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Global Kodaira–Spencer class and Massey products

Luca Rizzi and Francesco Zucconi

Abstract. We define a new notion of supported global deformation class for a semistable family

of complex varieties over a curve f : X → B. We use this notion to study when X, possibly up

to a finite covering, has a generically finite morphism onto a product B × Y with Y of general

type.

1. Introduction

Let f : X → B be a semistable family of complex varieties over a complex curve
B and with smooth (n − 1)-dimensional general member denoted by Xb, b ∈ B.
The Kodaira–Spencer map at b identifies a vector subspace inside the space of
infinitesimal deformations of Xb. It is a natural question to study f : X → B
in terms of these infinitesimal deformations. In particular, the importance of
supported deformations in the theory of curves and of fibrations on a surface is
well-known; see [1, p. 2 and section 6] and [23].

In this paper we take a step forward and we construct a supported global
deformation class ρ(ξ) naturally given by f ; see Definition 1.1, [26] and also [13] in
the case of a fibered surface. The technical core of the paper is to find the relation
between ρ(ξ) and the theory of relative Massey products. Here we recall that the
notion of Massey products in algebraic geometry has been introduced in [10] and
[23] and then applied in [21, 9, 13, 3, 22, 28, 29, 30, 31, 8] and [27]. We refer to
these sources for a complete discussion and to Section 2 for a brief review.

1.1. Main results

The sheaf on B whose elements are the holomorphic 1-forms on the fibers of f
which are liftable to closed holomorphic forms of X is a local system which we
denote by D1. Let L ≤ Γ(A,D1) be a vector space of dimL = l ≥ n on an open set
A ⊆ B. Denote by si, i = 1, . . . , l, a choice of closed forms on X which are liftings
of the elements of a basis of L. We define DA as the divisor in f−1(A) given by
the common zeroes of the sections si1 ∧ · · · ∧ sin−1 ∧ σ where the sij run among
the liftings above and σ runs over the local sections of ωB . We denote by D the
divisor obtained by the horizontal components of DA and with Db the restriction
of D to the general fiber Xb. We call D the horizontal divisor associated to L.
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Finally, we say that L is strict if the morphism
∧n−1

L ⊗ ωB|A → f∗ωX|A is an
injection of vector bundles, see Definition 2.6.

The two main applications of our point of view are as follows. The first one
is strictly related to the class ρ(ξ) and the second one is related to the Albanese
morphism.

Theorem [A]. Let f : X → B be a semistable fibration. Assume that there exist
a strict subspace L ≤ Γ(A,D1), dimL ≥ n, such that f∗OX(D) is a line bundle
and that the deformation class ρ(ξ) is supported on D, where D is the horizontal

divisor associated to L. Then up to a finite étale covering B̃ → B the associated
base change X̃ has a generically finite surjective morphism X̃ → B̃ × Y , where Y
is an (n− 1)-dimensional variety of general type.

See Corollary 4.21. We will show that this result is based on the possibility to
pass from local conditions on A to some global conditions on the finite covering
B̃.

We also give an analogue of the notion of strictness in the case of (n − 1)-
forms, instead of 1-forms. This allows to show the following result on the Albanese
morphism:

Theorem [B]. Let X be a smooth n-dimensional variety and α : X → A :=
Alb(X) its Albanese morphism. Assume that L := Im (α∗Ωn−1

A → Ωn−1
X ) is a line

bundle on X, then the global sections of L define a rational map h : X 99K Y to a
variety Y of general type. Furthermore if H0(X,L) is strict, we can take h to be
a morphism and Y is the Stein factorization of X → Z where Z := α(X). Finally
if the restrictions of the Albanese map to the fibers Xb have degree 1, then these
fibers are birational to Y .

See Theorem 6.1 and following Corollary.

1.2. Global Kodaira–Spencer class

We recall that all the fibers Xb are n−1-dimensional and either smooth or reduced
and normal crossing divisors. The open set of B corresponding to smooth fibers
will be denoted by B0 and its complement B \ B0 is the image of the singular
fibers.

The exact sequence defining the sheaf of relative differential forms

0 → f∗ωB → Ω1
X → Ω1

X/B → 0 (1.1)

gives the associated extension class ξ ∈ Ext1(Ω1
X/B , f

∗ωB). By restriction of

Sequence (1.1) to the general fiber we get the sequence

0 → OXb
⊗ T∨

B,b → Ω1
X|Xb

→ Ω1
Xb

→ 0 (1.2)

and we construct the classes

ξb ∈ Ext1(Ω1
Xb
,OXb

)⊗ T∨
B,b = H1(Xb, TXb

)⊗ T∨
B,b. (1.3)
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where b ∈ B0.

All the extensions ξb can be encoded in a unique object thanks to the notion of
relative extension sheaf Ext1f (Ω1

X/B , f
∗ωB). Recall that the relative extension sheaf

Extpf is by definition the p-th derived functor of f∗Hom, hence Ext1f (Ω1
X/B , f

∗ωB)

is a sheaf on the base B isomorphic to Ext1f (Ω1
X/B ,OX) ⊗ ωB ; see cf. [33]. Now

by applying the functor f∗Hom to Sequence (1.1) there is a morphism

OB → Ext1f (Ω1
X/B ,OX)⊗ ωB .

We call Global Kodaira–Spencer map of the family f the image of 1 ∈ H0(B,OB).
It can then be seen as a sheaf morphism

ρ(ξ) : TB → Ext1f (Ω1
X/B ,OX) (1.4)

whose restriction to the general b ∈ B gives back the usual Kodaira–Spencer map.

It remains defined an homomorphism

ρ : Ext1(Ω1
X/B , f

∗ωB) → H0(B, Ext1f (Ω1
X/B , f

∗ωB)) (1.5)

which is surjective and it is also an isomorphism when the general fiber Xb is of
general type; see Section 4 for all the details on this construction.

1.3. Globally supported deformation

We refer the reader to Section 2 for the notion of Massey triviality; in particular
see Definition 2.3. Here we recall that the condition of Massey triviality is a basic
tool to study both the vector bundle K∂ of holomorphic 1-forms on the fibers Xb

which are locally liftable to X, and the local system D1 of holomorphic 1-forms on
the fibers which are liftable to closed holomorphic forms of X. See [22, 31, 14, 15].

Now consider L ≤ Γ(A,D1), dimL ≥ n, and recall that we denote by D the
horizontal divisor associated to L and with Db the restriction of D to the general
fiber Xb.

We define the following sheaf on A ⊆ B

Ext1f (Ω1
X/B(−D), f∗ωB) := Ext1f (Ω1

X/B |f−1(A)
(−D), f∗ωB |A)

and we can finally recall the definition of supported class.

Defintion 1.1. We say that ρ(ξ) is supported on D if

ρ(ξ)|A ∈ KerH0(A, Ext1f (Ω1
X/B , f

∗ωB)) → H0(A, Ext1f (Ω1
X/B(−D), f∗ωB)).

(1.6)

The following result is a full generalization of [23, Theorem 1.5.1] and [30,
Theorem A].
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Theorem [C]. Let L ≤ Γ(A,D1) be a vector space of dimL ≥ n. Assume that L
is Massey trivial and that it generically generates Ω1

Xb
on the general fiber. Then

ρ(ξ) is supported on D|f−1(A′), where A
′ ⊂ A is an open dense subset.

Viceversa, assume that ρ(ξ) is supported on D. If f∗OX(D) is a line bundle
then the vector space L is Massey trivial.

See: Theorem 4.13 and 4.17. We point out that actually Theorem [A] is a
consequence of this result.

In Section 5 we construct the theory, parallel to the above one, in the case
of volume forms on the fibers Xb, that is we consider n − 1-forms instead of 1-
forms. In particular, we prove Theorem 5.4 which is an analogue of Theorem [A]
and shows conditions on volume forms which guarantee the existence of a variety
of general type Y as in Theorem [A]. In this section we also give some bound
on the geometric genus of Y in the case of a relatively minimal fibered threefold
f : X → B under some hypotheses on the canonical map ϕ|KXb

| of the general

fiber Xb following [25].

1.4. Other results

Finally we point out that in Section 2 we revise the theory of Massey products
according a new perspective and this lead us to show, in Section 3, a relative
version of our old theorem on adjoint quadrics [30, Theorem B]. Indeed we think
that Theorem 3.4 has its own interest as a criterion for Massey triviality and as a
tool to show finiteness results on certain monodromy groups, see Corollary 3.6.

