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Abstract

Starting with carefully chosen sets of points in the Desarguesian
affine plane AG(2,¢?) and using an idea first formulated by E. Shult,
several infinite families of translation ovoids of the Hermitian surface
are constructed. Various connections with locally Hermitian 1-spreads
of @7 (5,q) and semifield spreads of PG(3,q) are also discussed.

1 Introduction

Let Q@ (5, q) be the elliptic quadric of PG(5,q). A spread S of Q~(5,q) is a
partition of the point-set of Q~ (5, ¢) into lines. Let L be a fixed line of such
a spread S. For every other line M of S, the subspace (L, M) has dimension
three and intersects Q@ (5, ¢) in a non-singular hyperbolic quadric. Let Ry,
be the regulus of (L, M)N Q™ (5, ¢) containing the lines L and M. The spread
S is said to be locally Hermitian with respect to L if for any line M of S,
different from L, the regulus Ry js is contained in . This forces the spread
S to be a union of ¢? reguli pairwise meeting in the line L. The spread S is
called Hermitian if it is locally Hermitian with respect to all lines of S.

Let L be the orthogonal polarity of PG(5,q) defined by the quadratic
form associated with Q= (5, ¢). For each spread & of Q7 (5, ¢) which is locally
Hermitian with respect to one of its lines L, one can associate a spread of
the 3—dimensional projective space A := L+ = PG(3, q) in the following way.
Let M be any line of S different from L. Then, the line mp 5 := (L, M)+
of A is skew to (L, M) and hence skew to L. Moreover, the set of lines
Sy = {mrm|M € S, M # L} U{L} turns out to be a spread of A. Tt
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should be noted that in this process the lines of the regulus Ry s other than
L collapse to a single line.

In PG(3,q¢%) a Hermitian surface is defined to be the set of all isotropic
points of a non—degenerate unitary polarity, and it will be denoted by H =
H(3,¢*). The number of points on the surface is (¢* + 1)(¢> + 1). Any line
of PG(3,¢*) meets H in 1, ¢ + 1 or ¢*> + 1 points. The latter lines are the
generators of H, and they are (¢ + 1)(¢> + 1) in number. The intersections
of size ¢ + 1 are Baer sublines and are often called chords, whereas the lines
meeting ‘H in a Baer subline are called hyperbolic lines. Lines meeting H
in one point are called tangent lines. Through each point P of H there
pass exactly ¢ + 1 generators, and these generators are coplanar. The plane
containing these generators, say 7p, is the polar plane of P with respect to
the unitary polarity defining H. The tangent lines through P are precisely
the remaining ¢> — ¢ lines of 7p incident with P, and 7p is also called the
tangent plane of H at P. Every plane of PG(3,¢?) which is not a tangent
plane of H meets H in a Hermitian curve H(2,q¢?), and is called a secant
plane of 'H.

An ovoid O of H is a set of ¢® + 1 points which has exactly one common
point with every generator of H. The intersection of the Hermitian surface
H with any of its secant planes, namely a Hermitian curve H(2, ¢%), is easily
seen to be an ovoid (called the classical ovoid). Many nonclassical ovoids of
‘H are now known to exist. An ovoid O of H is called a translation ovoid
with respect to one of its points P if there is a collineation group of H
fixing the point P, leaving invariant all the generators through P, and acting
regularly on the points of O \ {P}. The first two examples of translation
ovoids appearing in print were the classical ovoid and the one obtained from
a Baer elliptic quadric @ (3, ¢) embedded in H which is permutable with H
(see [6]). In the latter example, the ¢* secant lines to the Baer elliptic quadric
through any one of its points produce ¢ hyperbolic lines whose union meets
the Hermitian surface in a translation ovoid. The importance of translation
ovoids arises from the connection with locally Hermitian spreads of @ (5, q),
as described above, and the resulting spreads of PG(3,¢). It is now known
that there is an intimate connection between translation ovoids of H and
semifields of dimension two over their left nucleus (see Theorem 3.3 of [2]).

