 0, 0 ) = 1

2 .
Let us define also the following family of functions:

A k
def:= ( k − 1 ) b k − 1 p

2
t + 2 k b k p̂ t q t + ( k + 1 ) q̂ t q t b k + 1 −

k∑
j = 0

[(
1 − 1

j

)
b j − 1 p x + b j q x + 1

j

(
− p b j − 1, x + 3 b j − 3, x

) ]
×[

( k − j − 1 ) b k − j − 1 p
2
x + 2 ( k − j ) b k − j p x q x + ( k − j + 1 ) b k − j + 1 q

2
x

]
,

∀ k ∈ N .

Also, for any k ∈ N we define:

C k
def:=

∞∑
j = 0

A k + 2 + 2 j

( p
3

) j

.

34Strictly speaking, the term ‘eikonal equation’ is not defined for genuinely nonlinear PDEs and
singular hyper-surfaces. However, we have good reasons to think that what we are doing is the
right generalization of this notion to our case.
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Now, we are ready to write down equations which define the family of functions{
b̂ k ( t, x )

}∞

k = 0
:

∂b̂ k

∂t
= 1

2 q t

{
−
(

2 − 2
k

)
b k − 1, t p t −

(
1 − 1

k

)
b k − 1 p t t − b k q t t

− 1
k

(
− p b k − 1, t t + 3 b k − 3, t t

)
− C k

+
k∑

j = 0

[(
1 − 1

j

)
b j − 1 p x + b j q x + 1

j

(
− p b j − 1, x + 3 b j − 3, x

) ]

×
[(

2 − 2
k − j

)
bk − j − 1, x p x +

(
1 − 1

k − j

)
b k − j − 1 p t t + b k − j q x x

+frm−e b k − j, x q x + 1
k − j

(
− p b k − j − 1, x x + 3 b k − j − 3, x x

) ]}
, ∀ k ∈ N.

(7.12)

We underline that functions
{
b̂ k ( t, x )

}∞

k = 0
satisfy the initial conditions (7.4b).

The convention (7.9) must be employed to interpret correctly the last equation.
The solution of differential Equations (7.10) and (7.12) completes the construc-

tion of the fixed point mapping F (7.8). Then, the connection between the mapping
F and the ramified Cauchy problem (7.1) is elucidated in the following

Lemma 7.3. Let us assume that we have fixed point data:

F
(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
=
(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
satisfying the ‘initial’ conditions (7.4). Then, the function

u ( t, x ) = ∂ −1
q

( + ∞∑
k = 0

b k ( t, x ) z k

)
, (7.13)

with z 3 = p z + q satisfies PDE (7.1a) together with the initial condition (7.1b).

Proof. Recall that by direct computations, we have the following expressions for
ansatz (7.13) derivatives:

uα =
+ ∞∑
k = 0

[(
1 − 1

k

)
b k − 1 pα + b k qα + 1

k

(
− p b k − 1, α + 3 b k − 3, α

) ]
z k ,
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uα α =
+ ∞∑
k = 0

[(
2 − 2

k

)
b k − 1, α pα +

(
1 − 1

k

)
b k − 1 pα α + b k qα α + 2 b k, α qα

+ 1
k

(
p b k − 1, α α + 3 b k − 3, α α

) ]
z k

+ 1
3 z 2 − p

+ ∞∑
k = 0

[
( k − 1 ) b k − 1 p

2
α + 2 k b k pα qα + ( k + 1 ) b k + 1 q

2
α

]
z k,

where the symbol α ∈ { t, x } .
Now, let us assume that(

p̂ ( t, x ), q̂ ( t, x ), { b̂ k ( t, x ) }∞
k = 0

)
=
(
p ( t, x ), q ( t, x ), { b k ( t, x ) }∞

k = 0

)
.

First, the fact that
(
p̂ ( t, x ), q̂ ( t, x )

)
=
(
p ( t, x ), q ( t, x )

)
and the eikonal

Equation (7.10) imply that the coefficient (7.7) of 1
3 z 2 − p

in u t t − u x u x x

belongs indeed to O [ z ] . For more details, refer to Appendix B. Then, the fact
that b̂ k ≡ b k for ∀ k ∈ N and Equation (7.12) imply, by construction, that
u t t − u x u x x ≡ 0 . See Appendix B again for more details.

To the best of our knowledge, the presented algorithm is completely new.

7.2. Generalizations

We may attempt to generalize the result stated in Theorem 4.1 to the case of the
PDEs family (3.1) with m ⩾ 2 . However, we stress that at the current stage, it
remains at the level of a conjecture:

Conjecture 7.4. Consider the following ramified IVP for Equation (3.1):

L m (u ) :⇒ ∂m
t u − ∂m−1

x u ∂m
x u = 0 , (7.14a)

u ( 0, x ) = c 1 x
m − 1 + c 2 x

m − 1 + 1
3

+ c 3 x
m − 1 + 2

3 + xm · u 0 (x ) , (7.14b)

where c 1, 2 ∈ C× , c 3 ∈ C and u 0 is a holomorphic function in some neigh-
bourhood of 0 ∈ C . Then, for each choice of a root to the algebraic equation35

τ m − ∂m − 1
x u ( 0, 0 ) · 1m = 0 (where we replaced ξ ← 1 ̸= 0 by homogeneity

of the principal symbol), there exist holomorphic functions p ( t, x ) , q ( t, x ) and{
a j ( t, x )

} 2
j = 0 defined in the vicinity of ( 0, 0 ) ∈ C 2 such that there exists a

35In order to have m distinct roots, we have to choose the initial data so that ∂ m − 1
x u ( 0, 0 ) ̸= 0 .

As a result, we may say that the solution procedure is parametrized by the elements of the
multiplicative group of the roots of unity U m

def:= { ξ m = 1 | ξ ∈ C } .
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local solution u to (7.14) which can be written in the following form:

u ( t, x ) := ∂ − ( m − 1 )
q ◦

( 2∑
j = 0

a j ( t, x ) z j
)
,

where the function z satisfies the following algebraic relation (4.5):

z 3 = p ( t, x ) z + q ( t, x ) .

The coefficients p , q verify the ‘initial’ conditions:

p ( 0, x ) = 0 , q ( 0, x ) = x .

Proof. Open problem.

Remark 7.5. The holomorphic functions p ( t, x ) , q ( t, x ) and
{
a j ( t, x )

} 2
j = 0

whose existence is conjectured above depend also on c 1, 2, 3 and on the function
u 0 (x ) appearing in the formulation of the Cauchy problem (7.14b).

8. Numerical illustrations

In the absence of rigorous theoretical proof, in this section, we would like to illus-
trate the practical convergence of the fixed point algorithm described in Section 7.1.
Thus, it will provide rational computational support towards various conjectures
formulated in this study (in particular, the Conjecture 7.1 and indirectly Conjec-
ture 7.4).