2. Massey products and local systems

In this section we briefly recall and discuss the main constructions of [31], in
particular we give the rigorous definition of the vector bundle K∂ , the local system
D1 and the notion of Massey triviality mentioned in the Introduction.

2.1. Local systems of certain liftable holomorphic forms

Let X be a smooth complex compact n-dimensional variety and B a smooth com-
plex curve. From the Introduction we recall that we consider semistable fibrations
f : X → B where Xb = f−1(b) denotes the fiber over a point b ∈ B. All the fibers
Xb are either smooth or reduced and normal crossing divisors. Let B0 be the locus
of singular values of f and B0 = B \ B0 the open set of regular values. Consider
the exact sequence

0 → f∗ωB → Ω1
X → Ω1

X/B → 0 (2.1)

defining the sheaf of relative differentials Ω1
X/B . It is not difficult to see that,

under our hypothesis on f , the sheaf Ω1
X/B is torsion free but not locally free in

general. In the following we will denote by ΩpX/B the wedge product of Ω1
X/B , that

is ΩpX/B =
∧p

Ω1
X/B , and by ωX/B the relative dualizing sheaf of f .
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Taking the pushforward of Sequence (2.1) we obtain the long exact sequence
on B

0 → ωB → f∗Ω
1
X → f∗Ω

1
X/B → R1f∗OX ⊗ ωB → · · · (2.2)

and we call K∂ the cokernel in the exact sequence

0 → ωB → f∗Ω
1
X → K∂ → 0. (2.3)

Intuitively we can think of K∂ as the vector bundle of holomorphic 1-forms on the
fibers of f which are locally liftable to the variety X. A key property of K∂ is
given in the following Lemma, see [22, Lemma 3.5] or [31, Lemma 2.2].

Lemma 2.1. If f : X → B is a semistable fibration, the exact sequence

0 → ωB → f∗Ω
1
X → K∂ → 0 (2.4)

splits.

This means that the above intuitive idea is not only true locally around the
fibers, but the liftability holds on every open subset of B. For a more complete
study of K∂ see [22, 14, 15] for the case n = 2, [31] for the general case.

If in Sequence (2.3) we consider, instead of Ω1
X , the sheaf Ω1

X,d of de Rham
closed differential forms, we obtain the exact sequence

0 → ωB → f∗Ω
1
X,d → D1 → 0. (2.5)

It turns out that D1 is a local system on the curve B as shown in [22] for 1-
dimensional fibers and in [31] for any dimension. Note that D1 is a subsheaf of K∂

and we can interpret D1 as the local system of holomorphic 1-forms on the fibers
of f which are liftable to closed holomorphic forms of the variety X. Finally note
that, by Lemma 2.1, also the exact Sequence (2.5) splits.

2.2. Massey products

Massey products, originally called adjoint forms, have been introduced in [10] and
[23]. They have been useful for the study of infinitesimal deformations and also
for the study of the monodromy of the above mentioned local systems.

We now recall their construction. This presentation is slightly different but
equivalent to the one in [31], and it will be more convenient for the applications
contained in this paper.

According to Lemma 2.1, Sequence (2.3) splits; from now on for simplicity we
choose and fix one of these splittings. The following wedge product sequence also
splits

0 // ∧n−1
K∂ ⊗ ωB // ∧n

f∗Ω
1
X

// ∧n
K∂

//
}}

0 (2.6)

and we take the composition of this splitting with the natural wedge map and
obtain the morphism

λ :

n∧
K∂ →

n∧
f∗Ω

1
X → f∗

n∧
Ω1
X = f∗ωX . (2.7)
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Now consider n sections η1, . . . , ηn ∈ Γ(A,K∂) on an open subset A ⊆ B;
call s1, . . . , sn ∈ Γ(A, f∗Ω

1
X) liftings of η1, . . . , ηn according to the above chosen

splitting.

Defintion 2.2. We call ωi, i = 1, . . . , n, the wedge s1 ∧ · · · ∧ ŝi ∧ · · · ∧ sn ∈
Γ(A, f∗Ω

n−1
X ) and W the submodule of f∗ωX generated by ⟨ωi⟩ ⊗ ωB .

Defintion 2.3. The Massey product or adjoint image of η1, . . . , ηn is the section
ω ∈ Γ(A, f∗ωX) given by ω = λ(η1 ∧ · · · ∧ ηn). We say that the sections η1, . . . , ηn
are Massey trivial if their Massey product is contained in the submodule W.

Remark 2.4. The Massey product is given explicitly by s1 ∧ · · · ∧ sn and being
Massey trivial means that locally

s1 ∧ · · · ∧ sn =
∑
i

ωi ⊗ σi

where the ωi are as in Definition 2.2 and σi are local sections of ωB .
As a section of f∗ωX , the Massey product certainly depends on the choice of

the splitting mentioned above. On the other hand, the condition of being Massey
trivial does not; see [31]. In Proposition 2.7 we will show that if the sections
η1, . . . , ηn are Massey trivial, there is a very convenient choice for this splitting.

In the literature mentioned at the beginning, the construction of Massey prod-
ucts is done pointwise, that is for a fixed regular value b ∈ B and working on the
fiber Xb and on an infinitesimal neighbourhood of this fiber. It is not difficult to
see that all the pointwise defined Massey products can be glued together and this
agrees exactly with Definition 2.3 on suitable open subsets A ⊂ B.

Of course since D1 is a subsheaf of K∂ , it makes sense to construct Massey
products starting from sections of D1, i.e. consider sections ηi ∈ Γ(A,D1). One of
the key points in [22] and [31] is exactly to consider this setting.

To conclude this section we recall the notion of strictness and its relation with
Massey triviality. Let A ⊆ B be an open subset and W ≤ Γ(A,K∂) a vector
subspace of dimension at least n.

Defintion 2.5. We say that W is Massey trivial if any n-uple of linearly indepen-
dent sections in W is Massey trivial (according to Definition 2.3).

Following [5, Definition 2.1 and 2.2], we have

Defintion 2.6. We say that W is strict if the morphism

n−1∧
W ⊗ ωB|A → f∗ωX|A

is an injection of vector bundles.

The following proposition shows how Massey triviality and strictness give a
preferred choice of liftings as we anticipated in Remark 2.4.
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Proposition 2.7. Let W ≤ Γ(B,K∂) be a strict subspace of global sections of K∂

and let A ⊆ B be an open contractible subset. If the sections of W are Massey
trivial when restricted to A then there exist a unique lifting W̃ ≤ Γ(B, f∗Ω

1
X) such

that
n∧
W̃ → Γ(B, f∗ωX)

is zero. If furthermore W ≤ Γ(B,D1) then W̃ ≤ Γ(B, f∗Ω
1
X,d).

For the proof see [31, Proposition 4.10]. As seen in Remark 2.4, if the sections
ηi ∈ W are Massey trivial, for any choice of liftings si we have a relation of the
form

s1 ∧ · · · ∧ sn =
∑
i

ωi ⊗ σi.

This proposition tells us that actually there is a preferred choice of liftings s̃i such
that

s̃1 ∧ · · · ∧ s̃n = 0.

It also tells us that local Massey triviality implies global Massey triviality.

Remark 2.8. We stress that the strictness condition is essential to prove Propo-
sition 2.7 if dimW > n.

3. Relative Adjoint quadrics

As a natural continuation of [31], in this section we study the generalization of
the notion of adjoint quadrics, introduced in [30]. As we will see, the presence or
absence of certain quadratic relations is strictly related to the notion of Massey
triviality.

In the following, consider as before an open subset A ⊆ B and {η1, . . . , ηn} a
basis of an n-dimensional vector space W ≤ Γ(A,D1). Choosing a splitting of

0 // ωB // f∗Ω1
X,d

// D1 //
zz

0 (3.1)

and s1, . . . , sn ∈ Γ(A, f∗Ω
1
X,d) liftings of η1, . . . , ηn accordingly, we denote by ω

the Massey product of the ηi. With our choice of liftings, ω is explicitly given by
s1 ∧ · · · ∧ sn. Also recall that by definition ωi := s1 ∧ · · · ∧ ŝi ∧ · · · ∧ sn. We have
the following definition

Defintion 3.1. A relative adjoint quadric is a local quadratic relation of sections
of Γ(A, f∗ωX ⊗ f∗ωX) of the form

ω2 =
∑

(ωi ∧ σi) · ρi

where σi are local sections of ωB , ρi of f∗ωX and ω, ωi are as above.
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To study the role of these relations we construct a commutative diagram as
follows. Take the exact sequence

0 → f∗ωB → Ω1
X → Ω1

X/B → 0

and the surjective morphism from its top wedge product

Ωn−1
X → Ωn−1

X/B .