To develop these connections, consider the Klein correspondence k be-
tween the lines of PG(3,¢?) and the points of Q% (5, ¢?) via Pliicker coordi-
nates. The generators of a Hermitian surface H correspond to the points of
a Baer elliptic quadric @ (5, q) (see [4]) under k. Moreover, an ovoid O of

2



H corresponds to a spread S of Q@ (5, q). More precisely, each of the ¢* + 1
lines of S consists of the ¢ + 1 points corresponding under k to the ¢ + 1
generators of H through some point of O. In this way a chord contained in
the ovoid O will correspond to a regulus contained in the spread S. Thus the
spread § is locally Hermitian with respect to some line L if and only if the
corresponding ovoid O is comprised of ¢? Baer sublines (lying on ¢* distinct
hyperbolic lines) sharing a point P, where P corresponds to L as described
above.

Moreover, if such a locally Hermitian spread & admits a collineation group
fixing the line L pointwise and acting regularly on the remaining lines of S,
then the corresponding ovoid O is a translation ovoid, and vice—versa. Look-
ing at the spread Sy of L+ = PG(3,q) associated with the locally Hermitian
spread S, the induced group action shows that this spread will be a semifield
spread when the ovoid O is a translation ovoid.

It should also be noted that the spread S of Q@ (5, ¢) is Hermitian if and
only if the ovoid O of H is classical.

2 Shult sets

In [8] Shult describes several interesting geometric constructions, and poses
a number of open problems. At the very beginning of that paper Shult gives
the following construction.

Let A= AG(2,q?) be a Desarguesian affine plane, and let I, be the line
at infinity. Thus I, & PG(1,¢?). Let m denote the standard completion of
A to a projective plane on the point-set A U l,. Obviously the points of A
correspond to the affine points of 7. We will call a subset F' of the point-set
of A a Shult set (after [8]) if it satisfies the following conditions:

(@) |Fl= ¢

(17) there exists a Baer subline H of [, such that any secant line of F' (that
is, any line of 7 which intersects F' in at least two points) meets [, in
a point that is not in H.

There are two “natural” examples of Shult sets. The first one is obtained
by choosing F' to be any affine line of A, and then choosing H to be any
Baer subline of [, not containing the point at infinity for this affine line.
This is the so-called classical case. The second example is the following.



Select a Baer subplane mp of 7 that intersects [ at a Baer subline [,
and then choose H to be any Baer subline on [l disjoint from [ . Thus
Ap =7 \ lxoo is an affine Baer subplane of A whose affine lines have their
points at infinity on I . Hence the point-set of Ay is also a Shult set, the
so-called semiclassical case

Suppose that A, F' and H are given as above in the definition of a Shult
set. Let m* be the dual plane of 7, and let P denote the projective point of
m* corresponding to the line [, under duality. Then the duality takes the
Baer subline H of 7 to a cone H* of n* with vertex P, whose ruling lines
correspond to the points of H. That is, H* is a Baer subpencil. Let F be the
collection of lines of 7 corresponding to the point-set F' of m under duality.
Then,

(P1) 7 = PG(2,¢?) is a projective plane with a degenerate Hermitian vari-
ety H*, which is a Baer subpencil with vertex P.

(P2) F is a collection of ¢* lines of 7*, none passing through P.
(P3) Any two distinct lines of F intersect at a point of 7* \ H*.

Now embed the plane 7* in a 3—dimensional projective space PG(3, ¢?)
containing a Hermitian surface H in such a way that H N 7" = H*. Denote
by p the unitary polarity associated with H, and let

O(F) = O(F) = | J{L"|L € F}.

Since any line of F is a hyperbolic line of H, lying on 7* = PP = np, we see
that O(F) is the union of ¢* hyperbolic lines pairwise meeting at the point
P of H. Moreover, from property (P3) it follows that the plane spanned by
any pair of lines of O(F") is not a tangent plane of H. Hence, the set O(F) is
an ovoid of H. In fact, as discussed above, this ovoid corresponds under k to
a spread S of Q7 (5,¢) which is locally Hermitian with respect to the line L
corresponding to the point P. In particular, in the classical case all of the ¢
lines of F pass through a non—isotropic point @ in the plane P?, and O(F’) is
the Hermitian curve (classical ovoid) defined by the non—tangent plane Q.

