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The Fortuin—Kasteleyn polynomial as a bialgebra morphism
and applications to the Tutte polynomial

Loic Foissy and Claudia Malvenuto

Abstract. We compute an explicit formula for the antipode of the double bialgebra of graphs
in terms of totally acyclic partial orientations, using some general results on double bialgebras.
In analogy to what was already proven in Hopf-algebraic terms for the chromatic polynomial of
a graph, we show that the Fortuin—-Kasteleyn polynomial (a variant of the Tutte polynomial)
is a morphism of the double algebra of graphs into that of polynomials, which generalizes the
chromatic polynomial. When specialized at particular values, we give combinatorial interpre-
tations of the Tutte polynomial of a graph, via covering graphs and covering forests, and of
the Fortuin—Kasteleyn polynomial, via pairs of vertex-edge colorings. Finally we show that the
map associating to a graph all its orientations is a Hopf morphism from the double bialgebra of
graphs into the one of oriented graphs, allowing to give interpretations of the Fortuin—Kasteleyn
polynomial when computed at negative values.
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Introduction

In [1] George D. Birkhoff introduced the notion of chromatic polynomial. It counts
the number of proper graph colorings as a function of the number of colors. Later
[2] Birkhoff and Lewis studied it extensively in the restricted case of planar graphs
in the attempt to solve the so—called “four color problem”. In 1932, Hassler Whit-
ney [15] and then William Tutte [14] generalized the chromatic polynomial to a
new polynomial, which Tutte called the dichromate of a graph but it is better
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known as the Tutte (or Tutte-Whitney) polynomial, and plays an important role
in graph theory. It is a polynomial in two variables associated to an undirected
graph and tells a lot of information about the way a graph is connected. It actually
contains several specializations from other domains, such as the Jones polynomial
from knot theory and the partition functions of the Potts model from statistical
physics. Thanks to his results, it is observed there that the theory of spanning
trees links the theory of graph—colorings to that of electrical networks. Another
polynomial related to it is the Fortuin—Kasteleyn polynomial: it appears in the
random-cluster model, a generalization both of the percolation model and of the
Ising model. Cees Fortuin and Cornelius Kasteleyn in [7, 8] show that the the-
ory of the random-cluster model is intimately connected with the combinatorial
theory of graphs. The physical question for a medium with randomly distributed
pores through which a liquid percolates is modeled mathematically as a three-
dimensional network of n x n x n vertices, usually called “sites”, in which the edges
or “bonds” between each two neighbors may be open (allowing the liquid through)
with probability p, or closed with probability 1 — p, and they are assumed to be
independent. Therefore, for a given p, it is natural to ask for the probability that
an open path (each of whose links is an “open” bond) exists from the top to the
bottom, and for the behavior of the system for large n. This problem, called bond
percolation model, was introduced in 1957 by Broadbent and Hammersley [4] and
has been studied intensively by mathematicians and physicists since then.

It was clear that standard operations/transformations on combinatorial objects
have an algebraic nature, since the seminal work of [10], and even more coalgebras
operations of cutting the objects into smaller pieces have strong significance. In
fact the three graph polynomials above mentioned satisfy a recurrence based on
some graph operations called deletion and contraction of edges. The advantage
of the Tutte and the Fortuin—Kasteleyn polynomials is that during the recursive
process they loose much less informations than the chromatic polynomial. The
way we treat these polynomials and their significance in graph theory, however,
takes a different approach: that of combinatorial Hopf algebras.

Several notable results that go in this direction are contained in the first au-
thor’s work [5], where the chromatic polynomial is characterized as the unique
polynomial invariant of graphs, compatible with two interacting bialgebras struc-
tures on graphs: the first coproduct is given by partitions of vertices into two parts,
the second one by a contraction—extraction process. This gives Hopf-algebraic
proofs of Rota’s result on the signs of coefficients of chromatic polynomials and of
Stanley’s interpretation of the values at negative integers of chromatic polynomi-
als.

The aim of the present work is to study this phenomenon in more detail, to
extend it to the other polynomials mentioned inserting them into the theory of
combinatorial Hopf algebras, and to recover new simpler proofs of classical results
on Tutte and Fortuin—Kasteleyn polynomials.

We start recalling in Section 1 the notion of double bialgebras due to the first
author (which appears in [6] as cointeracting bialgebras), that is to say bialgebras
with two coproducts, the first one being a comodule morphism for the coaction
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induced by the second one, and the main related results on the monoid of charac-
ters and their actions that will be used later. In Section 2 we describe the central
example of a double bialgebra on graphs, as introduced in [5] and a variation on
oriented graphs, in which the first coproduct comes from splitting a graph G in two
parts, taking the induced subgraphs via a bipartition of its vertices. The second
coproduct comes from a “deletion/contraction” process. We are able to express
the antipode of the second Hopf algebra. We then go to the Fortuin—Kasteleyn
polynomial, seen as a Hopf morphism of the Hopf algebra of graphs into the Hopf
algebra of polynomials in one indeterminate, and express some invariants of graphs
as characters making use of the general results on bialgebras. The so-developed
algebraic frame allows us to give in Section 3 some combinatorial interpretation
to both Tutte and Fortuin—Kasteleyn polynomials when specialized at particular
values: these results are analogue of the statement in [5] that the chromatic poly-
nomial of a graph is the unique polynomial invariant on graphs compatible with
both bialgebraic structures. We end with some results on orientations of graphs,
in Section 4: the map associating to a graph the sum of all possible orientations
on G is a Hopf-morphism, and we recover — giving easy proofs — some known but
complex results on specializations of Tutte’s polynomial.

Notations 0.1. 1. We denote by K a commutative field of characteristic 0. Any
vector space in this field will be taken over K.