We take the tensor product with f∗ωB followed by the direct image f∗. Denoting
by K the kernel of the resulting morphism, we have a long exact sequence of
sheaves on B

0 → K → f∗Ω
n−1
X ⊗ ωB → f∗Ω

n−1
X/B ⊗ ωB → · · · (3.2)

It is well known that we have a map f∗Ω
n−1
X/B → f∗ωX/B (which is an isomorphism

on B0). From this map we actually obtain f∗Ω
n−1
X/B ⊗ωB → f∗ωX/B ⊗ωB = f∗ωX

hence we can add the diagonal morphism

0 // K // f∗Ω
n−1
X ⊗ ωB // f∗Ω

n−1
X/B ⊗ ωB //

&&

· · ·

f∗ωX

(3.3)

We complete the diagram on A with the following second row and appropriate
morphisms

0 // K //

ψ

��

f∗Ω
n−1
X ⊗ ωB //

ϕω

��

f∗Ω
n−1
X/B ⊗ ωB

��

//

&&

· · ·

f∗ωX

·ω
xx

0 // K ′ // ∧n−1 D1 ⊗ ωB ⊗ f∗ωX
ν⊗id // f∗ωX ⊗ f∗ωX // · · ·

(3.4)

The maps above are defined as follows.
Firstly ·ω is just the multiplication by the Massey product ω, sending a section

τ of f∗ωX to τ · ω.
The map ν :

∧n−1 D1⊗ωB → f∗ωX is given by taking n−1 sections of D1, call
them µ1, . . . , µn−1, liftings of these sections, t1, . . . , tn−1, according to our fixed
splitting of Sequence (3.1) and defining ν(µ1 ∧ · · · ∧µn−1 ⊗σ) = t1 ∧ · · · ∧ tn−1 ∧σ
for σ in ωB . In particular note that

ν(η1 ∧ · · · ∧ η̂i ∧ · · · ∧ ηn ⊗ σ) = ωi ∧ σ. (3.5)
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Finally ϕω is given by the aforementioned liftings s1, . . . , sn as follows. Locally,
given a section s of f∗Ω

n−1
X , the image ϕω(s⊗ σ) is

ϕω(s⊗ σ) =
∑
i

(−1)iη1 ∧ · · · ∧ η̂i ∧ · · · ∧ ηn ⊗ σ ⊗ s ∧ si. (3.6)

It is easy to see by commutativity that ϕω restricts to a map between the
kernels of the two sequences ψ : K → K ′.

Defintion 3.2. We say that the Massey product ω ∈ Γ(A, f∗ωX) is locally liftable
if it is in the image of the sheaf morphism

f∗Ω
n−1
X ⊗ ωB → f∗ωX

of Diagram 3.4.

Remark 3.3. We recall that, by a famous result of Fujita, see [11] and [12], the
direct image f∗ωX/B is a sum

f∗ωX/B ∼= U ⊕A (3.7)

where U is a unitary flat vector bundle andA is ample. The local system associated
to U is usally denoted by U. By taking the tensor product with ωB , we also get a
direct sum decomposition for f∗ωX .

Now consider the sheaf Ωn−1
X,d of de Rham closed n − 1-forms. The Massey

products in the image of f∗Ω
n−1
X,d ⊗ ωB → f∗ωX are in particular locally liftable

and furthermore they are elements U ⊗ ωB . This means that this theory is well
suited to approach the natural question of what happens when the Massey product
of sections ηi ∈ Γ(A,D1) ends up in Γ(A,U ⊗ ωB), that is in the part of f∗ωX
given by the local system of the Fujita decomposition.

See Section 5 of this paper for more details on the local systems of relative
n− 1-forms.

The generalization of [30, Theorem 2.1.2] is:

Theorem 3.4. Let f : X → B be a semistable fibration. Assume that there exist
{η1, . . . , ηn}, basis of an n-dimensional vector space W ≤ Γ(A,D1), such that
their Massey product ω ∈ Γ(A, f∗ωX) is locally liftable and furthermore there are
no relative adjoint quadrics, then W is Massey trivial.

Proof. Since the Massey product ω is locally liftable, we call ω̃α the local lifting
of ω|Aα

in f∗Ω
n−1
X ⊗ωB , A =

⋃
Aα an open covering. The difference between two

such liftings is in K, hence by the commutativity of the first square of Diagram
(3.4), we have that (ν⊗id)(ϕω(ω̃α)) glue together to a section of Γ(A, f∗ωX⊗f∗ωX)
which we will denote, by abuse of notation, (ν ⊗ id)(ϕω(ω̃)).

Consider now the commutative square

f∗Ω
n−1
X ⊗ ωB //

ϕω

��

f∗ωX

·ω
��∧n−1 D1 ⊗ ωB ⊗ f∗ωX

ν⊗id // f∗ωX ⊗ f∗ωX

(3.8)
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coming from Diagram (3.4). We have that ω2 = (ν ⊗ id)(ϕω(ω̃)). Now note that
by definition ϕω(ω̃α) is a sum containing the wedges η1 ∧ · · · ∧ η̂i ∧ · · · ∧ ηn as we
have seen in (3.6). Now applying ν all these wedges η1∧· · ·∧ η̂i∧· · ·∧ηn produces
the sections ωi as seen in (3.5).

We deduce that ν ⊗ id(ϕω(ω̃)) is locally of the form
∑
ωi ∧ σi · ρi where σi are

local sections of ωB and ρi of f∗ωX . Now assume by contradiction that ω is not
Massey trivial, then the relation ω2 = ν ⊗ id(ϕω(ω̃)) is a true quadratic relation
(and not just the square of a linear relation) and gives a relative adjoint quadric.
By our hypothesis these do not exist hence the contradiction and ω is Massey
trivial.

The first application of Theorem 3.4 comes from [31, Theorem B] and gives
information on the monodromy associated to local systems generated by Massey
trivial vector spaces. From now on we call L a vector subspace L ≤ Γ(A,D1) and
L the local system generated by L, i.e. the stalk of L is

∑
g∈G g ·L where G is the

monodromy group acting non-trivially on D1.

Defintion 3.5. If L is Massey trivial, we will say that L is Massey trivial gener-
ated.

See [22, Definition 5.5]. Consider the action of the fundamental group π1(B, b)
on the stalk of L and call HL the subgroup of π1(B, b) acting trivially on L and
GL = π1(B, b)/HL the associated monodromy group.

Corollary 3.6. Let L be a strict vector space such that every Massey product
of sections of L is locally liftable and assume that there are no relative adjoint
quadrics. Then L is Massey trivial and the local system L is Massey trivial gen-
erated. In particular L has finite monodromy.

Proof. Take n linearly independent sections of L and consider the associated
Massey product. The Massey triviality follows from the previous theorem, hence
L is a Massey trivial vector space. The local system L generated under the mon-
odromy action is then Massey trivial generated by definition. Local systems gen-
erated by a strict and Massey trivial vector space have finite monodromy by [31,
Theorem B].

For applications of this result see [31].

4. Global supported deformations

We recall that originally, see [28, 29, 30], Massey products have been used as a
tool for the study of infinitesimal deformations. Here we generalize this setting
in the case of semistable families f : X → B, see also [26], before giving another
consequence of Theorem 3.4.
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4.1. The Global Kodaira–Spencer map

Consider again the exact sequence

0 → f∗ωB → Ω1
X → Ω1

X/B → 0. (4.1)

The restriction of Sequence (4.1) on a smooth fiber Xb is the sequence

0 → OXb
⊗ T∨

B,b → Ω1
X|Xb

→ Ω1
Xb

→ 0 (4.2)

which is associated to an element

ξb ∈ H1(Xb, TXb
)⊗ T∨

B,b = Ext1(Ω1
Xb
,OXb

)⊗ T∨
B,b. (4.3)

Since H1(Xb, TXb
) is the space of first order deformations of Xb, the class ξb

naturally corresponds to the deformation of the fiber Xb induced by the family
f : X → B. The key to encode all the extensions ξb in a unique object is the notion
of relative extension sheaf. We have learned this tool from [33].