8.1. Test 1

In order to come up with a practical algorithm, we have to truncate the expansion
(7.3):

u ( t, x ) ≈
N∑

k = 1

1
k

(
− p ( t, x ) b k−1 ( t, x ) + 3 b k−3 ( t, x )

)
z k ,

Since we work with holomorphic functions, we shall expand all the functions in
double truncated series in the vicinity of the origin ( 0, 0 ) ∈ C 2 as follows:

ψ ( t, x ) =
M − 1∑

l, m = 1
l + m ⩽ M − 1

ψ l m t l xm + O
(
tM + tM − 1 x + . . . t xM − 1 + xM

)
,

with ψ ∈ { p, q, b 0, . . . , bN − 1 } . So, in practice, we perform all our computations
with such double truncated power series in independent variables ( t, x ) ∈ C 2 .
We have to describe another technical issue towards the practical implementation
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Table 1: Various numerical parameters used in our computations.

Parameter Value
Floating point arithmetics, significant digits 30
Truncation degree in t , M 25
Truncation degree in x , M 25
Total number of iterations, I 25
Initial length of data vector, N 80 = 3× I + 5
Observation point in C , x 0 0.1 i
Temporal segment for the error control, [ a, b ] [ 0, 0.1 ]

of our algorithm here. Since we work with truncated data, our finitary mapping
F̃ by construction returns a slightly reduced set of data:(
p ( t, x ), q ( t, x ), { b k ( t, x ) }N

k = 0

)
F̃7→
(
p̂ ( t, x ), q̂ ( t, x ), { b̂ k ( t, x ) }N − 3

k = 0

)
.

Thus, at every iteration, we are practically losing three components of the data.
Consequently, if we are willing to obtainN components of data vector { bk(t, x) }N

k=0
after I iterations, we have to initiate the iterative process with { b k ( t, x ) }N + 3 I

k = 0
initial components. We took into account this observation in our computations.
We are going to illustrate the work of the algorithm starting from the following
initial guess:

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.1a)

b 0 := 1 , b 1 := 1 , b j := 0 , ∀ j ⩾ 2 . (8.1b)

It corresponds to the Cauchy datum (7.5) as it is explained at the beginning
of Section 7.1. Throughout all this Section 8 we shall assume c 1 = 1 and
c 2 = 3

4 . However, three different possibilities are taken for the rest of coefficients36

{ c j } j ⩾ 3 ⊆ C . For example, in this Section 8.1 we take all { c j } j ⩾ 3 to be zero.

Remark 8.1. The choice of the initial data (8.1a) implies that q t ( 0, 0 ) = 1 .
This specifies one of two roots in q t ( 0, 0 ) in the eikonal equation. Consequently,
in all iterations we shall also have that q̂ t ( 0, 0 ) = 1 . Similarly, we shall also
have p̂ t ( 0, 0 ) = 1

2 .

In order to speed up the computations, we also turn to the floating-point
arithmetics with, possibly, extended precision. The values of all other parameters
are reported in Table 1. The proposed algorithm was implemented in the computer
algebra system Maple™. The essential part of the employed code is reported in
Appendix D. The complete program can be shared upon a simple request by email.

36For the precise meaning of coefficients { c j } j ⩾ 0 see Equation (7.1b).
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To summarize, we can say that we perform numeric-symbolic computations in
order to observe the convergence towards a fixed point in practice. If we denote
by ψ( j ) the value of the variable ψ ∈ { p, q, b 0, . . . , bN − 3 j } after j iterations,
the closeness to the fixed point may be appreciated by looking at the norm of the
difference between two successive iterations:

∥ψ ( j ) − ψ ( j − 1 ) ∥ .

We illustrate the behaviour of the proposed algorithm on the initial data (8.1).
We perform I iterations of our mapping. It turns out that even very moderate
values of the parameter I (cf. Table 1) are enough to appreciate the convergence of
the iterative fixed point process. The whole symbolic/numeric computation lasted
about five minutes of the CPU time (on our computers). The precise information
is not very important because it may vary from one system to another. In four
panels of Figure 3 we show the differences between two last iterations of functions
{ p, q, b 0, b 1 } , constituting the problem data. It can be clearly seen that the
absolute value of the difference is quite small already after I = 10 iterations. We
checked that subsequent iterations reduced this difference further. The reduction
of the L∞ norm of the difference between two successive iterations is shown in
Figure 4. This Figure presents strong empirical evidence for the convergence
towards a fixed point, which solves the underlying IVP according to Lemma 7.3,
even if the convergence seems to be far from being linear.

In order to present even more convincing numerical evidence, we include in our
study another test case with the following initial guess:

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.2a)

b 0 := 1 + t , b 1 := 1 − t , b j := 0 , ∀ j ⩾ 2 . (8.2b)

It is not difficult to see that these initial data (8.2) (which correspond to a different
initialization with respect to (8.1)) verify the same initial conditions (7.4), i.e. the
Cauchy datum (7.5). Thus, if the solution we seek is unique37, we may expect
the iterations to converge to the same fixed point. This explains the motivation
behind this second numerical study. We are using precisely the same numerical
parameters as reported above in Table 1 (and, thus, the same parameters as
in the previous computations). The convergence of the fixed point iterations is
reported in Figure 5. We can observe the same (cf. Figure 4) roughly linear
but non-monotonic convergence to a fixed point. Now one may ask a legitimate
question whether iterations starting at (8.1) and (8.2) converge to the same point in
O J z K ? We may answer this question by looking at the difference between obtained
solutions data at the final iteration I . We can have a look at these differences
t 7→ |ψ ( I )

1 ( t, x 0 ) − ψ
( I )
2 ( t, x 0 ) | in Figure 6 where they are represented as

37We may reasonably assume that at least within the solution ansatz we consider. Perhaps the
best reason to believe in the uniqueness would be the Lax–Glimm theory [20], but “we sadly lack
a local uniqueness theorem” as the authors of [20] put it themselves (in the real case).
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Figure 3: The absolute value of the difference between two successive iterations (I)th and
(I − 1)th of solution data for I = 10 . The values of several numerical parameters are
reported in Table 1.
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Figure 4: The maximum norm L ∞
(

[ a, b ]
)

of the difference between two successive
iterations (I)th and (I − 1)th as a function of the iteration number in semi-logarithmic
coördinates. The initial data is given in Equation (8.1). The values of several numerical
parameters are reported in Table 1.
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functions of time38 for t ∈ [ a, b ] ≡
[

0, 1
10

]
. In particular, we would like

to underline the fact that the magnitude of these differences is consistent with
the results presented in Figures 4 and 5. All these observations provide strong
empirical evidence for the convergence of the iterative process described above. The
experimental findings of this Section are schematically depicted and summarized
in Figure 7.

8.2. Test 2

We shall consider a completely different initial condition from (7.1b):

u ( 0, x ) = x + 3
4 x

4
3 + 3

50 x
8
3 + 1

20 x 3 . (8.3)

In terms of the solution data, the last initial datum translates in the following
coefficients:

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.4a)

b 0 := 1 , b 1 := 1 , (8.4b)

b 2 ( t, x ) := x

10 , b 3 ( t, x ) := x

10 , (8.4c)

b j := 0 , ∀ j ⩾ 4 . (8.4d)

The complexity of this test case is much higher than what we did before. In order
to make the computational times reasonable, we had to reduce the parameter
M := 10 . All other numerical parameters were kept as in Table 1. We studied
the convergence of fixed point iterations under the map F̃ for this IVP. Namely,
we monitored the differences between successive iterations for variables p , q , b 0 ,
. . . , b 3 . The results are reported in Figure 8. As we can see, the practical linear
non-monotonic convergence can be clearly witnessed even in this test case.