Conversely, given an ovoid O of a Hermitian surface H consisting of the
union of ¢ hyperbolic lines of H through an isotropic point P, the corre-
sponding polar lines lie on the tangent plane mp to ‘H at P. Let F denote the
set consisting of such polar lines. Note that any two of these lines intersect



at a non—isotropic point of wp. Thus, in the dual plane of wp such a set F
corresponds to a set of ¢2 points disjoint from the dual line of the point P,
and such that any secant line to this set is skew to a fixed Bear subline (which
is the dual of the ¢ + 1 isotropic lines through P). Thus we have shown that
Shult sets are in one—to—one correspondence with ovoids of H consisting of
q? Baer sublines (on ¢? distinct hyperbolic lines) pairwise meeting at a point
of 'H.

However, an ovoid arising from a Shult set will not necessarily admit an
appropriate collineation group to make it a translation ovoid. For instance,
for odd ¢, one can take as your set F in AG(2,¢?) the origin, the points on
the r—axis corresponding to the nonzero squares in GF(g?), and the points
on the y axis corresponding to the nonsquares in GF(g*). The slopes for this
set of ¢* affine points will consist of {0,000} and the nonsquares in GF(¢?).
The Baer subline on the line at infinity corresponding to those elements z
in GF(q?) such that 24t = 1 will contain none of these slope points as
all such elements z will be nonzero squares in GF(¢g?). Hence F' is a Shult
set, although the associated ovoid will not have an appropriate translation
group of order ¢, as can be seen for small values of ¢ by direct Magma [5]
computations. In order to obtain a translation ovoid, we need to start with
Shult set F' admitting a (translation) group of the plane acting regularly on
it and fixing pointwise the Baer subline H. Also it should be noted that
inequivalent ovoids of H may arise from the same Shult set by choosing
different Baer sublines H, as we shall soon see.

We close this section with some observations about Baer subpencils.

Proposition 2.1. Using the above notation, consider an ovoid O arising
from a Shult set. Suppose there are q chords of O through P that lie in some
plane, say o, and suppose further that the g hyperbolic lines containing these
chords together with t = o N wp form a Baer subpencil. Then the resulting
spread Sy of L+ = PG(3,q) contains a requlus through the line L.

Proof.  Follows from properties of the Klein correspondence. (]

Theorem 2.2. Let Sy be the spread of L+ = PG(3,q) arising from a Shult
set F' as described above. Then Sy is a reqular spread if and only if F is
classical or semiclassical.

Proof.  Follows from the above proposition and Theorem 3.1 in [7]. [



3 The Semiclassical Case

We let K denote the finite field GF'(¢?), and let K, be its subfield of order
g. We begin by looking at semiclassical Shult sets when ¢ is odd. Using the
notation of the previous section, let A = AG(2,¢?) and let I, be its line at
infinity. Complete A to a projective plane m = PG(2, ¢*) with homogeneous
coordinates (x1,x9,23) in such a way that [, has equation z; = 0. Let
F = AG(2,q) be an affine Baer subplane of A. Initially, we will assume
that F' is embedded in canonical position; that is, using left—normalized
coordinates for uniqueness, let F' = {(1,a,b) : a,b € K,;}. Hence the slope
points (points at infinity) for I are I o = {(0,0,1)}U{(0,1,b) : b € K,}. To
construct an ovoid of H using the method described above, we must choose
a Baer subline H of [, that is disjoint from [, . There are many ways to
do this, and we first choose H so that it is orthogonal to [ . In particular,
we choose H = {(0,1,2) : 2 € K | 277! = w}, where w is a primitive element
of K,. As w is a nonsquare of K,, we see that H Nl = (. Moreover, the
Baer involutions of these two sublines commute, and hence the Baer sublines
are orthogonal in the sense of orthogonal circles in the associated Miquelian
inversive plane. Note that, up to equivalence, there is only one way to choose
such an H since the Baer sublines disjoint from and orthogonal to [, form
a single orbit under its stabilizer in PGL(2,¢?).