Defintion 4.1. Given a morphism of schemes f : X → Y , the relative extension
sheaf Extpf is the p-th derived functor of f∗Hom.

For all the properties of the relative extension sheaves we refer to [4, Chapter
1]. Here we only recall the following:

Theorem 4.2. The sheaves Extpf satisfy:

1. If f is projective and F ,G are coherent OX-modules, then Extpf (F ,G) is a
coherent OX-module.

2. Extpf (F ,G) is the sheaf associated to the presheaf

U 7→ Extp(F|f−1(U),G|f−1(U)).

In particular it holds that

Extpf (F ,G)|U ∼= Extpf (F|f−1(U),G|f−1(U)).

3. Extpf (OX ,G) = Rpf∗G.

4. If L and N are locally free sheaves of finite rank on X and Y , respectively,
then

Extpf (F ⊗ L,−⊗ f∗N ) ∼= Extpf (F ,−⊗ L∨ ⊗ f∗N ) ∼=
∼= Extpf (F ,−⊗ L∨)⊗N .

5. For any OX-modules F ,G there is a spectral sequence, called local to global
spectral sequence,

Ep,q2 = Rpf∗Extq(F ,G) =⇒ Extp+qf (F ,G)

where Extq is the usual extension sheaf on X, that is the derived functor of
Hom.
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6. Under the same hypotheses of (5), we also have the spectral sequence

Ep,q2 = Hp(B, Extqf (F ,G)) =⇒ Extp+q(F ,G).

The spectral sequences in (5) and (6) can both be seen as a consequence of
a result of Grothendieck that computes the derived functor of the composition of
two functors F and G knowing the derived functors of F and G separately, cf.
[19, Theorem 12.10]. In (5) we take F = f∗ and G = Hom and in (6) F = Γ and
G = f∗Hom.

Now if we apply the functor f∗Hom(−, f∗ωB) to the exact Sequence (4.1) we
obtain, from the resulting long exact sequence, the morphism

f∗Hom(f∗ωB , f
∗ωB) → Ext1f (Ω1

X/B , f
∗ωB)

which translates, by the properties mentioned in Theorem 4.2, into

OB → Ext1f (Ω1
X/B ,OX)⊗ ωB .

Defintion 4.3. The image of 1 ∈ H0(B,OB) is a morphism

TB → Ext1f (Ω1
X/B ,OX) (4.4)

which is called the Global Kodaira–Spencer map.

In this paper, we will mainly consider the extension sheaf

Ext1f (Ω1
X/B , f

∗ωB) = Ext1f (Ω1
X/B ,OX)⊗ ωB .

The following lemma shows how this sheaf behaves on a suitable Zariski open set
B′ ⊂ B and justifies the name Kodaira–Spencer for the morphism in Definition
(4.3).

Lemma 4.4. There is an injection

R1f∗Hom(Ω1
X/B , f

∗ωB) ↪→ Ext1f (Ω1
X/B , f

∗ωB)

which is an isomorphism over an open dense subset of B. In particular, for general
b ∈ B we have the isomorphism

Ext1f (Ω1
X/B , f

∗ωB)⊗ C(b) ∼= H1(Xb, TXb
)⊗ T∨

B,b
∼= Ext1(Ω1

Xb
,OXb

)⊗ T∨
B,b.

Proof. The five term exact sequence associated to the local to global spectral
sequence recalled in Theorem 4.2 Point (5)

0 → R1f∗Hom(Ω1
X/B , f

∗ωB) → Ext1f (Ω1
X/B , f

∗ωB) → f∗Ext1(Ω1
X/B , f

∗ωB)

→ R2f∗Hom(Ω1
X/B , f

∗ωB) → Ext2f (Ω1
X/B , f

∗ωB)

gives the desired injection. Note that on X0 = f−1(B0), Ω1
X/B is locally free,

hence Ext1(Ω1
X/B , f

∗ωB) is zero and this injection is an isomorphism on B0:

Ext1f (Ω1
X/B , f

∗ωB)|B0 ∼= R1f∗Hom(Ω1
X/B , f

∗ωB) ∼= R1f∗(TX/B)⊗ ωB . (4.5)

The last statement is the Proper base change theorem [16, Theorem 12.11].
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We note that specializing the Global Kodaira–Spencer

TB → Ext1f (Ω1
X/B ,OX) (4.6)

in b ∈ B′ we get the well known Kodaira–Spencer map at the point b

TB,b → H1(Xb, TXb
) ∼= Ext1(Ω1

Xb
,OXb

). (4.7)

By a famous general result, the Global Kodaira–Spencer morphism is zero on
an open subset of B if and only if the family is locally trivial on this set. In
particular all the fibers are isomorphic and the map (4.7) is zero in every point.
Conversely it is not true that if (4.7) is zero in every point, then the Global
Kodaira–Spencer is also zero. This holds however when the family is regular, i.e.
the dimension of the complex vector space H1(Xb, TXb

) is the same for all points
in the set. See for example [17, Section 4].

Remark 4.5. To our knowledge B0 = B′ if the fibration is regular. In general
the relation between B′ and B0 seems to be not fully clarified,

Lemma 4.6. We have a surjective morphism

ρ : Ext1(Ω1
X/B , f

∗ωB) → H0(B, Ext1f (Ω1
X/B , f

∗ωB)) (4.8)

which is also an isomorphism if the general fiber of f : X → B is of general type.
Calling ξ ∈ Ext1(Ω1

X/B , f
∗ωB) the element corresponding to Sequence (4.1), ρ

maps ξ to the Global Kodaira–Spencer map ρ(ξ) which associates to b ∈ B′ the
element ξb ∈ H1(Xb, TXb

)⊗ T∨
B,b as defined in (4.3).

Proof. From the spectral sequence in Theorem 4.2 Point (6), we get the beginning
of the associated five terms exact sequence:

0 → H1(B, f∗Hom(Ω1
X/B , f

∗ωB)) → Ext1(Ω1
X/B , f

∗ωB)
ρ→ H0(B, Ext1f (Ω1

X/B , f
∗ωB)) → H2(B, f∗Hom(Ω1

X/B , f
∗ωB)) → · · ·

The fourth term is zero because B is a curve, hence ρ is surjective.
Now note in the first term of this sequence that

f∗Hom(Ω1
X/B , f

∗ωB) = f∗Hom(Ω1
X/B ,OX)⊗ ωB = f∗TX/B ⊗ ωB .

Since f∗TX/B is torsion free, it is a line bundle on B and if the general fiber of f
is of general type then f∗TX/B = 0 and we get the desired isomorphism.

For the last statement, ρ maps ξ to a global section of Ext1f (Ω1
X/B , f

∗ωB) which

associates to the general b ∈ B′ the element ξb ∈ H1(Xb, TXb
)⊗T∨

B,b as defined in
(4.3); see [18, Lemma 2.1].

Remark 4.7. If the general fiber is of general type, the map ρ is actually surjective
even if dimB > 1.
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4.2. Global Kodaira–Spencer supported on a horizontal divisor

Let L ≤ Γ(A,D1) be a l-dimensional vector space of sections of the local system
D1 and choose ηi, i = 1, . . . , l, forming a basis for L. Denote by si the liftings of
these sections via the splitting of (3.1) fixed above. From L we define the following
divisors in f−1(A).

Defintion 4.8. Let DA be the divisor in f−1(A) given by the common zeroes of
the sections si1 ∧ · · · ∧ sin−1 ∧ σ where the sij run among the liftings above and σ
over the local sections of ωB on A.

Denote by DA
Hor the divisor obtained by the horizontal components of DA and

with Db the restriction DA
Hor to the general fiber Xb. We call DA

Hor the horizontal
divisor associated to L.

Note that Db is the fixed part of the sections ηi1 ∧ · · · ∧ ηin−1
where the ηi run

among the elements of the basis of L.