As we do it systematically, we also consider another initialization of the fixed
point algorithm, which corresponds to the same Cauchy datum (8.3) as before:

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.5a)

b 0 := 1 , b 1 := 1 − t 2

10 , (8.5b)

b 2 ( t, x ) := x

10 + t

100 , b 3 ( t, x ) := x

10 −
t

100 , (8.5c)

b j := 0 , ∀ j ⩾ 4 . (8.5d)

The algorithm was run with this initialization and all other parameters as above.
The convergence of the iterations initialized with the initial date (8.5) is reported in

38It turns out that in this particular case, these differences are only functions of time, i.e. they
do not depend on x .
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Figure 5: The maximum norm L ∞
(

[ a, b ]
)

of the difference between two successive
iterations (I)th and (I − 1)th as a function of the iteration number in semi-logarithmic
coördinates. The initial data is given in Equation (8.2). The values of several numerical
parameters are reported in Table 1.
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Figure 6: Differences between corresponding components of the solution data at I = 25th

iteration. Both iterative processes were initialized with data (8.1) and (8.2) respectively.
The values of all numerical parameters are given in Table 1.
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Figure 7: A schematic representation of the experimental findings of Section 8: P
( 0 )
1

stands for the initial guess (8.1) while P
( 0 )
2 stands for (8.2). The convergence should be

understood in the sense of a numerically-supported conjecture.

Figure 9. We can observe a very similar behaviour to Figure 8 attesting one more
time to the convergence of the proposed algorithm. One may ask the legitimate
question of whether two different initializations (8.4) and (8.5) converge to the
same point. This theoretical question is very complicated. However, what we
can do in practice is to measure how close are the corresponding iterates from
each other in the spirit of mental representation from Figure 7. This is done in
Figure 10 where the difference ( t, x ) 7→ |ψ ( I )

1 ( t, x ) − ψ
( I )
2 ( t, x ) | with

ψ ∈ { p, q, b 0, . . . , b 3 } . In order to make the error plot possible, we considered
the real values of independent variables varying in some finite neighbourhood of
the origin 0 ∈ R 2 : {

( t, x ) ∈ R 2
∣∣∣∣ t 2 + x 2 ⩽

1
100

}
.

In particular, Figure 10 shows that the convergence is the slowest for the component
b 3 of the solution data but even for b 3 the results are perfectly acceptable.

The Section below contains another couple of computational investigations of
the proposed fixed point algorithm.

8.3. Test 3

As a final numerical test case, we consider another IVP (7.1), represented by two
different initial guesses, which contains explicitly the fractional power x

4
3 along

with x
5
3 in perfect agreement with the generalized Conjecture 7.4. Namely, in the

Cauchy datum (7.14b) there is a term c 3 x
m − 1 + 2

3 (with c 3 ∈ C), which for
m = 2 gives c 3 x

5
3 and it was absent in previous numerical Tests 1 (Section 8.1)

and 2 (Section 8.2). As a result, we decided to include an additional numerical test
which contains explicitly this term. Namely, we consider the following Cauchy
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Figure 8: The maximum norm L ∞
(

[ a, b ]
)

of the difference between two successive
iterations (I)th and (I − 1)th. The initial data is given in Equation (8.4).
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Figure 9: The maximum norm L ∞
(
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)

of the difference between two successive
iterations (I)th and (I − 1)th. The initial data is given in Equation (8.5).
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Figure 10: The absolute value of the differences between corresponding components of the
solution data at I = 25th iteration. Both iterative processes were initialized with data
(8.4) and (8.5) respectively. The values of all numerical parameters are given in Table 1.
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datum:
u ( 0, x ) = x + 3

4 x
4
3 + 3

50 x
5
3 . (8.6)

Two slightly different initial data can represent this Cauchy datum. The first
initial guess reads:

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.7a)

b 0 := 1 , b 1 := 1 , (8.7b)

b 2 ( t, x ) := 1
10 , b j := 0 , ∀ j ⩾ 3 . (8.7c)

The second one is

p ( t, x ) := t

2 , q ( t, x ) := t + x , (8.8a)

b 0 := 1 , b 1 := 1 − t

10 , (8.8b)

b 2 ( t, x ) := 1
10 + t 2

5 , b j := 0 , ∀ j ⩾ 3 . (8.8c)

The convergence of both initializations has been studied symbolically and numeri-
cally using the code provided in Appendix D. The norms of differences between
two successive iterations are reported in Figures 11 and 12. Moreover, Figure 13
indicates that both iterations converge to the same element of O J z K .

To make an intermediate conclusion, we would like to mention that the Authors
tested several other (and even gradually more complicated) configurations, and
the proposed algorithm’s practical convergence was invariably observed. This
constatation gives us a good hope that Conjectures 7.1, 7.4 are true. More precisely,
these numerical tests make quite plausible the following (informal) conjecture,
which, thanks to Picard theorem, would imply the Conjecture 7.1:

Conjecture 8.2. There exists a Banach space E with current point
(
p ( t, x ),

q ( t, x ), { b k ( t, x ) }∞
k = 0

)
and a closed subset B ⊆ E satisfying the three fol-

lowing properties:
1. The elements of B satisfy for t = 0 the initial condition corresponding to

the value u ( 0, x ) .

2. F > ( {B } ) ⊆ B .

3. The restriction F |B is a contraction.

8.4. The singular locus 4 p 3 − 27 q 2 = 0’s dependence on the Cauchy
datum

Recall that the Leray principle states that singularities of a ramified linear
Cauchy problem are determined by the singularity locus of the Cauchy data. In
our genuinely nonlinear case, this principle seems not to be valid anymore.
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Figure 11: The maximum norm L ∞
(

[ a, b ]
)

of the difference between two successive
iterations (I)th and (I − 1)th. The initial data is given in Equation (8.7).
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Figure 12: The maximum norm L ∞
(

[ a, b ]
)

of the difference between two successive
iterations (I)th and (I − 1)th. The initial data is given in Equation (8.8).
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Figure 13: Differences between corresponding components of the solution data at I = 25th

iteration. Both iterative processes were initialized with data (8.7) and (8.8) respectively.
The values of all numerical parameters are given in Table 1.
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Above, we solved (approximately) three different ramified Cauchy problems
(7.5), (8.3) and (8.6). The singularities of the solution are determined by functions
p and q . Let us compare them at the end of respective iterative processes:

p
( I )
1 ≈ 1

2 t + 0.0250 t 2 + 0.0068 t 3 + · · ·

p
( I )
2 ≈ 1

2 t + ( 0.0250 + 0.0004x + 0.0025x 2 ) t 2

+ ( 0.0175 + 0.0070x − 0.0009x 2 + 0.0003x 3 ) t 3 + · · ·

p
( I )
3 ≈ 1

2 t + 0.0113 t 2 + 0.0019 t 3 + · · ·

Let us have a look at the corresponding q component approximations:

q
( I )
1 ≈ t + x − 0.0333 t 2 − 0.0050 t 3 + · · ·

q
( I )
2 ≈ t + x + (−0.0333 + 0.0133x ) t 2

+ ( 0.0082 − 0.0010x + 0.0006x 2 ) t 3 + · · ·

q
( I )
3 ≈ t + x − 0.0200 t 2 − 0.0017 t 3 + · · ·

The lower indices show the test case number (1 , 2 or 3 corresponding to Sections
8.1, 8.2 and 8.3 respectively) and we show only four significant digits for the sake
of notation compactness. Just from the visual inspection of expressions provided
above, we can see that solution data p and q depend on the Cauchy datum.
Thus, the Leray principle seems not to hold in our problem, and it is another sign
of the genuinely nonlinear problem.