2. For any n € N, we denote by [n] the set the first n strictly positive integers
{1,...,n}. In particular, [0] = &J.

1. Reminders on double bialgebras

Definition 1.1. A double bialgebra is a quadruple (A,m,A,d) with a product
m: AQ A — A and two coproducts A,5: A — A® A such that:

o (A,m,A) is a bialgebra. Its counit is denoted by ea.
o (A,m,9) is a bialgebra. Its counit is denoted by €.
o The following compatibilities are satisfied:
(ea®Id)od =noen,
(A®Id)od =mi1320(0®I)0A,
where

K — A A®L — A
n: { m1,3,24" { aRbR®c®d — a®cbd.

r +— xly,

Ezample 1.1. The polynomial algebra K[X] is a double bialgebra, with the two
multiplicative coproducts A and ¢, defined by

AX)=X®1+1®X, 5(X)=X®X.
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The two counits are given by
VP e K[X], ea(P) = P(0), es(P) = P(1).

If (A, m,A,¢) is a double bialgebra, its set of characters Char(A) inherits two
convolution products, each making Char(A4) a monoid:

VA, p e Char(A), Aspp=(A®@u)oA, Axp=(A®u)od.
The compatibility between A and ¢ implies that
VA, i, v € Char(A), Asxp)*v=(Axv)=* (u*xv).

Theorem 1.2 ([6, Proposition 2.5]). Let (A, m,A,d) be a double bialgebra and
(B, m,A) be a bialgebra. We denote by Ea_ g the set of bialgebra morphisms from
(A,m,A) to (B,m,A). The following map is an action of the monoid (Char(A), x)
onto Ex_p:

EAHB®ChaI‘(A) — EAHB
(¢, 0) — pem A= (6@ 0d.

Notations 1.1. Let (A,m,A) be a bialgebra. We denote by A, = Ker(ena) its
augmentation ideal. We denote by A: A, — A, ® A, defined by

Yae Ay, Ala) =Aa) —a®1ls— 14 ®a.
(n+1)

It is coassociative, and we can consider its iterations AM: A, — AS? ,
inductively defined by

A _ Ida, ifn =0,
(APD@Id)o Aifn > 1.

We shall say that (A, m,A) is connected if
Ay = U Ker(A™M).
n=0

If (A, m,A,0) is a double bialgebra, we shall say that it is connected if (A, m, A)
is connected.

Theorem 1.3 (|6, Theorem 3.9 and Corollary 3.11]). Let (A, m,A,d) be a con-
nected double bialgebra.

1. For any A € Char(A), there exists a unique ¢x € Ex_g[x] such that esopy =
A Foranyae A,

X(X-1)...(X—n+1)
n!

¢ala) = i A8 o A1) (g)
n=1
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2. The map ¢, is the unique double bialgebra morphism from (A,m,A,d§) to
(K[X], A, 6).

3. The two following maps are bijections, inverse one from the other:

EA—»K[X] — Char(A) Char(A) I EA—»K[X]
¢ —> €500. A — ¢>\:¢55"""‘)\-

Theorem 1.4 ([6, Corollary 2.3]). Let (A,m,A,d) be a double bialgebra, such
that (A, m,A) is a Hopf algebra. We denote by eg‘_l the inverse of the character
es for the convolution associated to A. Then the antipode of (A, m,A) is given by

S=(e"1®Id)od.

Ifp: (A,m,A,5) — (K[X],m, A, ) is a double bialgebra morphism, then for any
TEA,

2. Bialgebraic structure on graphs

2.1. Products and coproducts

We refer to [3] and [9] for classical definitions and notations on graphs. A (simple)
graph is a pair G = (V(G), E(Q)), where V(G) is a set, whose elements are called
the vertices of the graph, and F(G) < (V(QG)) is a subset of unordered pairs of

vertices, called the edges of G. We shall denote by G the set of (isoclasses of)
graphs. The vector space generated by G will be denoted by Hg.

Ezxample 2.1.

o Lol VoV L
NI RAUDELLY. VI e

If G and H are two graphs, their disjoint union is the graph GH defined by
V(GH) =V (G)uV(H), E(GH) = E(G)u E(H).

This yields a commutative and associative product m on Hg, whose unit is the
empty graph 1.

Let G be a graph and I < V(G). The subgraph induced in G by I, denoted here
by G|, is defined by

V(G) =1, E(G) = {{z,y} e B(G) |2,y € I}.

Using the notion of induced subgraph, any bipartition (I,V(G)\I) of vertices
“splits” the graph into two pieces, G|; and G|y (g): this in turn allows to de-
fine a cocommutative and coassociative coproduct A on Hg (see Schmitt [12])
given by

VG e G, A(G) = Z Gr® G-
1SV (G)
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Its counit e is given by

VG e G, ea(G) = b1
Example 2.2.
AL)=®14+1®.,
Ah=Il®1+10l+2.0.,
AVY=Ve1+1eV +3.01 +3l®.,
AVY=Ve1+1gV +2.9l+.@.. +2l@.+..®.,
AR =NKe1+1eaXR +4. 9V +6le! +4V @,
A =Ugi+1ed +2. 0V +2.0V

+4lel+l@ee+ee@l+2V . +2V ®.,
Ay =Ugri+1ell+.oV+2.0V +.0l.
+2lel+2..0l+2l®.. + Vo.+2Ve.+1l.®.
A =HOei+1ed+4.0V +4l@l +2..0.. +4V ..,
A =Kl1+19le+3. 9V +3.@... +3l®..
430 @1+ V@t e®uun,
Al =Ugil+iegd+2.0V +2.01.
12lol+2.e@ee+ @l tl®ec 2V ®. 42l ®..

Let G be a graph and let £(G) the set of equivalence relations on the vertices
V(G). For ~ € £(G), denote by 7. : V(G) — V(G)/ ~ the canonical surjection.
We define the contracted graph G/ ~ by

V(G/ ~) =VI(G)/ ~, BE(G/ ~) = {{r(z), 7 (y)} [ {z,y} € E(G), 7~ () # 7~ (y)}-

We define the restricted graph G |~ by

V(G [~) =V(G), EG|~)={{z,y}e EG)|r(x) =7 (y)}-

In other words, G |~ is the disjoint union of the subgraphs G|¢, with C € V(G)/ ~.
We shall say that an equivalence ~ on V(G) is in &(G) if for any equivalence
class C' € V(G)/ ~ the graph G|¢ induced by C is a connected graph. So, for
any equivalence on V(G) under the assumption of taking classes being connected,
contraction and restriction give two graphs associated to G.