Remark 4.9. First note that DA and DA
Hor do not depend on the choice of the

splitting of (3.1) fixed above. In fact a different choice gives new liftings s̃i, with
si − s̃i ∈ Γ(A,ωB).

Furthermore consider a Massey product ω = si1 ∧ · · ·∧ sin of sections of L. By
local computation it is clear that ω vanishes on DA

Hor.

We can define the following sheaf on A:

Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB) := Ext1f (Ω1

X/B |f−1(A)
(−DA

Hor), f
∗ωB |A).

Alternatively recall that by L we denote the local system generated by L,
HL the subgroup of π1(B, b) acting trivially on L and GL = π1(B, b)/HL the

monodromy group. Let B̃ → B the covering classified by the subgroup HL and
f̃ : X̃ → B̃ the associated pullback fibration. The inverse image of the local system
L on B̃ is trivial, in particular the sections ηi are global and their liftings si are
global closed 1-forms on X̃. This means that DA and DA

Hor define global divisors

D̃ and D̃Hor on X̃. Hence Ext1f (Ω1
X̃/B̃

(−D̃Hor), f∗ωB̃) is defined on the whole base

B̃.

Remark 4.10. When L is Massey trivial generated and strict, by [31, Theorem

B] the monodromy of L is finite hence the covering B̃ → B is also finite and

f̃ : X̃ → B̃ is a fibration of compact varieties. So, under these hypotheses, it is
not restrictive to assume that everything is globally defined, since this is true up
to a finite covering which does not impact the local deformation data of the fibers.
Note that ρ(ξ) is a global section of Ext1f (Ω1

X/B , f
∗ωB) which defines a global

section ρ̃(ξ) of Ext1
f̃
(Ω1

X̃/B̃
, f̃∗ωB̃); for example by Theorem 4.2 Point (2).

Finally we note that the relative Ext functors are contravariant in the first
component and we obtain a sheaf morphism (on A)

Ext1f (Ω1
X/B , f

∗ωB) → Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB).
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Remark 4.11. By the same arguments seen in Lemma 4.4, we have that

Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB)⊗ C(b) ∼= Ext1(Ω1

Xb
(−Db),OXb

)⊗ T∨
B,b

for general b ∈ A.

We recall that ξb ∈ H1(Xb, TXb
) is supported on a divisor Eb in Xb if

ξb ∈ KerH1(Xb, TXb
) → H1(Xb, TXb

(Eb)). (4.9)

See [30]. The new concept of global supported deformation is Definition 1.1, that
we recall:

Defintion 4.12. We say that ρ(ξ) is supported on a horizontal divisor E in f−1(A)
if

ρ(ξ)|A ∈ KerH0(A, Ext1f (Ω1
X/B , f

∗ωB)) → H0(A, Ext1f (Ω1
X/B(−E), f∗ωB)).

(4.10)

By what we have seen so far, if ρ(ξ) is supported on DA
Hor then ξb is sup-

ported on Db for the general b ∈ B. The viceversa does not hold, since the sheaf
Ext1f (Ω1

X/B(−DA
Hor), f

∗ωB) in general has a torsion part.

Note also that if ρ(ξ) is supported on DA
Hor, we have that in the following

diagram of torsion free sheaves on f−1(A)

0 // f∗ωB // E //

��

Ω1
X/B(−DA

Hor)
//

��

0

0 // f∗ωB // Ω1
X

// Ω1
X/B

// 0

(4.11)

the top row splits when restricted to the general fiber. Of course this does not
mean that the top row itself splits.

4.3. Global supported deformations and Massey triviality

In this subsection we Prove Theorem [C] from the Introduction. As a first step,
in light of the Adjoint theorem [30, Theorem A] we have the following result

Theorem 4.13. Let L ≤ Γ(A,D1) be a vector space of dimL ≥ n. Assume that L
is Massey trivial and that it generically generates Ω1

Xb
on the general fiber. Then

ρ(ξ) is supported on DA′

Hor, where A
′ ⊂ A is an open dense subset. Furthermore if

Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB) is torsion free, then ρ(ξ) is supported on DA

Hor.

Proof. Choose generic ηi1 , . . . , ηin linearly independent elements of L. They are
Massey trivial by hypothesis hence by the Adjoint Theorem [30, Theorem A] we
have that on a smooth fiber Xb the infinitesimal deformation ξb is supported on a
divisor Di1,...,in

b , defined as the fixed part of the n sections ηi1 ∧· · ·∧ η̂ij ∧· · ·∧ηin .
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By [23, Proposition 3.1.6], if L generically generates Ω1
Xb

, it turns out that actually

Di1,...,in
b does not depend on the choice of the ηi and it is exactly the divisor Db.
We have proved that ξb is supported on Db which of course is the restriction

of DA
Hor on the fiber Xb. The thesis follows easily by the discussion following

Definition 4.12.

Remark 4.14. One could also add the strictness hypothesis and state the theorem
globally over B̃.

Corollary 4.15. Let f : X → B be a family such that the general fiber Xb is
a variety of general type with pg(Xb) = dimL = n. If L is strict and Ω1

Xb
is

generated by the elements of L, then f is isotrivial on an appropriate dense open
set of the base.

Proof. For such an Xb it is not difficult to see that L is Massey trivial and Db = 0,
see for example [30, Corollary 2.2.2]. The idea is that if we take a basis η1, . . . , ηn
of L,

∧n−1
L ∼= H0(Xb, ωXb

) and this implies that the ηi are necessarily Massey
trivial. We also have Db = 0 since L generates Ω1

Xb
.

Hence by Theorem 4.13 we have that ρ(ξ) is supported on an empty divisor,
that is ρ(ξ) is trivial.

This means that the fibration is isotrivial on an appropriate open set of the
base.

Remark 4.16. We stress that Corollary 4.15 is applicable to one dimensional
families where pg(Xb) = q(Xb) = dimXb + 1.

Finally we prove a viceversa of Theorem 4.13. These two results together are
Theorem [C].

Theorem 4.17. Let L ≤ Γ(A,D1) be a vector space of dimL ≥ n. Assume that
ρ(ξ) is supported on DA

Hor, the horizontal divisor associated to L. If f∗OX(DA
Hor)

is a line bundle then the vector space L is Massey trivial.

Proof. We want to prove that L is Massey trivial, that is every choice of n linearly
independent sections in L is Massey trivial. We fix such a choice η1, . . . , ηn and
call W = ⟨η1, . . . , ηn⟩ ≤ L. We start by considering the exact sequence

0 → f∗ωB → Ω1
X → Ω1

X/B → 0 (4.12)

and applying the functor f∗Hom(·, f∗ωB) to obtain the long exact sequence

0 → f∗TX/B ⊗ ωB → f∗TX ⊗ ωB → OB → Ext1f (Ω1
X/B , f

∗ωB) → · · · (4.13)

Recall that the image of 1 ∈ H0(B,OB) is ρ(ξ) ∈ H0(B, Ext1f (Ω1
X/B , f

∗ωB)).
We ask the reader to accept the following easier and more compact notation

for the rest of this proof: X := f−1(A) and B := A, that is we restrict everything
locally on A.
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Sequence (4.12) together with its tensor by OX(−DA
Hor) fits into the commu-

tative diagram

0 // f∗ωB // Ω1
X

// Ω1
X/B

// 0

0 // f∗ωB // E //

OO

Ω1
X/B(−DA

Hor)
//

OO

0

0 // f∗ωB(−DA
Hor)

//

OO

Ω1
X(−DA

Hor)
//

OO

Ω1
X/B(−DA

Hor)
// 0

Applying the functor f∗Hom(·, f∗ωB) we obtain

f∗TX ⊗ ωB //

��

OB
// Ext1f (Ω1

X/B , f
∗ωB)

��
f∗E∨ ⊗ ωB //

��

OB
//

��

Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB)

f∗TX(DA
Hor)⊗ ωB // f∗OX(DA

Hor)
// Ext1f (Ω1

X/B(−DA
Hor), f

∗ωB)

Thanks to this diagram we can interpret our hypothesis that ρ(ξ) is supported on
DA
Hor as follows.
As pointed out above, the identity element 1 ∈ H0(B,OB) in the first row

is mapped to ρ(ξ) in Ext1f (Ω1
X/B , f

∗ωB). By hypothesis ρ(ξ) goes to zero in

Ext1f (Ω1
X/B(−DA

Hor), f
∗ωB), hence the identity element in the second row is in

the image of the morphism f∗E∨ ⊗ ωB → OB . This means that if we take a point
b ∈ B, we can, locally around b, find a lifting of the identity in f∗E∨⊗ωB . We de-
note by θb the image of this local lifting in f∗TX(DA