9. Further generalizations

In this Section, we would like to announce the general conjecture that we would
like to formulate as a result of our investigations on this topic. Let us denote by
( t, x ) a generic point of Cn + 1 , where x = (x 1, x 2, . . . , xn ) ∈ Cn . We fix
also a polydisc D ⊂ Cn + 1 centered around the origin 0 ∈ Cn + 1 and we denote
by OD the ring of holomorphic functions A ( t, x ) on D .

Definition 9.1. Denote by Sm − 1 the vector space of polynomial functions in
several variables on OD of the following form:

F ( t, x, v 1, α 1 , v 2, α 2 , . . . , , vn, α n
) def:=

∑
a ∈ â

A a ( t, x )
n∏

ℓ = 1

m − 1∏
k = 1

v
a ( ℓ, k)
ℓ, k ,

where A a ∈ OD , ∀ a ∈ â and the collection of maps â is a finite set with
elements of the type

a : n⊐ × (m − 1 )⊐ −→ N ,

which do not vanish identically, so that we always have

F ( t, x, 0, . . . , 0 ) ≡ 0 .
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In the Definition above, v ℓ, k (respectively, va ( ℓ, k)
ℓ, k ) should correspond morally

to ∂ k
x ℓ

(respectively, to the nonlinear operator u 7→ ( ∂ k
x ℓ
u ) a ( ℓ, k)).

Let u ( t, x ) be a germ of a holomorphic function at a point of the polydisc D .
For any F ∈ Sm − 1 we shall write:

F
(
t, x, ∂ α 1

x 1
u, ∂ α 2

x 2
u, . . . , , ∂ α n

x n
u
) def:=

∑
a ∈ â

A a ( t, x )
n∏

ℓ = 1

m − 1∏
k = 1

(∂ k
x ℓ
u) a ( ℓ, k) .

Notice that in the previous expression, the involved partial derivatives of the
germ u are of order at most m − 1 . Also, as above, we shall use extensively
the multi-index notation. If β := (β 1, β 2, . . . , βn ) ∈ Nn , we shall denote
|β | :⇒ β 1 + β 2 + . . . βn and ∂ β

x :⇒ ∂ β 1
x 1
◦ ∂ β 2

x 2
◦ . . . ◦ ∂ β n

x n
.

We also consider the following scalar quasi-linear differential operator of order
m :

P (u ) def:= ∂m
t u

+
m − 1∑
j = 0

∑
β ∈ N n

| β | = m − j

F j, β

(
t, x, ∂ α 1

x 1
u, ∂ α 2

x 2
u, . . . , , ∂ α n

x n
u
)
∂ j

t ◦ ∂ β
x u

+G
(
t, x, ∂ α 1

x 1
u, ∂ α 2

x 2
u, . . . , , ∂ α n

x n
u
)
,

where F j, β and G both belong to the vector space Sm − 1 . We are finally led to
formulate the following

Conjecture 9.2. Consider p ∈ N× and p+ 1 holomorphic functions { υ j ( x ) } p
j = 0

on D ∩
(
{ 0 } × Cn

)
such that both υ 0 ( 0 ) and υ 1 ( 0 ) are not zero. Let

u 0 ( x ) =
p∑

j = 0
υ j ( x )xm − 1 + j

p + 1
1 (9.1)

be a germ of a holomorphic function ramified around x 1 = 0 . We make the
following two assumptions:
1) The following polynomial equation in variable ξ admits m distinct roots:39

ξm +
m − 1∑
j = 0

ξ j F j, ( m−j, 0, ..., 0 )
(

0, 0, ∂ α 1
x 1

u 0 ( 0 ), ∂ α 2
x 2

u 0 ( 0 ), . . . , ∂ α n
x n

u 0 ( 0 )
)

= 0 .
(9.2)

2) ∂ v 1, m − 1 F 0, ( m, 0, ..., 0 )
(

0, 0, ∂ α 1
x 1

u 0 ( 0 ), ∂ α 2
x 2

u 0 ( 0 ), . . . , ∂ α n
x n

u 0 ( 0 )
)
̸= 0 .

39This is precisely the place where we see that the initial data enters explicitly into the definition
of a suitable differential operator in the context of our study.



134 D. Dutykh and E. Leichtnam

Then, the following statements are true. For each choice of a root to the
algebraic Equation (9.2), there exist holomorphic functions { q ℓ ( t, x ) } p − 1

ℓ = 0 defined
in a neighbourhood of the origin 0 ∈ Cn + 1 such that

q 0 ( 0, x ) = x 1 , q ℓ ( 0, x ) = 0 , ℓ ∈ ( p − 1 )⊐ .

We denote by z ( t, x ) a holomorphic germ satisfying the following algebraic equa-
tion outside the swallowtail singularity:

z p + 1 ( t, x ) − q p − 1 ( t, x ) z p − 1 ( t, x ) − · · · q 0 ( t, x ) = 0 .

There exist also the holomorphic functions { a ℓ ( t, x ) } p
ℓ = 0 defined on a neigh-

bourhood of the origin 0 ∈ Cn + 1 such that the function

u ( t, x ) = ∂ − m + 1
q 0

(
a p ( t, x ) z p ( t, x ) + · · · + a 1 ( t, x ) z ( t, x ) + a 0 ( t, x )

)
satisfies:

P (u ) ( t, x ) ≡ 0 ,
u ( 0, x ) ≡ u 0 ( x ) ,

where u 0 ( x ) was defined in (9.1).

Let us now discuss the motivation behind this general Conjecture 9.2. The
p−tuple ( z, z 2, . . . , z p ) is the solution of a holonomic D−module whose charac-
teristic variety V is included in the union of the zero section of T ∗ C p and of the
co-normal to the swallow tail singularity associated to the algebraic equation:

z p + 1 − q p − 1 z
p − 1 − · · · q 1 z − q 0 = 0 .

The fact that this singularity is stable plays the crucial rôle in our construc-
tions. Moreover, T ∗

0 C p
⋂

V coincides with the line co-normal to q 0 = 0
and q 0 ( 0, x ) = x 1 . These important facts explain why we consider only the
contributions of the monomials ∂ j

t ◦ ∂m − j
x 1

in Equation (9.2).
The assumption (1) means that all the characteristics associated with this

geometry are simple. The proof of Conjecture 9.2 should allow to construct m
solutions of this type, each corresponding to a choice of a root in Equation (9.2).
It is quite clear that holomorphic functions { q ℓ ( t, x ) } p − 1

ℓ = 0 highly depend on the
initial datum u 0 ( x ) and, even more precisely, on { υ j ( x ) } p

j = 0 . The assumption
(2) means that the PDE P (u ) = 0 is genuinely nonlinear with respect to this
geometry. The simplest example of such an operator P (·) from the Conjecture 9.2
statement is given by the following expression:

P (u ) := ∂m
t u +

(
∂m − 1

x 1
u
)n

∂m
x 1
u , n ∈ N⩾ 1 .