Remark 2.1. For an edge e = {x,y} € E(G), let ~. be the equivalence whose

classes e V(G/ ~e) = {{x,y}} U

ZFT,Y
Then ~.€ E.(G): for simplicity, we will denote by G/e the contracted graph G/ ~..
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We thus define a second coproduct § on Hg by

VG e G, (G = > G/ ~®G|~.
~ €&.(G)

This coproduct is coassociative, but not cocommutative. Its counit €5 is given by

VG e G, eg(G)Z{lifE(G)ZQ’

0 otherwise.

Ezxample 2.3.
5(s)=®-,
(h=l®..+.01,
(VM =V®..+.0V +3ll.,
sS(VY=V®..tr20el.,
(Y =HR@...+. 0R+6Vel.. +la 6l +4V.),
() =B@eeee+. 0 +uV+Vel..+ 1@l +2.V +2.V),
s(My-=U@.ee.+. U +(V+3V)el..+ 1ol +.V +2.V),
(=@ +.0d+4Vel.. +lo@ll +4.V),
() =K@ +. 0K +3Vl..+3l0.V,
(M =UH®.ee+r. 0l +3Vel..+lodl+2.V).

Proposition 2.1 ([5, Theorem 1.7]). (Hg,m,A,d) is a double bialgebra.

As (Hg,m,A) is a graded and connected bialgebra, it is a Hopf algebra. Its
antipode is denoted by S. The invertible characters for the convolution * induced
by ¢ are given by the following:

Lemma 2.2 ([5, Theorem 2.1]). Let A € Char(Hg). It is invertible for the product
* if, and only if, \(.) # 0.

For a set X (the set of “colors”), recall that a proper X-coloring of a graph
G is an assignment of an element of X to each vertex f : V(G) — X such that
adjacent vertices are assigned different colors. The chromatic number x(G) of G
is the minimum number of colors in a proper vertex coloring of G:

X(G) =min {|f(V(G))| : f is a proper coloring of G} .

For any k € N, we call k-proper coloring of G any proper coloring using at most
k colors and denote by ¢cpn-(G, k) the number of proper k-colorations of G. If
|[V(G)| = 0, one takes this number to be 1. It is a well-known result that ¢, (G, k)
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is a polynomial in k with integer coeflicients: it can be extended to a unique
polynomial ¢cp,(G) = denr (G, x) € K[x], called is the chromatic polynomial, an
important invariant of graph theory. The problem of coloring a graph can be
reduced to the problem of coloring two graphs derived from G: for e = {a,b} €
E(G), if G — e is the graph obtained by G removing the edge e, and G/e is the
graph obtained by G by contraction of e, then the following holds:

¢ChT(G) = ¢chr(G - 6) - (bchr(G/e)-
Proposition 2.3 (|5, Theorem 2.4 and Proposition 2.2]).

1. The unique double bialgebra morphism from the double algebra of graphs
(Ha,m, A, 6) to (K[X],m,A,d) (by virtue of Theorem 1.3) is the chromatic
polynomial P

2. The following morphism is a Hopf algebra morphism from (H,G,m,A) to
(K[X],m,A):

He — K[X]
o = GeG — xlVer

2.2. Double bialgebra of oriented graphs

An oriented graph is a pair G = (V(G), A(G)), where V(G) is a finite set, called
the set of vertices of G, and A(G) a set of ordered pairs of distinct elements of
V(G), i.e.

A(G) < V(G) x V(G)\{(z,z)|z € V(G)}.

The elements of A(G) are called the arcs of G. The set of (isoclasses of) oriented
graphs is denoted by G,. (Note that we are not considering loops on oriented
graphs, that is to say arcs whose both extremities are equal).

Let us recall the double bialgebra structure on oriented graphs of [11]. As
a vector space, Hg, is the vector space generated by G,. If G,G’ € G,, their
product is the graph GG’ defined by

V(GG =V(G)uV(G), A(GG") = A(G) u A(G").
This induces a commutative and associative product m on Hg,, whose unit is the
empty graph 1.
Let G be an oriented graph and I < V(G). The oriented subgraph G| is
defined by
V(G) =1, A(G)r) = {(z,y) € AG) | z,y € I}.
We shall say that I is an ideal of G if for any z,y € V(G),

xeland (r,y) € A(G) = yel.
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These notions induce a commutative and coassociative coproduct A on Hg, given
by

VG e G, AG) = > =Gi®Gven
I ideal of G

Its counit e is given by

VG e GO, EA(G) = 5G,1-

Let G be an oriented graph and let ~ be an equivalence relation on V(G). We
define the contracted oriented graph G/ ~ by

V(G ~) =V(G)/ ~,
AG) ~) ={(m~(2), 7 (y)) | (2,9) € A(G), T~ (2) # 7~ (y)},

where 7. : V(G) — V(G)/ ~ is the canonical surjection. We define the restricted
oriented graph G |~ by

V(G |~) =VI(G), A(G |~) = {(z,y) € AG) [ mo(x) = 7 (y)}-

In other words, G |~ is the disjoint union of the oriented subgraphs G|., with
7 € V(G)/ ~. We shall say that ~e £.(G) if for any class C € V(G)/ ~, G|¢ is a
connected graph. We then define a second coproduct § on Heg, by

VG e G, (G = D G/~®GC|~.
NGSC(G)

This coproduct is coassociative, but not cocommutative. Its counit €5 is given by

VG e Gy, eé(G):{“fE(G)_@’

0 otherwise.

Theorem 2.4 ([11]). (Ha,,m,A,d) is a double bialgebra.

2.3. The antipode for graphs
Definition 2.5. A mized graph is a triple G = (V(G), E(G), A(Q)), such that:
e V(Q) is a finite set, whose elements are the vertices of G.

e E(G) is a set of unordered pairs of elements of V(G), whose elements are
called the edges of G.

o A(G) is a set of ordered pairs of elements of V(G), made of distinct elements,
called the arcs of G.