Hor)⊗ωB . Denote by
∧n−1

W
the vector space with basis the sections ωi = s1 ∧ · · · ∧ ŝi ∧ · · · ∧ sn as in Definition
2.2 and consider the following commutative square

f∗TX(DA
Hor)⊗ ωB

α //

α′

��

f∗OX(DA
Hor)

β

��∧n−1
W ⊗ f∗OX(DA

Hor)⊗ ωB
β′

// f∗ωX

(4.14)

The horizontal arrow α is the same as in the above diagram, and the horizontal
arrow β′ is given by the fact that the ωi are elements of f∗Ω

n−1
X and furthermore

DA
Hor is a divisor of common zeroes of ωi ∧ σ for arbitrary σ in ωB , that is we can

see ωi ∧ σ ∈
∧n−1

W ⊗ ωB as an element of f∗ωX(−DA
Hor).
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The vertical arrow α′ is given by taking a section θ of f∗TX(DA
Hor)⊗ ωB and

sending it to

θ 7→
∑
i

(−1)iθ(si)⊗ ωi

where θ(si) indicates the contraction, since si is in f∗Ω
1
X .

The vertical arrow β is given by the Massey product ω since we recall that ω
vanishes on DA

Hor, see Remark 4.9.

With these definitions, it is not difficult to see that the square commutes,
hence βα(θb) = β′α′(θb). On one side βα(θb) = β(1) = ω since θb is a lifting of
the identity.

On the other side, note that we are working locally around the general point
b. The germ of the section θb can be decomposed as a sum of elements of the
form vb ⊗ σb with vb ∈ H0(Xb, TXb

(Db)) and σb ∈ ωB,b. Its image via α′ is then a
sum of sections vb(si) ⊗ σb ⊗ ωi where now vb(si) ∈ H0(Xb,OXb

(Db)). Since by
hypothesis f∗OX(DA

Hor) is a line bundle, we have that h0(Xb,OXb
(Db)) = 1. This

implies that the poles of vb(si) are exactly the zeroes of ωi ⊗ σb, hence the image
via β′ is exactly an element in the submodule generated by ⟨ωi⟩ ⊗ ωB .

Hence by the commutativity we conclude that the Massey product ω is in the
submodule generated by ⟨ωi⟩⊗ωB , that is it is Massey trivial by Definition 2.3.

4.4. Global supported deformations and morphisms to product varieties

In this subsection we prove Theorem [A]. The main ingredients are Theorem [C]
and a Generalized Castelnuovo–de Franchis theorem, see [5, Theorem 1.14] and
[24, Prop II.1]. See also [31, Theorem 5.6] for the following refined version.

Theorem 4.18. Let Z be an n-dimensional compact Kähler manifold and wi ∈
H0(Z,Ω1

Z), i = 1, . . . , l, linearly independent 1-forms such that wj1 ∧· · ·∧wjk+1
=

0 for every j1, . . . , jk+1 and that no collection of k linearly independent forms
in the span of w1, . . . , wjk+1

wedges to zero. Then there exists a holomorphic
map f : Z → Y over a normal variety Y of dimension dimY = k and such that
wi ∈ f∗H0(Y,Ω1

Y ). Furthermore Y is of general type.

We are now ready to prove Theorem [A] which follows from the following
corollary of Theorem 4.17, and a nice interpretation of Theorem 4.18.

Corollary 4.19. Assume that there exist a strict subspace L ≤ Γ(A,D1), dimL ≥
n, such that f∗OX(DA

Hor) is a line bundle and ρ(ξ) is supported on DA
Hor, the

horizontal divisor associated to L. Then there exist a surjective morphism

hA : f−1(A) → Y

onto a normal n− 1-dimensional variety Y of general type.

Furthermore, up to a finite étale covering B̃ → B, the associated base change
X̃ also has a surjective morphism h : X̃ → Y onto Y .
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Proof. By Theorem 4.17, we know that L is Massey trivial. In particular by
Proposition 2.7, there exists a unique lifting L̃ such that the wedge

n∧
L̃→ Γ(A, f∗ωX)

is zero. We recall that the sections in L̃ can be seen as 1-forms in Ω1
X,d.

Since their wedge is zero, we can then apply Theorem 4.18 and this give a
morphism with connected fibers hA : f−1(A) → Y onto a normal n−1 dimensional
variety Y . Note that even if f−1(A) is not compact, Theorem 4.18 can still be

applied because the sections in L̃ are closed by Proposition 2.7. This is actually
enough to ensure that the arguments of Theorem 4.18 applies. In particular see
[31, Remark 5.7].

For X̃ the proof is similar and relies on the fact that Proposition 2.7 basically
allows to pass from a local to a global condition. More precisely, by [31, Theorem

B] the monodromy group GL is finite, hence the associated covering B̃ is also finite.

Furthermore the sections of L give global sections on B̃. So by Proposition 2.7
applied on B̃, the elements of L̃ can be seen as global closed 1-forms on X̃ such
that

n∧
L̃→ Γ(B̃, f̃∗ωX̃)

is zero. This is a global condition deriving from the local condition of Massey
triviality.

Hence on X̃ we can work globally and we get the morphism h again by Theorem
4.18.

Remark 4.20. Note that h in general does not descend to a morphism X → Y
due to the monodromy of the local system L. Nevertheless, for every U ⊆ B open
subset trivializing the local system L, h gives a surjective morphism hU : f−1(U) →
Y .

The following Corollary is Theorem [A].

Corollary 4.21. Assume that there exists L as above such that f∗OX(DA
Hor) is a

line bundle and ρ(ξ) is supported on DA
Hor. Then there exists a generically finite

surjective morphism X̃ → B̃ × Y where Y is of general type.

Proof. Note that the map h from the previous corollary is surjective when re-
stricted to the general fiber Xb thanks to the strictness hypothesis. Hence the
map f̃ × h : X̃ → B̃ × Y is generically finite.

Remark 4.22. Consider the morphism h : X̃ → Y and Xb a general fiber of f̃
over b ∈ B̃. If the ramification of h|Xb

, denoted by Rb, is the restriction to Xb of

a divisor R on X̃ contained in the critical locus of h, then the deformation ξb is
trivial.
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In fact in this case the pullback h∗ωY is not only contained in Ωn−1

X̃
but also

in Ωn−1

X̃
(−R) and on the fiber Xb we have the diagram

0 // Ωn−2
Xb

(−Rb) // Ωn−1

X̃
|Xb

(−Rb) // ωXb
(−Rb) // 0

(h∗ωY |Xb
)∨∨?�

OO 77

(4.15)

The diagonal arrow is an isomorphism. This gives the splitting of the exact se-
quence in (4.15) which we note is associated to ξb after tensoring by Rb.

5. The case of volume forms on the fibers

In this section we study the case of n−1 forms on the fibers. The previous results,
as Theorem 4.17 and its corollaries, work only in the case of highly irregular general
fibers, that is h0(Xb,Ω

1
Xb

) ≥ n. In this section we show similar results which work
with top forms on the fibers instead of 1-forms.

Recall again that, by a famous result of Fujita, see [11] and [12, 7, 6], the direct
image f∗ωX/B is a sum

f∗ωX/B ∼= U ⊕A (5.1)

where U is a unitary flat vector bundle and A is ample. Hence U is associated to
a local system of relative (n− 1)-forms.

In this section we restrict ourselves to a contractible subset A ⊂ B0. The local
system associated to U is given by the holomorphic (n − 1)-forms on the fibers
which can be locally lifted to de Rham closed holomorphic forms on X. That is,
denoting this local system by Dn−1 in analogy with D1, we have the exact sequence

0 → ωA ⊗ f∗Ω
n−2
f−1(A)/A → f∗Ω

n−1
f−1(A),d → Dn−1 → 0 (5.2)

where we use the compact notation ωA := ωB|A . The main reason for working
locally is that we do not know if in general this sequence splits globally on B,
contrary to the case of 1-forms of (3.1).