To make things clearer, let us emphasize that, for instance, the two following
quasi-linear operators do not satisfy the assumption (2) of Conjecture 9.2:
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• P 1 (u ) = ∂m
t u +

(
∂m − 2

x 1
u
)n

∂m
x 1
u ,

• P 2 (u ) = ∂m
t u +

(
∂m

x 1
u
)n

∂m
x 2
u .

We summarize below the proposed strategy to attack this problem:

1. We seek a solution of P (u ) = 0 under the form

u ( t, x ) = ∂ − m + 1
q 0

( + ∞∑
j = 0

b j ( t, x ) z j
)
.

Since it does not seem to be possible to construct a solution directly, we
proceed as in Section 7, i.e. we try to find an algorithm with an underlying
map F such that a fixed point of F gives a solution. The fact that the
swallow tail singularity should be characteristic for the PDE will lead to the
eikonal equation. So, in some sense, we use an ansatz and the method of
the geometric optics.40 A heuristic (but crucial) underlying idea is that the
Hamiltonian flow of the principal symbol of the linearized operator should
propagate the singularities along the co-normal of the swallow tail.

2. Find suitable semi-norms allowing to construct a Banach space so that one
might apply the fixed point theorem to the mapping F .

We hope to motivate and stimulate the research in this direction. Of course, this
programme is extremely difficult. The best rational reasons to believe that it should
work are the validity of Theorem 2.8 (the case of algebraic equations of the second
degree) and the numerical convergence results for the algorithm of Section 7.

10. Conclusions and perspectives

Above, we presented the main results of the present manuscript. The main conclu-
sions and perspectives of this study are outlined below.

10.1. Conclusions

In this article, we considered several ramified Cauchy problem (CP)s for the first
and second-order genuinely nonlinear PDEs in the full complex setting. The term
CP should be understood in the context because we specify only one initial condition
even for PDEs (3.1) with m > 1 . We succeeded in understanding completely the
case of the iBE (1.1) using the methods of Cauchy–Kovalevskaya and those of
the contact geometry. Both theories give the same singularities for the iBE solutions
to the IVP (4.2). Then, we switched to the second-order IVP (7.1) for the genuinely
nonlinear PDE (1.2). However, this problem cannot be addressed with the same
methods. This observation led us to consider some holonomic D−modules and
their geometry, which gave us the solution ansatz. The closed-form expression

40This method is also known as the Hamilton–Jacobi theory.
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is not possible even within the proposed ansatz. Consequently, we devised an
iterative method whose fixed point gives the desired solution. Unfortunately, we
were not able to prove rigorously its convergence. Nevertheless, we performed the
practical computations with the celebrated computer algebra software Maple™ in
order to check in practice the behaviour of the proposed algorithm. Indeed, our
symbolic computations clearly indicate the convergence of the proposed method.
The main part of the employed code is provided in Appendix D. On the basis of
this empirical evidence, we were able to formulate several new conjectures which
remain open for the moment, the main one being the Conjecture 9.2.

10.2. Perspectives

We already mentioned in Remark 5.5 the need to study the micro-local singularity
of distributions z and z 2 . The Authors are currently working to establish a
rigorous convergence proof for the iterative scheme proposed in Section 7. The
underlying theoretical setting was briefly mentioned in Section 2. This result will
allow us to establish the existence and uniqueness result for the considered IVP
to Equation (1.2). For the moment, the appropriate Banach spaces seem to have
been identified (see Section 2). Of course, the application of these methods to
other fully nonlinear and even higher order PDEs (such as the family of PDEs (3.1)
with m > 2) is to be expected. Finally, we would like to see the connections
between our theory and the more classical theory of shock waves for p−systems as
presented in [49, Chapter 12]. We shall investigate the interplay and connections
between both theories. As the first glance at possible connections, we invite the
reader to consult Appendix C. We would like to explore other types of singularities
as a separate research direction. According to the classification of catastrophes [3],
the cusp and swallowtail belong to the class An for some n ∈ N . We believe that
it would be interesting to explore other types of singularities Dn and En and the
solutions they generate in the current genuinely nonlinear PDE framework.

For nonlinear PDEs of order two or higher, the theory of shock waves is deep,
intricate, and quite elaborated (see, for instance, [49]). However, the specific type
of algebraic singularities that we consider in this work offers a promising avenue for
a more simplified treatment. It is in this context that we expect that it should be
possible to explain the appearance of shocks for the real solution by holomorphic
ramified singularities, as we pointed out in Section 4.3.
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A. Nomenclature

f : A −→ B A map from the domain dom f = A to the co-domain (or target)
codom f = B .

f> Image of a map. Consider a map f : A −→ B . Then, the image f> :
℘ (A ) −→ ℘ (B ) is defined in the usual way, where ℘ (·) denotes the
power set.

f < Pre-image of a map. Consider a map f : A −→ B . Then, the pre-image
f < : ℘ (B ) −→ ℘ (A ) is defined in the usual way, where ℘ (·) denotes
the power set.

◦ Composition operation for functions of differential operators.

fm ◦ (− ) The mth iterate of a mapping f : A −→ A for some m ∈ N× , i.e.
fm ◦ (− ) def:= ( f ◦ f ◦ . . . ◦ f )︸ ︷︷ ︸

mtimes

(− )

d f The differential of a smooth function f .

j 1 (u ) 1−jet of a smooth function u .

N The set of natural numbers starting from 0 .

N× The set of strictly positive natural numbers.

R The set of real numbers.

R× The multiplicative group of real numbers.

R⩾ 0 The set of non-negative real numbers.

C The set of complex numbers.

C× The multiplicative group of complex numbers.

| · | The absolute value of a real of complex number.

∥ · ∥ The norm function on a Banach space.

OD The ring of holomorphic functions defined on the polydisc D .

O [ z ] The ring of polynomials in the formal variable z with coefficients being
holomorphic germs at the origin.

O J z K The ring of formal power series in the formal variable z with coefficients
being holomorphic germs at the origin.

n⊐ Finite set { 1, 2, . . . , n } , ∀n ∈ N⩾ 1 .

n⊏ Finite set { 0, 2, . . . , n − 1 } , ∀n ∈ N⩾ 1 .
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r A function taking the constant value r ∈ R . The domain and co-domain of
this function should be clear from the context (usually, from the left-hand
side of the equation, where it appears).

r A function taking the constant vector value ( r, r, . . . , r ) ∈ Rm with r ∈ R
and m ∈ N⩾ 2 . The domain and co-domain of this function should be clear
from the context (usually, from the left-hand side of the equation, where it
appears).

(− ) ⊤ The transposition operator acting on a vector or on a linear operator.
Strictly speaking, the result of this operation belongs to the dual vector
space.

x Element of the vector space x
def:= (x1, x2, . . . , xn ) ∈ Cn .

∂m
x j

Partial derivative operator of the order m with respect to the independent
variable x j . Sometimes, we also use the index notation (·) x i

to denote the
first-order partial derivative.

E A Banach space.

F Fixed point mapping.