We assume that the following conditions hold: for any x,y € V(G), distinct,
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o If{x,y} € E(G), then (z,y) ¢ A(G) and (y,x) ¢ A(G).
o If (x,y) € A(G), then (y,z) ¢ A(G) and {z,y} ¢ E(G).

Mixed graphs have interesting applications. For example, in operational re-
search they may be used to model the so-called “job-shop scheduling problems”,
in which a collection of tasks is to be performed, subject to certain timing con-
straints: undirected edges represent two tasks that cannot be performed simulta-
neously, and directed edges represent precedence constraints, when one task must
be performed before another one. A different example comes from Bayesian infer-
ence, where acyclic mixed graphs (that is graphs with no cycles of directed arcs)
are used: undirected edges indicate a non-causal correlation between two events;
directed edges indicate a causal correlation in which the outcome of the first event
influences the probability of the second event.

Definition 2.6. Let H be a mized graph. We associate to it two simple graphs
gr(H) and gry(H), defined respectively removing the orientations of the oriented
edges, and removing the oriented edges, that is:

Vigr(H)) = V(H), E(gr(H)) = E(H) v {{z,y} | (z,y) € A(H)},
Vigro(H)) = V(H),  E(gro(H)) = E(H).

Definition 2.7. Let G € G. A partial orientation of G is a mixed graph H such
that gr(H) = G. We shall say that a partial orientation is not totally acyclic if
there exists a sequence (g, ..., Ty) of vertices of G such that:

o n =2

o Iy =1Tp,.

e Foranyie€ [n], {ri-1,2:} € E(H) or (z;—1,%;) € A(H).

o There exists at least one i € [n] such that (x;—1,x;) € A(H).

The set of totally acyclic partial orientations of G is denoted by POyuc(G).
Remark 2.2. For any graph G, G € PO44.(G).

Definition 2.8. An orientation of a simple graph G is an assignment of one and
only one ordering (or direction) to each edge {u,v}, denoted by (u,v) or (v,u), as
the case may be. In other words, an orientation of G is a mized graph H where
E(H) =& and gr(H) = G. An orientation H of G is said to be acyclic if it has
no directed cycles, that is if there is no sequence (zg,...,x,) of vertices of G such
that:

o n = 2.
® Top=2Tp.

o For any i€ [n], (xi—1,2;) € A(H).
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Proposition 2.9. The antipode S of (Ha,m,A) is given by

VG e G, S(G) = > (—1)eclEogr (/)
HePO . (G)

where for any graph K € G, cc(K) is the number of connected components of K.

Proof. We make use of a well known result by Stanley [13]. It states that the
chromatic polynomial of a graph evaluated at —1 is up to sign the number of its
acyclic orientations, more precisely:

benr (G)(=1) = (=)@l {acyclic orientations of G}.

Let us apply Theorem 1.4. The morphism ¢, is a double bialgebra morphism
from (Hg,m, A, d) to (K[X],m,A,d), so, for any G € G,

6:;_1 (G) = ¢chr(G) (_1)
For ~e £.[G], denote by cl(~) the number of its equivalence classes. Hence,

S(G) = Z (—1)?"™) |{acyclic orientations of G/ ~}|G |~ .
~€e&[G]

Let us consider the set

A= |_| {acyclic orientations of G/ ~}.
~€&.[G]

Let H = (V(GQ),E(H),A(H)) € PO(G). We denote by ~p the equivalence
whose classes are the connected components of the graph gro(H). If r € V(G)/ ~mx,
then H\. is connected. As G|, has more edges than H|, (because the edges of H
are edges of (), it is connected, so ~g€ E:[G]. Let us assume that (x,y) € A(H),
and let ' ~gy x, ¥ ~pg y, such that {x,y} € E(G). There exist non oriented paths
(091, oyt and (2,35, ..,y ) i H. IE !, 3} € E(H) or (y,a') € A(H),
then the sequence (z,y,y1, ..., Yk, ¥, 2,21, ..., 2], x) proves that H is not totally
acyclic: this is a contradiction. So (2/,y’) € A(H). Hence, H induces a total orien-

tation of G/ ~ g, which we denote by H/ ~p. It is acyclic: if (Zg, ..., Tn, Tg) is an
oriented cycle in H/ ~py, there exist sequences (zj,, ..., z,,y}) and (zf, ..., 20, y5)
such that:

e For any 4, 2} ~g a) ~pg x; and Y\ ~g y§ ~u To.
e For any i, (z,2],,) € A(H) and (y,y0) € A(H).

By definition of ~p, there exists a non oriented path in H from z} to 2/ for any
i and from y to x{. Hence, we obtain a cycle in H, containing at least one arc
of H: H is not totally acyclic, this is a contradiction. So H/ ~p is acyclic. We
obtain a map
0 { ’P(ch(G’) I .A
' H — H/~py.
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Let us prove that 6 is injective. Let Hy, Hy € POy4.(G) such that Hy/ ~p, =
Hg/ ~Hy- Then ~H,="~H,- Let (l‘,y) € A(Hl) Then (f,?) € A(Hl/ ~H1) =
A(Hy/ ~p,), so (z,y) € A(Hz). By symmetry, A(Hy) = A(Hz), so Hy = Ho.

Let us prove that @ is surjective. Let ~e £[G] and H be an acyclic orientation
of G/ ~. We define a partial orientation H of G as follows:

A(H) = {(z,y) | {z.y} € E(G), (.7) € A(H)}.

It is totally acyclic: any cycle in H containing at least one arc induces an oriented
cycle in H of length at least two, which is not possible as H is acyclic. As ~€ &.[G],
its classes are the connected components of G |~, which is equal to gry(H) by

construction of H. Hence, ~y=~ and 6(H) = H.

Finally,
S(GQ) = Z (—=1)%'™)|{acyclic orientations of G/ ~}|G |~
~e&[G]
= Z (—1)°(@™) [{acyclic orientations of G/ ~}|G |~
~€e&[G]
— Z (_1)CC(gro(H))gr0(H). O
HEPO0e(G)

2.4. The Fortuin and Kasteleyn’s polynomial as a Hopf morphism

The Fortuin—Kasteleyn polynomial, which is due to Fortuin [7], and Fortuin and
Kasteleyn [8], is a two variable polynomial, comes from a random cluster model,
and it is a variant of the Tutte polynomial. We recall here both the definitions.