Note that there is a map given by taking the wedge exact sequence

Ext1(Ω1
f−1(A)/A, f

∗ωA) → Ext1(Ωpf−1(A)/A, f
∗ωA ⊗ Ωp−1

f−1(A)/A),

hence by Theorem 4.2 Point (2), we have a morphism of sheaves

Ext1f (Ω1
f−1(A)/A, f

∗ωA) → Ext1f (Ω
p
f−1(A)/A, f

∗ωA ⊗ Ωp−1
f−1(A)/A).

Similarly we also have a morphism

Ext1f (Ω1
f−1(A)/A(−E), f∗ωA) → Ext1f ((Ω

p
f−1(A)/A(−E), f∗ωA ⊗ Ωp−1

f−1(A)/A)

where E is a horizontal divisor.
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Remark 5.1. It is easy to see that these are actually isomorphisms when p = n−1,
in particular we note that ρ(ξ) is supported on a horizontal divisor E (according
to Definition 4.12) if and only if its image in H0(A, Ext1f (Ω

n−1
f−1(A)/A(−E), f∗ωA ⊗

Ωn−2
f−1(A)/A)) is zero.

The results of this section will use the analogue of the Castelnuovo–de Franchis
theorem 4.18 in the case of n− 1-forms, that is [32, Theorem 2.3]. For the reader
benefit and for final use we recall the set up.

Let Z be a smooth variety w1, . . . , wl ∈ H0(Z,ΩpZ), where p ≤ n − 1 and
l ≥ p + 1, be linearly independent p-forms such that wi ∧ wj = 0 (as an element

of
∧2

ΩpZ and not of Ω2p
Z ) for any choice of i, j = 1, . . . , l. These forms generate

a subsheaf of ΩpZ generically of rank 1. Note that the quotients wi/wj define a
non-trivial global meromorphic function on Z for every i ̸= j, i, j = 1, . . . , l. By
taking the differential d(wi/wj) we then get global meromorphic 1-forms on Z.

Defintion 5.2. We say that a set of linearly independent p-forms {ω1, . . . , ωl} ⊂
H0(Z,ΩpZ), p ≤ n − 1 and l ≥ p + 1, is p-strict if ωi ∧ ωj = 0 for every i, j and
there exist p meromorphic differential forms d(ωi/ωj) that do not wedge to zero.

For this setting, this condition is analogous to the strictness condition consid-
ered in Definition 2.6.

We need Theorem 2.3 in [32]:

Theorem 5.3. Let Z be an n-dimensional smooth projective variety and consider
a p-strict subset {w1, . . . , wl} ⊂ H0(Z,ΩpZ). Then there exists a rational dominant
map f : Z 99K Y , defined in codimension 2, over a p-dimensional smooth variety
Y of general type such that wi is the pullback of a holomorphic p-form µi on Y ,
that is f∗µi extends to wi, for i = 1, . . . , l.

Now consider L ≤ Γ(A,Dn−1) a vector space of n − 1-forms and, in analogy
with the case of 1-forms, we will denote by ηi the elements of a basis of L and by
si ∈ Γ(A, f∗Ω

n−1
f−1(A),d) a fixed choice of liftings (which exist since we are working

locally on A). We will also denote by DA,(n−1)
Hor the horizontal part of the divisor

given by the common zeroes of si∧σ where σ is a section of ωA. This is in analogy
with Definition 4.8, but note that the superscript n − 1 is to remind that this
divisor is associated to a vector space L of n − 1-forms instead of 1-forms as in
Definition 4.8.

We can finally prove the following result

Theorem 5.4. Let L ≤ Γ(A,Dn−1) be a vector space of dimL = l ≥ n. Assume
that the sections {η1, . . . , ηl} forming a basis of L are (n − 1)-strict. If ρ(ξ) is

supported on DA,(n−1)
Hor and f∗Hom(Ωn−1

f−1(A)/A(−DA,(n−1)
Hor ),Ωn−2

f−1(A)/A) is zero then

there exists a meromorphic dominant map f−1(A) 99K Y over a smooth (n − 1)-
dimensional variety Y of general type.

Proof. As in Theorem 4.17, we ask the reader to accept the more compact notation

X = f−1(A) for reasons of brevity. For the same reason we also denote DA,(n−1)
Hor

by DA
Hor.
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Consider the exact sequence

0 → f∗ωA ⊗ Ωn−2
X/A → Ωn−1

A → Ωn−1
X/A → 0,

the n− 1-th wedge of Sequence 4.12 which fits into the commutative diagram

0 // f∗ωA ⊗ Ωn−2
X/A

// Ωn−1
X

// Ωn−1
X/A

// 0

0 // f∗ωA ⊗ Ωn−2
X/A

// G //

OO

Ωn−1
X/A(−DA

Hor)
//

OO

0

(5.3)

We apply the functor f∗Hom(·, f∗ωA ⊗ Ωn−2
X/A) and obtain the diagram

f∗Hom(Ωn−1
X ,Ωn−2

X/A
) ⊗ ωA

//

��

f∗Hom(Ωn−2
X/A

,Ωn−2
X/A

) // Ext1f (Ωn−1
X/A

, f∗ωA ⊗ Ωn−2
X/A

)

��
f∗Hom(G,Ωn−2

X/A
) ⊗ ωA

α // f∗Hom(Ωn−2
X/A

,Ωn−2
X/A

) // Ext1f (Ωn−1
X/A

(−DA
Hor), f

∗ωA ⊗ Ωn−2
X/A

)

(5.4)
Note that in the middle sheaf of the top row, that is f∗Hom(Ωn−2

X/A,Ω
n−2
X/A), we

have the identity element that we simply denote by 1. Exactly as in the proof of
Theorem 4.17, by the hypothesis on ρ(ξ) and Remark 5.1, the section 1 is in the
image of α and can be locally lifted to f∗Hom(G,Ωn−2

X/A) ⊗ ωA. Actually by our

hypothesis on the vanishing of f∗Hom(Ωn−1
X/A(−DA

Hor),Ω
n−2
X/A) = kerα, this lifting

is global (on A) and unique. We will denote it by h ∈ Γ(A, f∗Hom(G,Ωn−2
X/A)⊗ωA).

Now fix η1, η2 two linearly independent sections of L ≤ Γ(A,Dn−1) and s1, s2
the associated liftings in Ωn−1

X,d ⊂ Ωn−1
X . By definition of DA

Hor, the si can be lifted
to G, we call ŝi these liftings. It is not difficult to see by a local computation that

s1 ∧ s2 + h(ŝ1) ∧ h(ŝ2) = s1 ∧ h(ŝ2)− s2 ∧ h(ŝ1).

Hence by taking s̃i := si − h(ŝi) we have that s̃i are still liftings of the ηi and
furthermore s̃1 ∧ s̃2 = 0. Since h is unique, repeating the same argument, we get
that s̃i ∧ s̃j = 0 for any pair of sections ηi, ηj of L. Hence we can apply Theorem
5.3 to get the map f−1(A) 99K Y . As in Corollary 4.19, even if f−1(A) is not
compact, the argument is the same since the forms s̃i are closed.

Regarding the vanishing hypothesis in the statement of the Theorem, note
that on the smooth fibers, this vanishing is equivalent to the vanishing of the

cohomology group H0(Xb, TXb
(Dn−1

b )), where Dn−1
b is the restriction of DA,(n−1)

Hor

on Xb; this can essentially be seen as a hypothesis on the normal sheaf of Dn−1
b .

In particular it can often be applied if Xb is of general type and D
n−1
b has negative

self-intersection.
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Remark 5.5. Note that if pg(Xb) ≥ a · pg(Y )− b, with a > 0 and b ∈ Z, the rank
r of the local system L generated by L is

r ≤ pg(Xb) + b

a
.

5.1. Fibered threefolds

We can obtain some bounds for the geometric genus pg(Y ), where Y is as in
Theorem 5.4, in the case of a relatively minimal fibered threefold f : X → B.
These bounds are based on the work of [2] and [25].

We start by recalling some standard definitions. Let f∗ωX/B = U ⊕ A the
second Fujita decomposition of the direct image of the relative dualizing sheaf and
uf := rankU the rank of the unitary flat part, so that rankA = pg(Xb) − uf .
Denote also by g the genus of B and by Kf the divisor of ωX/B , we have the
following invariants for our fibration

K3
f := K3

X − 2(g − 1)K2
Xb
,

∆f := degf∗OX(Kf ),

χf := χXb
χB − χX .