F̃ Finitary truncation of the fixed point mapping.

ψ ( I ) Function ψ on the (I)th iteration.

:= Assignment of the right-hand side to the left-hand side.
def:= The left-hand side is defined by the right-hand side.
def=: The right-hand side is defined by the left-hand side.

:⇒ By definition.

≡ Equal identically.

∼= Isomorphic.

kn The standard n−dimensional vector space with the base field k .

U z Some open neighbourhood of a point z ∈ Cm .

ξ̄ Bold version of the Greek letter ξ .

Z (G ) The center of the group G .

Un The multiplicative group of the roots of unity of degree n .

Sn The symmetric group with n symbols.
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GL n (k ) The general linear group of the square n × n matrices with entries
belonging to the field k .

SL n (k ) The special linear group of the square n × n matrices with entries be-
longing to the field k .

PSL n (k ) The projective special linear group defined as SL n (k ) /Z
(

SL n (k )
)
.

For n = 2 and k = Z it is called the modular group.

Br n The braid group with n strands.

M Holomorphic, smooth or topological manifold, depending on the context.

π 1 ( M ) The fundamental (or the first homotopy) group of a topological manifold
M .

T x M Tangent space to a smooth manifold M at point x ∈ M .

ω The standard symplectic 2−form on T x M .

{− , −} The standard Poisson bracket on C∞ ( M ) .

T M Tangent bundle of a smooth manifold M .

T ∗
x M Co-tangent space to a smooth manifold M at point x ∈ M .

T ∗ M Co-tangent bundle of a smooth manifold M .

N ( M ) Co-normal to a smooth sub-manifold M .

sing supp ( · ) The singular support of a distribution.

WF ( · ) The wave front set of a distribution.

X The complex manifold.

{X λ }λ ∈ Λ The Whitney stratification of the complex manifold X .

DX The sheaf of differential operators of finite order on the complex manifold X .

M The coherent DX−module.

OX The sheaf of holomorphic functions on X , which is a left coherentDX−module.

Ext The right derived functor of the hom-functor.

Gal (− ) Galois group of a field extension.
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B. Details of computations

In this Appendix, we explain more precisely how we construct the iterations from
Section 7.1. Namely, we specify how the expression ( ✠̂ ) is constructed from (✠ ) .

Recall, that the solution ansatz is given by

u ( t, x ) =
∞∑

k = 1

1
k

(
− p ( t, x ) b k−1 ( t, x ) + 3 b k−3 ( t, x )

)
z k .

One checks by direct computation that

u t t =
+ ∞∑
k = 0

[(
2 − 2

k

)
b k − 1, t p t +

(
1 − 1

k

)
b k − 1 p t t + b k q t t + 2 b k, t q t +

1
k

(
p b k − 1, t t + 3 b k − 3, t t

) ]
z k +

1
3 z 2 − p

+ ∞∑
k = 0

[
( k − 1 ) b k − 1 p

2
t + 2 k b k p t q t + ( k + 1 ) b k + 1 q

2
t

]
z k ,

(B.1)

Moreover, one checks that the coefficient in front of 1
3 z 2 − p

in (✠ ) :⇒ u t t −
u x u x x is equal to

+ ∞∑
k = 0

[
( k − 1 ) p2

t b k − 1 + 2 k b k pt qt + ( k + 1 ) b k + 1 q
2
t

−
k∑

j = 0

((
1 − 1

j

)
px b j − 1 + qx b j + 1

j

(
− p b j − 1, x + 3 b j − 3, x

))
·(

( k − j − 1 ) p2
x b k − j − 1 + 2 ( k − j )px qx b k − j

+ ( k − j + 1 ) q2
x b k − j + 1

)]
z k . (B.2)

Now, we construct ( ✠̂ ) from (✠ ) ≡ u t t − u x u x x in the following way.
First, we replace in (B.1) the term 2 b k, t qt by 2 b̂ k, t qt . Then, we replace in
(B.2) the term 2 k b kpt qt by 2 k b kp̂t qt and ( k + 1 ) b k + 1 q

2
t by ( k + 1 ) b k + 1 qt q̂t .

Then, the eikonal Equation (7.10) is obtained by writing that ( ✠̂ ) ∈ O J z K ,
namely, the coefficient (B.2) of 1

3 z 2 − p
in ( ✠̂ ) is divisible by 3 z 2 − p . Finally,

Equation (7.12) is obtained by fulfilling the requirement that ( ✠̂ ) ≡ 0 .

Remark B.1. In Equation (B.2) we could have replaced the term 2 k b k pt qt

(respectively, ( k + 1 ) b k + 1 q
2
t ) by 2 k b k p̂t q̂t (respectively ( k + 1 ) b k + 1 q̂

2
t ) and
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thus get a nonlinear eikonal equation. What we did is roughly a simple linearisation
of this, which is more convenient for implementing in practice. In other words,
no matter the eikonal equation’s form, one has to perform the infinity of fixed
point iterations. We took special care to make each such iterative step as easy as
possible.

C. A simple explicit example of shock wave formation in the
iBE

In this Appendix, we would like to provide one simple explicit example and discuss
some relations between our theory of ramified solutions and the classical theory of
shock waves. This Appendix should be perceived only as an appetizer. The deeper
connections will be revealed in the subsequent works.

Let us consider the following IVP for the iBE:

u t − uu x = 0 , (C.1)

u ( 0, x ) = x
1
2 , (C.2)

where we took the square root singularity to simplify algebraic computations which
follow. In the real case, we would consider the IVP on a half-line ( t, x ) ∈
R⩾ 0 × R⩾ 0 , but there are no such restrictions in the complex case. So, in
agreement with our line of thinking, we assume that ( t, x ) ∈ C 2 . Using the
methods of contact geometry described in Section 4.3, we introduce the auxiliary
variable

y
def:= x − x

1
2 t . (C.3)

The solution u verifies the following second-order algebraic equation:

u 2 − t u − y = 0 . (C.4)

The last algebraic Equation (C.4) can be also rewritten in an equivalent form:(
u − t

2

) 2
−
(
y + t 2

4

)
= 0 .

Now it is obvious that the discriminant of Equation (C.4) is

δ
def:= y + t 2

4 .

Our theory states that the complex solution u will be ramified around the locus
δ = 0 . Taking into account (C.3), two solutions to Equation (C.4) read

r±
def:= t

2 ±
√( t

2 −
√
x
) 2

.

We take two points x 0 ̸= x 1 and we consider two characteristics (C.3) passing
through these points at t = 0 . If x 0, 1 are real, we may assume that 0 < x 0 < x 1
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to fix the ideas. Along the characteristic y j
def:= x j − x

1
2
j t the solution u takes

the value x
1
2
j , j ∈ 2⊏ . A shock wave forms when two characteristics cross each

other since in the crossing point, the solution value is obviously contradictory:

x 0 ̸= x 1 =⇒ x
1
2
0 ̸= x

1
2
1 .

The crossing will take place when

x 0 − x
1
2
0 t = x 1 − x

1
2
1 t .

It can be easily checked that the characteristic y = x 0 − x
1
2
0 t meets the singular

locus δ = 0 in the real plane at time instance t 0
def:= 2x

1
2
0 . Indeed,

y 0 = x 0 − x
1
2
0 t 0 ≡ x 0 − 2x 0 = −x 0 .