Notations 2.1. For G € G, if I' € E(G), denote by G| the subgraph of G defined
by

V(G|r) = V(G), E(Gp) =F.
Definition 2.10. Let G € G.

1. A spanning graph of G is a graph H with V(H) = V(G) and E(H) < E(G).
The set of spanning graphs of G is denoted by S(G). The set of spanning
forests of G (that is, spanning graphs of G which are acyclic) is denoted by
SF(G).

2. A covering graph of G is a spanning graph H of G such that cc(H) = cc(G).
The set of covering graphs of G is denoted by C(G). The set of covering
forests of G (that is, covering graphs of G which are forests) is denoted by
CF(G).

Remark 2.3. 1. Let G € G and H € S(G). The connected components of G
are disjoint union of connected components of H, so cc(H) > cc(G). If H is
a covering graph of G, then the connected components of G and H are the
same.
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2. The spanning graphs of G are the graphs G|p, with F' € E(G). Therefore,
for any graph G, |S(G)| = 2/E(@),
Definition 2.11. To any graph G € G, we associate the Fortuin—Kasteleyn poly-
nomial Zg(X,Y) € K[X,Y] defined by
Za(X,Y) = Z xceGr)y Il
FCE(G)

Recall that the rank of a graph G € G is the number r(G) = |[V(G)| — cc(G);
the nullity n(G) of G is defined by the relation n(G) + r(G) = |E(G)].

Definition 2.12. The rank-generating polynomial associated to G € G 1is:
Se(X,Y)= Y X"@=rCrlyn@r),
FCE(G)
The Tutte polynomial Tg(X,Y) € K[X,Y] is a simple function of the rank-
generating polynomial:
Te(X,)Y)=Se(X -1,Y —-1)
— Z (X — 1)~cc(@tec(Gr) (y _ 1)ee(Gr)+HIFI=IV(G)
FCE(G)

(X =)Dy =) MO KT (X =) = 1) v -l
FCE(G)

Remark 2.4. 1. The previous equality on the Tutte polynomial and the defi-
nition of the Fortuin—Kasteleyn polynomial yield that the two polynomials
satisfy the following relations:

Te(X,Y) = (X — 1)@y — 1) V@l zo(X —1)(Y —1),Y —1); (2.1)

equivalently,

X
Za(X,Y) = X@y V(@)@ T, (Y +1,Y + 1) . (2.2)

2. It should be noted that Zg and T are classically defined on graphs with
multiple edges and with loops. However for the purpose of the Hopf structure
we are interested in, they do not have significance in the coproduct (and
we restrict our attention to simple graphs). Tutte’s polynomial satisfies a
recursion which uses the “deletion/contraction” of edges, similarly to the
chromatic polynomial. More precisely, starting from the value Tg, (X,Y) =
1 (with E,, the empty graph), one has

XTa_e if e is a bridge,
Te(X,Y)=1< YTg_. if e is a loop,
To—e +Tgje if e is neither a bridge nor a loop,

where a bridge for G is an edge e € E(G) such that its deletion increases the
number of connected components.
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Theorem 2.13. Let y € K. We put

. He — K[X]
W GeG — Za(X,y)

Aid Ge@ — ) yIPenl
HeC(G)

, He — K
Foil geg — (1+y)B@1

Then (, is a Hopf algebra morphism from (Hg, m,A) to (K[X],m,A) and A\, and
ly are characters of Hg. Moreover,

Cy :¢0 MAy :¢chr Ly

Proof. Let G1,Go € G. Then, for the set of covering graphs of the product, one
has

C(Gng) = {HlHQ | H1 € C(Gl), Hg € C(Gg)}
This implies that A, is a character. Obviously, p, is a character.
Let G € G and let F € E(G). We define an equivalence ~pe E[V(G)] such that
the classes of ~p are the connected components of G|g. Let 7 be a class of ~p.
Then (G|r)|, is connected by definition. As this graph has less edges than G|, the
latter is connected. So ~pe £[G]. Moreover, G|p is a covering graph of G |~p,
as the connected components of G |~p are the classes of ~p, that is to say the
connected components of G|p. Therefore,

(@) = Y Xy
FCE(G)

— 3% xeeyleen)

~€e&:[G] HEC(G|~)

— Y xeeEylEa)

~e&.[G] HeC(G|~)

= Z Z X V(G EEH)

~e&.[G] HeC(G|~)
= D do(G/ ~)N(G |~)
~e&:[G]
= (¢0 e~ Ay)(G).
So (y = ¢g e~ Ay. As ¢¢ is a Hopf algebra morphism and A, is a character, ¢,

is a Hopf algebra morphism. Therefore, by Theorem 1.3, there exists a unique

character p, € Char(Hg) such that {, = ¢epyr <~ fiy. Still by Theorem 1.3, this
character is p, = €5 0 ¢ for any G € G,

my(G) =G (@ W) = D) yFl = 14y m

FCE(G)
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Remark 2.5. As (, is a Hopf algebra morphism for any y € K, identifying K[X]|®
K[X] and K[X7, X5], we obtain that for any graph G € G,

Zo(X1+ X2,Y) = Y Za,(X1,Y)Za,, (X2, Y).
V(G)=TuJ
Proposition 2.14. For any graph G € G,
ZG(X, _]-) = ¢chr(G)7
Z(X,0) = ¢o(G),
¢chr(G) _ (_1)|V(G)|+CC(G)XCC(G)TG(1 o X, O)
Proof. For any graph G € G,

1if E(G) = &,
0 otherwise,

p-1(G) = {

so p—1 = €5. Therefore,

(=1 = Qchr « €5 = e

Using (2.2), we obtain the relation between ¢.p, and T (1 — X, 0). Moreover, if
the graph G € G has E(G) # ¢, then for any H € C(G) one has E(H) # &. It
follows

1if B(G) =,
Mo(G) = ( ) g
0 otherwise,
so A\g = €5. Consequently,
Co = ¢o < €5 = ¢o. O
*—1