Hence, for fibered threefolds, it makes sense to define two slopes

λ1f :=
K3
f

χf
, λ2f :=

K3
f

∆f
.

From now on we assume that χf > 0 so that, following [2, Lemma 5.6], we have
that χf ≤ ∆f and hence more importantly λ2f ≤ λ1f . We refer to [2, Theorem 5.7]
for examples where χf ≥ 0.

We also use the following definition from [25].

Defintion 5.6. Let |M | be a linear system on a surface S. We say that

• |M | is g.f.d. if it induces a generically finite map ϕ|M | : S → Pk which is a
double cover on the image which is a ruled surface

• |M | is g.f.n.d. if it induces a generically finite map which is not a double
cover on a ruled surface

• |M | is a fibration of gonality γ if ϕ|M | : S → Pk is a fibration with general
fiber a smooth curve of gonality γ

The key point of the estimates of this section is the assumption that the ample
part of the Fujita decomposition A is semistable. Under this assumption we have
that

0 ⊊ A ⊊ f∗ωX/B (5.5)
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is the Harder–Narasimhan filtration of f∗ωX/B and we denote by |MA| the movable
part of A restricted to the fiber Xb.

We have the following diagram which puts together all the relevant pieces for
our purposes.

Y
ϕ|KY | // Ppg(Y )−1

Xb

ϕ|KXb
|
//

h

??

ϕ|MA|
++

Ppg(Xb)−1

88

&&
Pk

(5.6)

Note that the diagonal maps between the projective spaces are just projections.
The result is the following

Proposition 5.7. Let f : X → B be a relatively minimal fibered threefold with
χf > 0 and g ≤ 1. Assume that the ample part of the Fujita decomposition A is
semistable. Under the hypotheses of Theorem 5.4 we have the following bound on
pg(Y ).

If rankA ≥ 2

• If |KXb
| and |MA| are g.f.n.d.

pg(Y ) ≤ 63pg(Xb) + 20

66

• If |KXb
| is g.f.n.d. and |MA| is g.f.d.

pg(Y ) ≤ 65pg(Xb)− 4q + 14

68

• If |KXb
| is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 5

pg(Y ) ≤ 64pg(Xb) + 12

67

• If |KXb
| is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 4

pg(Y ) ≤ 65pg(Xb) + 11

68

• If |KXb
| is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 3

pg(Y ) ≤ 67pg(Xb) + 10

70

• If |KXb
| is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 2

pg(Y ) ≤ 67pg(Xb) + 9

70
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• If |KXb
| and |MA| are g.f.d.

pg(Y ) ≤ 66pg(Xb)− 6q + 11

68

• If |KXb
| is g.f.d. and |MA| defines a fibration of gonality γ ≥ 5

pg(Y ) ≤ 65pg(Xb)− 2q + 9

67

• If |KXb
| is g.f.d. and |MA| defines a fibration of gonality γ ≥ 4

pg(Y ) ≤ 66pg(Xb)− 2q + 8

68

• If |KXb
| is g.f.d. and |MA| defines a fibration of gonality γ ≥ 3

pg(Y ) ≤ 67pg(Xb)− 2q + 8

69

• If |KXb
| is g.f.d. and |MA| defines a fibration of gonality γ ≥ 2

pg(Y ) ≤ 68pg(Xb)− 2q + 7

70

• If |KXb
| defines a fibration of gonality γ ≥ 5

pg(Y ) ≤ 62pg(Xb) + 10

67

• If |KXb
| defines a fibration of gonality γ ≥ 4

pg(Y ) ≤ 16pg(Xb) + 2

17

• If |KXb
| defines a fibration of gonality γ ≥ 3

pg(Y ) ≤ 22pg(Xb) + 2

23

• If |KXb
| defines a fibration of gonality γ ≥ 2

pg(Y ) ≤ 34pg(Xb) + 2

35

If rankA = 1
pg(Y ) ≤ pg(Xb)− 1



176 L. Rizzi and F. Zucconi

Proof. Proposition 4.3.2 in [25] computes a list of all the upper bounds for the
rank uf . Our result follows immediately by noticing that pg(Y ) ≤ uf since all
the top forms on Y are de Rham closed and hence their pullback restricted on the
fiber is in the local system Dn−1 which we recall is the local system associated to
the unitary flat vector bundle U , that is U = Dn−1 ⊗OB ; see (5.1).

For the reader’s convenience we briefly give an idea on how these bounds are
obtained in [25]. Consider the first case of this list, that is |KXb

| and |MA| are
both g.f.n.d. The Harder-Narasimhan filtration of f∗ωX/B is

0 ⊊ A ⊊ f∗ωX/B

with µ1 = deg f∗ωX/B/rankA = deg f∗ωX/B/(pg(Xb)− uf ) and µ2 = 0 since U is
flat.

The Xiao-Ohno-Konno formula then gives the inequality

K3
f ≥ µ1(M

2
A +MAKXb

+K2
Xb

). (5.7)

Thanks to [2, Lemma 5.9], we get the necessary estimates for the quantities ap-
pearing in (5.7) and we get

K3
f ≥

deg f∗ωX/B

pg(Xb)− uf
(3(pg(Xb)− uf )− 7 + 3(pg(Xb)− uf )− 6 + 3pg(Xb)− 7)

that easily gives the lower bound for the slope λ2f

λ2f ≥ 9 +
3uf − 20

pg(Xb)− uf
(5.8)

see [25, Theorem 4.2].

The last step consists in using the inequality

K3
f − 2(g − 1)K2

Xb
≤ 72χf , (5.9)

see [20]. This inequality for g ≤ 1 gives

λ1f ≤ 42

hence remembering that under our hypothesis λ2f ≤ λ1f and putting together with
(5.8) we get

9 +
3uf − 20

pg(Xb)− uf
≤ 72. (5.10)

Isolating uf and using pg(Y ) ≤ uf we get the first bound of the list.

The following bounds can be done in a similar way.
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6. A result on the Albanese map

This short final section is a result on the Albanese map which does not directly
follow by the previous work but it is in the same spirit. This is Theorem [B].

Theorem 6.1. Let X be a smooth n-dimensional variety and α : X → A :=
Alb(X) its Albanese morphism. Assume that L := Im (α∗Ωn−1

A → Ωn−1
X ) is a line

bundle on X, then the global sections of L define a rational map h : X 99K Y to a
variety Y of general type. Furthermore if the sections of H0(X,L) are n−1-strict,
we can take h to be a morphism and Y is the Stein factorization of X → Z where
Z := α(X).

Proof. We begin by showing that Z := α(X) is (n − 1)-dimensional. For conve-
nience consider α as the composition

X
α′

−→ Z
i
↪→ A.

Since L is not zero, it immediately follows that dimZ ≥ n− 1. Similarly dimZ is
not n otherwise L would be of rank n.

Now we define a rational map h : X 99K Y . Indeed the global sections of L are
n−1-forms with ωi∧ωj = 0 since L is a line bundle. We can then apply Theorem
5.3 which defines our variety Y . In general we have dimY ≤ n− 1.

Finally if the sections of H0(X,L) are (n− 1)-strict, dimY = n− 1, again by
Theorem 5.3. To show that we have a rational map Y 99K Z we note that the
kernel of the global sections of L is a foliation as in [32]. More precisely, any global
section of L defines by contraction a map

TX → Ωn−2
X

and since the sections are closed, the kernel is closed under Lie bracket and, up to
saturation, gives a foliation.

These leaves are contained in the fibers of both α′ : X → Z and h : X 99K Y .
Since h has connected fibers we have that Y is birational to the variety given by
the Stein factorization of α′. In particular it turns out that we can choose h to be
a morphism.

Remark 6.2. If the Albanese of the normalization of Z is A, then Y = Z.

The following corollary is in some sense a version of the Volumetric theorem
[23, Theorem 1.5.3]

Corollary 6.3. Under the hypotheses of the Theorem 6.1, if the restrictions of
the Albanese map α to the fibers Xb have degree 1, then these fibers are birational
to Y .

Proof. By the previous theorem it follows that Y → Z is a birational map, hence
the fibers Xb are in the same birational class as Y .
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