Henceforth,

δ ( t 0, x 0 ) :⇒ y 0 + t20
4 = −x 0 +

(
2x

1
2
0
) 2

4 ≡ 0

and we deduce that ( t 0, x 0 ) ∈ δ< ( { 0 } ) . Moreover, it is not difficult to compute
exactly the crossing time t ⋆ :

t ⋆ = x
1
2
0 + x

1
2
1 > 2x

1
2
0 :⇒ t 0 .

We would like to explain what happens precisely at time t = t 0 . Until the crossing

time t = t ⋆ , the solution value along the characteristic y 0 is x
1
2
0 . The point is

that at time t = t 0, we change the solution branch. Indeed, for 0 < t < t 0 :

r+ :⇒ t

2 + x
1
2
0 −

t

2 ≡ x
1
2
0 ,

while for t 0 < t < t ⋆ we have

r− :⇒ t

2 −
( t

2 − x
1
2
0

)
≡ x

1
2
0 .

In other words, at the discriminant contact point t = t 0 , we have no other choice
except to jump from one solution branch to another in order to keep the constant
solution value along the given characteristic. The change in the solution branch
precedes and explains the apparition of the shock. This situation is illustrated in
Figure 14.
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Figure 14: A schematic graphical illustration of the shock wave formation in the iBE for
an IVP (C.1), (C.2) with the square root algebraic singularity.

D. Maple code

In this Appendix we provide the Maple™ code which implements one iteration of
the mapping F̃ used in Section 8:

r e s t a r t :
with ( LinearAlgebra ) :
D i g i t s := 30 ;
DEG := 25 ;

[ . . . ]

OneIter := proc ( v : : Array )
description "One␣ i t e r a t i o n ␣ o f ␣ the ␣ f i x ed ␣ po int ␣ a lgor i thm " ;
local N: : in t ege r ,K: : i n t ege r , l : : i n t ege r , p : : symbol , q : :

symbol ;
local px : : symbol , pt : : symbol , qx : : symbol , qt : : symbol ;
local qtt : : symbol , qxx : : symbol , b : : Array ,A : : Array ,B : : Array ;
local BB: : Array ,C : : Array ,M: : Matrix ,Minv : : Matrix ,B0 : :

symbol ;
local B1 : : symbol , ptt : : symbol , B0rhs : : symbol , B1rhs : : symbol ;
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local k : : i n t ege r , j : : i n t ege r ,P : : symbol ,Q : : symbol , Pt : :
symbol ;

local Qt : : symbol ,RHS : : symbol , rhs1 : : symbol , rhs2 : : symbol ;
local M11 : : symbol ,M12 : : symbol ,M21 : : symbol ,M22 : : symbol ;
p := convert ( v [ 1 ] , f l o a t ) ;
q := convert ( v [ 2 ] , f l o a t ) ;
pt := convert ( d i f f (p , t ) , f l o a t ) ;
px := convert ( d i f f (p , x ) , f l o a t ) ;
qt := convert ( d i f f (q , t ) , f l o a t ) ;
qx := convert ( d i f f (q , x ) , f l o a t ) ;
ptt := convert ( d i f f (p , t$2 ) , f l o a t ) ;
q t t := convert ( d i f f (q , t$2 ) , f l o a t ) ;
qxx := convert ( d i f f (q , x$2 ) , f l o a t ) ;
N := ArrayNumElems (v ) − 2 ;
b := Array(−3 . . N − 1) ;
b[−3 . . −1] := Array ( [ 0 . , 0 . , 0 . ] ) ;
b [ 0 . . N − 1 ] := convert ( v [ 3 . . N + 2 ] , f l o a t ) ;
K := c e i l ( (N − 2) /2) ;
B := Array (0 . . K) ;
for k from 0 to K do

B[ k ] := convert (b [ 0 ] ∗ d i f f (q , x ) ∗ ( ( k − 1 . 0 ) ∗px^2∗b [ k −
1 ] + 2 .0∗ k∗px∗qx∗b [ k ] + (k + 1) ∗qx^2∗b [ k + 1 ] ) ,
f l o a t ) ;

for j from 1 to k do
B[ k ] := B[ k ] + convert ( ( ( 1 . 0 − 1 .0/ j ) ∗px∗b [ j − 1 ] +

qx∗b [ j ] + (−p∗ d i f f (b [ j − 1 ] , x ) + 3 .0∗ d i f f (b [ j −
3 ] , x ) ) / j ) ∗ ( ( k − j − 1 . 0 ) ∗px^2∗b [ k − j − 1 ] +
2 . 0∗ ( k − j ) ∗px∗qx∗b [ k − j ] + (k − j + 1 . 0 ) ∗qx^2∗b
[ k − j + 1 ] ) , f l o a t ) ;

end do ;
B[ k ] := convert (B[ k ] − ( k − 1 . 0 ) ∗pt^2∗b [ k − 1 ] , f l o a t ) ;

end do ;
rhs1 := convert ( add ( ( p /3 . 0 ) ^k∗B[2∗ k ] , k = 0 . . f l o o r (K/2)

) , f l o a t ) ;
rhs2 := convert ( add ( ( p /3 . 0 ) ^k∗B[2∗ k + 1 ] , k = 0 . . f l o o r

( (K − 1) /2) ) , f l o a t ) ;
M11 := convert ( 4 . 0∗ qt∗add ( ( p /3 . 0 ) ^k∗k∗b [2∗ k ] , k = 0 . .

f l o o r ( (N − 1) /2) ) , f l o a t ) ;
M12 := convert ( qt∗add ( ( p /3 . 0 ) ^k ∗ (2 . 0∗ k + 1 . 0 ) ∗b [2∗ k + 1 ] ,

k = 0 . . f l o o r ( (N − 2) /2) ) , f l o a t ) ;
M21 := convert ( 2 . 0∗ qt∗add ( ( p /3 . 0 ) ^k ∗ (2 . 0∗ k + 1 . 0 ) ∗b [2∗ k +

1 ] , k = 0 . . f l o o r ( (N − 2) /2) ) , f l o a t ) ;
M22 := convert ( 2 . 0∗ qt∗add ( ( p /3 . 0 ) ^k∗( k + 1 . 0 ) ∗b [2∗ k + 2 ] ,

k = 0 . . f l o o r ( (N − 3) /2) ) , f l o a t ) ;
M := convert (Matrix ( [ [ M11, M12 ] , [M21, M22 ] ] ) , f l o a t ) ;
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Minv := Matr ixInverse (M) ;
Pt := mtaylor ( rhs1 ∗Minv [ 1 , 1 ] + rhs2 ∗Minv [ 1 , 2 ] , [ t , x ] ,

DEG) ;
Qt := mtaylor ( rhs1 ∗Minv [ 2 , 1 ] + rhs2 ∗Minv [ 2 , 2 ] , [ t , x ] ,

DEG) ;
P := dso lve ({P( 0 . ) = 0 . , d i f f (P( t ) , t ) = Pt}) ;
Q := dso lve ({Q( 0 . ) = 1 .0∗x , d i f f (Q( t ) , t ) = Qt}) ;
A := Array (0 . . N − 2) ;
for k from 0 to N − 2 do