Proposition 2.15. The character p is invertible for the convolution x and pi~" =
A_1. For anyyeK,

,LLyZILLQ*)\y, )\y=>\_1 * [y
Proof. For any G € G,
€50 ¢o(G) = 1V =1 = (@),
S0 €5 0 g = pp. Moreover,
Hy = €5 © Cy

=€e0(Ppg®@Ay) 00

= ((e50¢0) ®Ay) 00

= (Lo ®Ay) 04

= Ho *>\y-

As noticed in the proof of Proposition 2.14, pu_1 = €5, s0 €5 = g * A_1. As
po(s) = 1, po is invertible for » (Lemma 2.2) and p§~' = \_;. O
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Proposition 2.16. For any graph G,

Zo(-XY)= > (-1)cEetz gy (X,Y),
HePO+4c(G)

Te(2-XY)= > (1—X)cEo =@, @ (X,Y).
HePOy:(G)

Proof. For any y € K, (, : (Hg,m,A) — (K[X],m, A) is a bialgebra morphism;
as both (Hg,m,A) and (K[X],m,A) are Hopf algebras, ¢, is a Hopf algebra
morphism, that is to say S o, = ¢, oS. For any graph G, this gives, with
Proposition 2.9,
Za(—X,y) = S0 ¢y(G)
= (y 0 S(G)

—6 | X g ()
HePOy:(G)

— Z (_1>CC(gr0(H))ZgrO(H)(X; y),
HePOy4c(G)

which implies the first result. Then,

Te2-X,Y)= (X —1)" <@ - 1) V@lz,(Xx —1)1-Y),1-Y)
= (1)1 - X)" Dy —1)" VD Z5(-(1 - X)(1 - Y),1-Y)

= Z (—1)cclero(H))=ce(G) (1 _ x)=cel@)(y — 1)~IV(G)
HEPO40e(G)

ZgrO(H)((1 - X)(l - Y)7 1- Y)

= Z (—1)cclero(H))—ec(G) (1 _ X)CC(grO(H))_CC(G)Tgro(H)(X7 Y)
HEPO 10 (G)

= Z (X — 1)CC(gro(H))*CC(G)Tgro(H) (X,Y). 0
HePOy:(G)

3. Combinatorial interpretations

3.1. For the Tutte polynomial

Lemma 3.1. For any graph G € G, for any y € K,
M(G) = yV OO TG (1,1 + ).

Proof. By (2.2),

. G(G) —cc
Jim ey =0T 114y
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Moreover,
Cy(G) = (¢o <~ )‘y)(G) = Z XCI(N))‘y(G |~).
~€€.[G]

If ~e £.[G], then cl(~) = cc(G), as the classes of ~ are connected, and cl(~) =
cc(@) if, and only if, ~ is the equivalence ~. whose classes are the connected
components of G. Therefore,

im ) @) = 0 (@). 0

X—0 XCC( )

Proposition 3.2. For any graph G € G,
Proof. For y = 1, by the previous Lemma one has

To(1,2) = M(G) = >, 1FHl=je(@)).
HeC(G)
Let G be a covering graph of G. Then G has at least |V(G)| — cc(G) edges, with
an equality if, and only if, G is a covering forest of G. Hence,

A (G) = 3V @O @ e F(G)| + O <y\V(G)\—cc(G)+1) .

This implies

B0 V(@) =ee(@)

= [eF(@)] = lim To(1,1+y) = To(1,1), O
Proposition 3.3. For any graph G € G, T(2,1) = |SF(G)|.
Proof. For any x € K| by (2.2),
C(G)(z) = 2@ gV D=l T,(21 + ) = 2V DIT4(2,1 + ).
Moreover,
G(G)(@) = (do o A)(@) (@) = D) Y, & ITIEUDL
~e&.[G] HeC(G|~)

Let ~e &.[G] and H € C(G |~). Then H has cc(G |~) = cl(~) connected
components, so |E(H)| = |V(G)| — cc(~) and cl(~) + |E(H)| = |V(G)|, with
equality if, and only if H is a forest. Conversely, if F' € SF(G), denoting ~p the
equivalence whose classes are the connected components of G, then ~pe E.[G]
and, moreover, I € C(G |~F), contributing with x!V(&)l:

6(G)(2) = |SF(G))2V D + 0 (xIV(G)|> _
Finally,

. G(G) (@)
Jim T(G)T — |SF(G)| = T5(2,1). O
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3.2. For the Fortuin and Kasteleyn’s polynomial

Proposition 3.4. Let G be a graph and let (x,y) € NxN. A compatible (x,y)-pair
of colorings of G is a pair of maps (cv,cg)

cev: V(G) — {1,...,a}, cg: E(G) — {0,...,y},

such that for any e = {v,w} € E(G), cg(e) # 0 if, and only if cy (v) = cy(w). We
denote by PCy ,(G) the set of compatible (x,y)-pairs of colorings of G. For any
zeN, foranyye Zs_1,

Za(x,y) = [PCays1(G)].

For any x € N, for any y € Nxq,

—1
Za(z,—y) = 2 (=1)lee (w=1DI,
(Cv,CE)EPCw,yfl (G)

Proof. As (y = ¢epr <~ piy, for any graph G,

ZG(x7y) = Z ¢chr(G/ ~)($)(1 + y)‘E(G‘N)‘
~€e&[G]
= Z |{proper a-colorings of G/ ~}|(1 + y)/ECI~I,
~e&.[G]

Let f = (cv,cg) be a compatible (z, z)-pair of colorings of G, with z € N. We
define an equivalence ~ on V(&) by

v~ w = cy(v) = ey (w).

This has no reason to be in £ [G]: we now define ~¢ as the equivalence whose
classes are the connected components of G |~} Then ~ je £.[G]. As cy is constant
on the classes of ~, it induces a (vertex) coloring of G/ ~;. This coloring is a
proper vertex-coloring of G: if {C, D} is an edge of G/ ~, there exists an edge
{v,w} in E(G), with v € C and w € D. By absurd, if ¢y (v) = cy(w), then v,w
are in the same connected component of G |~ as they are linked by an edge, so
v ~¢ w: a contradiction, C' # D. Hence, cy(v) # cv(w).

Conversely, if ~e £.[G] and f is a proper a-coloring of G/ ~, f can be extended
to a map of all vertices c¢o : V(G) — [z], assigning to each vertex in a class of
~ the color it has in the coloring of G/ ~. By the condition of compatibility for a
pair of (vertex, edge)-coloration, there exist exactly ZIEGIM] maps ¢ completing
cc to a compatible (x,1 + y) pair of colorings. Hence, Zg(z,y) is the number of
compatible (x,y + 1)-pairs of colorings of G.
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Similarly, if z,y € N,

Za(w,—y) = Y, Genr(G/ ~)(@)(1—y)PE)

~e&.[G]

= Z |(—1)E(G|~){proper x-coloring of G/ ~}|(y — 1)\E(G\~)\
~€e&.[G]

= 2 (_1)|CEI([1/*1])\. 0

(Cv,CE)E'PCLyfl(G)
From (2.2), it follows:

Corollary 3.5. Let G G. For any x,y = 2,

1

Tg(l’,y) = 1)cc(G) (y — 1)|y(g)| ‘Pc(x—l)(y—l),y((;”'

(z —
For any x,y = 0,

(—1)ec(@+V(©@)
z + 1)@ (y + DIVE]

(—1)lee (DI,

TG(_'I7 _y) = (
(ev,er)ePC14a)(1+y),4(G)

4. Orientations

4.1. Orientations of graphs as a Hopf algebra morphism

Notations 4.1. Let G € G. We denote by O(G) the set of orientations of G and by
0.c(G) the set of acyclic orientations of G. By definitions, O(G) contains 2/7(S)]
oriented graphs.

Proposition 4.1. The following map is a bialgebra morphism:

(HG7m,A) e (’HGD,m,A)

O: GeG — > H
HeO(G)

Proof. Let G,G’' € G. Then
O(GG')={HH' | He O(G), H € O(G")}.

Hence, O(GG') = 6(G)O(G").
Let G € G. We consider

A={(H,I)| He O(G), Iideal of H},
B = {(‘]7 HlaH”) | J < V(G)a H'e O(G\V(G’)\J)a H" e O(G|J)}
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There exists an obvious map

U.{ A — B
| H ) — (L Hyen Hip)-

Let us prove that v is injective. Let us assume that v(Hi,I;) = v(Ha, I3). Then
I =1,=J. Letee A(H).

e If both extremities of e are elements of J, as (Hy); = (Hz)|s, e is oriented
in the same way in H; and in Hs.

e If both extremities of e are not elements of J, as (H1)|v(a)\s = (H2)|v(a)\J»
e is oriented in the same way in H; and in Hs.

e Otherwise, let us denote by « the extremity of e which is in V(G)\J and y
the extremity of e which is in J. As J is an ideal of H; and of Hs, necessarily
e is oriented in H; and in H from z to y.

Therefore, H; = Hs.
Let us prove that v is surjective. Let (J, H', H"”) € B. We define an orientation
H of G as follows: if e € E(G),

o If both extremities of e are elements of J, then choose for e the same orien-
tation as in H”.

e If both extremities of e are not elements of J, then choose for e the same
orientation as in H'.

e Otherwise, let us denote by x the extremity of e which is in V(G)\J and y
the extremity of e which is in J. Then orient e from z to y: (z,y).

We obtain H € O(G), such that Hjyg)s = H' and H|; = H”. Moreover, by
construction there is no arc in H from a vertex belonging to J to a vertex not
belonging to J, so J is an ideal of H. Therefore, (H,J) € A and v(H,J) =
(J,H',H").

Using this bijection,

AoO(G) = Y, Hy®H,
(H,J)eA
— 2 Hl ® HI/
(J,H',H")eB
> OGvens) ®O(G))
JEV(G)

=(0®0)0A(G).

So O is a bialgebra morphism. O
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Remark 4.1. The map O is not compatible with . For example,

oy -2} o(\V) = % + M

(@@@)oa(V) = (@@@)(V@;... +.®V+3I®I.)
_o(V)@eee+.00(V) 11220t

soo(V) = 25(%) + 65V
_o(V)@eee+.00(V) 112t 0. +1zg®f..

We denote by I,. the space of Hg, generated by oriented graphs containing
an oriented cycle. If GG is such a graph:

e For any oriented graph H, GH has an oriented cycle. In other terms, I, is
an ideal.

e Let I be an ideal of G. If I contains a vertex of the oriented cycle of G, then
it contains all the vertices of the cycle, as it is an ideal. Therefore, G|; or
G|v (a1 has an oriented cycle. In other words, I, is a coideal for G.

o Let ~e &[G]. If all the vertices of G are ~-equivalent, then G |~ has
an oriented cycle. Otherwise, the contraction G/ ~ has an oriented cycle.
Moreover, €5(G) = 0, as A(G) # (J, since it has an oriented cycle. In other
terms, I, is a coideal for 0.

As a consequence, the quotient Ha,/Io. which we identify with the space Ha,.,
of oriented acyclic graphs, inherits a double bialgebra structure such that the
following map is a double bialgebra morphism:

Ha, — Hau
G {G if G is acyclic,

0 otherwise.

Proposition 4.2 ([5, Theorem 1.7]). The following is a double bialgebra mor-
phism:

He — Ha,.,
Oupe =T00O: G — Z H.
HeO,4(G)

Definition 4.3. Let G be a graph and H be an orientation of G. We shall say
that H is strongly connected if for any x,y € V(Q), there exists an oriented path
from x toy in H. The set of orientations of G such that any connected component
of G is strongly connected is denoted by Og.(G).
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Lemma 4.4. Let us consider the characters of Ha, defined by

' HGU — K
M1t G IS GO e 17
He, — K
(=1)°(%) if any connected component of G
fhse i=: GeG, —> is strongly connected,

0 otherwise.

Denoting = the convolution associated to A, then s, = ,u’f_l.