A[ k ] := −b [ 0 ] ∗ d i f f (q , x ) ∗ ( ( k − 1 . 0 ) ∗px^2∗b [ k − 1 ] +
2 .0∗ k∗px∗qx∗b [ k ] + (k + 1 . 0 ) ∗qx^2∗b [ k + 1 ] ) ;

for j from 1 to k do
A[ k ] := A[ k ] − ( ( 1 . 0 − 1 .0/ j ) ∗px∗b [ j − 1 ] + qx∗b [ j ] +

(−p∗ d i f f (b [ j − 1 ] , x ) + 3 .0∗ d i f f (b [ j − 3 ] , x ) ) / j
) ∗ ( ( k − j − 1 . 0 ) ∗px^2∗b [ k − j − 1 ] + 2 . 0∗ ( k − j ) ∗
px∗qx∗b [ k − j ] + (k − j + 1 . 0 ) ∗qx^2∗b [ k − j + 1 ] )
;

end do ;
A[ k ] := convert (A[ k ] + (k − 1 . 0 ) ∗pt^2∗b [ k − 1 ] + 2 .0∗ k∗

Pt∗qt∗b [ k ] + (k + 1 . 0 ) ∗Qt∗qt∗b [ k + 1 ] , f l o a t ) ;
end do ;
C := Array (0 . . N − 4) ;
for k from 0 to N − 4 do

C[ k ] := convert ( add ( ( p /3 . 0 ) ^ l ∗A[ k + 2 + 2∗ l ] , l = 0 . .
f l o o r ( (N − k − 4) /2) ) , f l o a t ) ;

end do ;
B0rhs := mtaylor ( 1/ (2 . 0∗ qt )∗(−b [ 0 ] ∗ qtt − C[ 0 ] + b [ 0 ] ∗ qx ∗(

b [ 0 ] ∗ qxx + 2.0∗ qx∗ d i f f (b [ 0 ] , x ) ) ) , [ t , x ] , DEG) ;
B0 := dso lve ({B0 ( 0 . 0 ) = 1 . 0 , d i f f (B0( t ) , t ) = B0rhs }) ;
B1rhs := mtaylor ( 1/ (2 . 0∗ qt )∗(−b [ 1 ] ∗ qtt + p∗ d i f f (b [ 0 ] , t $

2) − C[ 1 ] + b [ 0 ] ∗ qx ∗(b [ 1 ] ∗ qxx + 2.0∗ qx∗ d i f f (b [ 1 ] , x )
− p∗ d i f f (b [ 0 ] , x $ 2) ) + (b [ 1 ] ∗ qx − p∗ d i f f (b [ 0 ] , x ) )

∗(b [ 0 ] ∗ qxx + 2∗qx∗ d i f f (b [ 0 ] , x ) ) ) , [ t , x ] , DEG) ;
B1 := dso lve ({B1 ( 0 . 0 ) = 1 . 0 , d i f f (B1( t ) , t ) = B1rhs }) ;
BB := Array (2 . . N − 4) ;
for k from 2 to N − 4 do

RHS := −(2.0 − 2 .0/ k ) ∗pt∗ d i f f (b [ k − 1 ] , t ) − ( 1 . 0 −
1 .0/ k ) ∗ ptt ∗b [ k − 1 ] − qtt ∗b [ k ] − 1 .0/ k ∗ (3 . 0∗ d i f f (b [
k − 3 ] , t $ 2) − p∗ d i f f (b [ k − 1 ] , t $ 2) ) − C[ k ] +
qx∗b [ 0 ] ∗ ( ( 2 . 0 − 2 .0/ k ) ∗px∗ d i f f (b [ k − 1 ] , x ) + (1 . 0
− 1 .0/ k ) ∗ ptt ∗b [ k − 1 ] + qxx∗b [ k ] + 2 .0∗ qx∗ d i f f (b [ k
] , x ) + 1 .0/ k∗(−p∗ d i f f (b [ k − 1 ] , x $ 2) + 3.0∗ d i f f (
b [ k − 3 ] , x $ 2) ) ) ;

for j from 1 to k−1 do
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RHS := RHS + ( ( 1 . 0 − 1 .0/ j ) ∗px∗b [ j − 1 ] + qx∗b [ j ] +
1 .0/ j ∗(−p∗ d i f f (b [ j − 1 ] , x ) + 3 .0∗ d i f f (b [ j − 3 ] ,
x ) ) ) ∗ ( ( 2 . 0 − 2 . 0/ ( k − j ) ) ∗px∗ d i f f (b [ k − j − 1 ] , x
) + (1 . 0 − 1 . 0/ ( k − j ) ) ∗ ptt ∗b [ k − j − 1 ] + qxx∗b [
k − j ] + 2 .0∗ qx∗ d i f f (b [ k − j ] , x ) + 1 . 0/ ( k − j )
∗(−p∗ d i f f (b [ k − j − 1 ] , x $ 2) + 3.0∗ d i f f (b [ k − j
− 3 ] , x $ 2) ) ) ;

end do ;
RHS := RHS + ( ( 1 . 0 − 1 .0/ k ) ∗px∗b [ k − 1 ] + qx∗b [ k ] +

1 .0/ k∗(−p∗ d i f f (b [ k − 1 ] , x ) + 3 .0∗ d i f f (b [ k − 3 ] , x )
) ) ∗( qxx∗b [ 0 ] + 2 .0∗ qx∗ d i f f (b [ 0 ] , x ) ) ;

RHS := mtaylor (RHS/(2 . 0∗ qt ) , [ t , x ] , DEG) ;
BB[ k ] := dso lve ({ beta ( 0 . 0 ) = 0 . 0 , d i f f ( beta ( t ) , t ) =

RHS}) ;
end do ;
return convert ( Array ( [ convert ( s e r i e s ( rhs (P) , t = 0 , DEG) ,

polynom ) , convert ( s e r i e s ( rhs (Q) , t = 0 , DEG) ,
polynom ) , convert ( s e r i e s ( rhs (B0) , t = 0 , DEG) ,
polynom ) , convert ( s e r i e s ( rhs (B1) , t = 0 , DEG) ,
polynom ) , seq ( convert ( s e r i e s ( rhs (BB[ j ] ) , t = 0 , DEG) ,
polynom ) , j = 2 . . N − 4) ] ) , f l o a t ) ;

end proc ;

The code provided above was used to study the convergence of initial data (8.1),
(8.2) and all the others from Section 8. A few modifications are needed to run
the IVP (8.4). The complete programs can be obtained under a simple request by
email.

E. An example of a genuinely nonlinear problem

Sometimes, an example is worth one thousand words. In our terminology, the
following Cauchy problem is nonlinear (quasi-linear) but not genuinely nonlinear:

u t t − uu x x = 0 , u ( 0, x ) = c 1 x + c 2 x
1 + 1

3 ,

for some real non-zero constants c 1, 2 ∈ R× . In contrast, the following PDE is
genuinely nonlinear:

u t t − u x u x x = 0 , u ( 0, x ) = c 1 x + c 2 x
1 + 1

3 .

In reality, this notion depends on the operator and on the initial condition as well.
That is why we speak above about the Cauchy problem instead of just a PDE.
The notion of a genuinely nonlinear problem was made more precise in Section 9.
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