Proof. Let G € G,, different from 1. We denote by I, ..., I} its strongly connected
components and by ~ the equivalence on V(G) whose classes are Iy,..., ;. For
any i, G|y, is strongly connected, so it is connected: ~e &.[G].

Let us prove that G/ ~ is acyclic. If (I;,,...,I; ) is an oriented cycle in G/ ~,
then for any k, there exists an arc from a vertex of I, to Ij, ., with the convention
Jp+1 = J1- As G|, is strongly connected for any [, we deduce the existence of an
oriented cycle in G, which goes through Iy,...,I,. All the vertices of this cycle
are in the same strongly connected component of G, so belong to the same Ij,: we
deduce that I;, = --- = 1I; , (I;,...,1; ) is an oriented cycle in G/ ~: this is a
contradiction. So G/ ~ is acyclic.

As G/ ~ is acyclic, it has wells, that is to say vertices with no outgoing arc.
We denote by Ji,...,Jp, its wells. These elements Ji,...,J, of V(G/ ~) are
equivalence classes of ~, that is to say some of the I;’s: {J1,...,J,} € {I1,..., I}

Let J < V(G). Let us show that it is an ideal of G such that us.(G|r) # 0 if,
and only if, J is a disjoint union of J;’s.

=. If so, the connected components of G5|; are strongly connected. Let us
assume that its intersection with I; contains a vertex x. Let x € I;. As G|y, is
strongly connected, G contains an oriented path from x to y. Since J is an ideal,
y € J. Therefore, G is a disjoint union of I;’s. Let us assume that one of the I;’s
included in G is not a well of G/ ~. There exists j # 4, such that (I;,I;) is an
arc in G/ ~. Therefore, there exists an arc between a vertex x € I; and a vertex
y€l;in G. Asz € J and J is an ideal, y € J. The connected components of G|;
being strongly connected, it follows that there exists an oriented path from y to x
in G|y, so z and y are in the same strongly connected component of G and finally
i = j: this is a contradiction. So I; is a well of G/ ~, so is one of the J;’s.

<. Let J be a disjoint union of J;’s. Let € J and y € V(G), with an arc
between z and y, and j such that z € J;. If y ¢ J;, there is an arc in G/ ~ from J;
to another vertex: this contradicts the fact that J; is a well. So y € J; < J, and
J is an ideal of G. Its connected components are obviously the I;’s it contains, so
they are strongly connected: jis.(G|s) # 0.
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Then,

/.L1*/.LSC(G): Z MSC(G\I) = Z Hsc G| UJ'L = Z (—1)'1,‘ =

I ideal of G I'c[m] I'c[m]
iel’

as m = 1. Therefore, g * pge = €a, €. pge = /ff—1~ 0

Proposition 4.5. We consider the character a defined by

o= x—1 . He — K
iV geg — (=1)<@]0,.(G)|.

Then « is the inverse for the convolution associated to A of the character py of

He.
Proof. For any graph G € G,

() = 2FEN ~|0(G)| = i 0 O(C),
S0 p1 = p1 o ©. Moreover,

a(G) = Z pse(H) = psc 0 O(G),
HeO(G)

S0 a = g o ©. Consequently, since © is a Hopf algebra morphism:
p* = (1 ® psc) 0 (O®O)0 A = (11 ® psc) oA 0O =ep 00 = ¢,
soa=pft. O

Proposition 4.6. Let G € G. Then T¢(0,2) is the number of strongly connected
orientations of G.

Proof. Note that for any y € K, as ¢, is a Hopf algebra morphism,
ZG(_Xv y) =So Cy(G) = Cy © S(G)a

S0
Za(~1.y) = ¢, 0 S(G)(1) = e50¢, 0 S(G) = 1y © S(G) = i (G).
In the particular case y = 1,

Za(~1,1) = i ~1(G) = a(@).

By (2.2),
Y Za(—1,1) = (=1)°DT5(0,2),

which directly implies the result. O
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4.2. Values at negative integers

Proposition 4.7. Let x,y € N. For any graph G, we denote by OPC, ,(G) the
set of triples (H,cy,vg) such that:

e H is a totally acyclic partial orientation of G.

o cy: V(G) — [z] and cg : E(H) — {0,...,y} are maps such that for any
{v,w} e E(H),
ce({v,w}) # 0 <= cy(v) = cy(w).

Let Ge G. For anyx € N, for any y € Z>_1,

Za(—z,y) = 2 (_1>CC(gro(H))_
(H,CV7CE)EO’PCT,)y+1(G)
For any x € N, for any y € Nxq,
Za(—x,—y) = Z (—1)cc(Ero ) +leg" ([u=1D)],
(H,Cv,CE)EO'PCLy,1(G)
Proof. Note that
OPC,(G) ={(H,cv,cg) | He PO(G), (cv,cg) € PCyy(gro(H))}.

Therefore, using Proposition 2.16,

ZG(f‘r,y) = Z (71)CC(gr0(H))ZG(xay)
HePOy(G)

Z (_1)CC(gro(H))

HeP O (G),
(ev,cr)EPCy y+1(gro(H))

- 3 (—1)ecEra(H).

(H,CV,CE)EO'PCmyy+1 (G)

whereas

ZG<_:E7 _y) = Z (_1)CC(gr0(H))ZG(xa _y)
HePOi4:(G)

= Z (,1)06(gro(H))+\021([yfl])\

HePOy:(G),
(cv,cE)EPCy y—1(gro(H))

_ D (—1)eclero )+ ([v=1D)] o
(H,’Uc,’UE)EO'PCL/yfl(G)
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From (2.2):
Corollary 4.8. Let G e G. For any x € N, y € Noo,
(_1)CC(G)

_ — _1)cc(ero(H))
TG( z, y) ((E + 1)CC(G) (y — 1)\V(G)\ Z ( 1) 0 .
(H,cv,cg)eOPC (wr1)(y—1),y(G)

For any x € Noo, ye N,

(_1)IV(G)I

Ta(x,—y) = (& — 1)@ (y 1 1)V O

z:(_1)(:(:(g1f0(H))HCEl([y])|7

where the sum runs over (H,cy,cg) € OPC(y_1)(y+1),y(G).
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