Taking the dual projective plane 7* and embedding this plane in PG(3, ¢?)
so that m* has equation zy = 0, we may take as our Hermitian surface H the
one with equation zox? + zlz; 4+ 237" — wad™ = 0. In this way H meets
7* in the degenerate Hermitian variety (Baer subpencil) which is the dual of
the Baer subline H. In particular, 7* = P? where P = (0,1,0,0) and p is
the unitary polarity associated with H. Applying p to the lines of F™, we
obtain ¢? hyperbolic lines passing through P. Intersecting these lines with
H, we obtain ¢? chords whose union is an ovoid O; of ‘H as described in the
previous section. Straightforward computations show that

01 ={(0,1,0,0)}u{(1,,a, —w™'b) :a,b € K,, a € K | a+a’ = w'b*—a*}.

To deduce that O; is indeed a translation ovoid, we must compute the
stabilizer of Oy in Stab(H) & PGU (4, ¢*).



Theorem 3.1. Let Oy be the ovoid of H constructed above, and let

1 = u t

0 1 0 0. ¢ 2 9
G, = 0 —u 1 0 cu,t€ Ky, v € Ko+ =wt* —u

0 wt 0 1

Then G4 is an elementary abelian p—group of order ¢, where q is a power of
the odd prime p, such that G, leaves invariant the Hermitian surface H, the
ovoid Oq, all generators of H through P, and acts reqularly on the points of
O1\ {P}. In particular, Oy is a translation ovoid.

Proof.  Straightforward computations. (]

Magma [5] computations (for small ¢) indicate that the full linear stabi-
lizer of O; in PGU(4,4?*) has order 2¢*>(¢> — 1). In fact, O, is projectively
equivalent to the translation ovoid arising from a permutable Baer elliptic
quadric embedded in H, as described in Section 1.

Theorem 3.2. The translation ovoid Oy of Theorem 3.1 arises from a per-
mutable Baer elliptic quadric embedded in H and containing P by taking the
union of all the chords joining P to another point of this quadric.

Proof. For each value of a and b in the equation of Oy, choose a so
that it is also in the subfield K, of K. The resulting subset of O;, namely

£ — {(0,1,0,0)} U {(1, ;(wle — )0 —w ) abeK,)

is an elliptic quadric Q7 (3,¢) of the Baer subspace in canonical position
whose equation is 2zor; + 23 — wai = 0, where w is a nonsquare in K. The
symmetric matrix representing this quadric is exactly the same as the Her-
mitian matrix representing H, and hence the two polarities clearly commute.
Moreover, each chord of O; is a secant line to this elliptic quadric through
P, and thus & can serve as a “base” for the translation ovoid O;. [l

We next choose a Baer subline A disjoint from /¢ which is not orthog-
onal to [y 0. Again, this can be done in only one way, up to equivalence.
To make the coordinates as nice as possible, we actually keep the same
Baer subline H, and hence extend to the same Hermitian surface H, but



take a different embedding for our affine Baer subplane. That is, we take
F={(1,a+be,a—be):a,be K,}, where € is chosen in K such that e? = —e
and €2 = w, where again w is the primitive element of K, used in the equa-
tion for H. This time I o = {(0,1,2) : z € K | 297! = 1} is disjoint from H
but not orthogonal to H, as the respective Baer involutions do not commute.
The resulting ovoid is not equivalent to the ovoid of Theorem 3.1.

Theorem 3.3. Let Oy be the ovoid arising from the semiclassical Shult set
for odd q = p® when the Baer sublines H and l are not orthogonal. Then
O, is a translation ovoid whose translation group Gy of order ¢* is nonabelian
of exponent p. Moreover, this ovoid can be constructed with a non—permutable
Baer elliptic quadric as its base.

Proof. Using H and F' as above, straightforward computations show
that

Oy =1{0,1,0,0)} U{(1,a,a + be, —w 'a+w 'be) :a,b € K,, a € K |
a+a?=(w?t—1)(a* —wb?)}.

The Hermitian surface H is the same as in Theorem 3.1. More straightfor-
ward computations show that

1 = —y wly?

— 0 1 0 0 . q _— -1 _ q+1
0 yv O 1

is a nonabelian group of order ¢* and exponent p stabilizing the Hermitian
surface H, the ovoid O,, and all the generators of H through the point P,
while acting regularly on the points of Op \ {P}. Thus O, is a translation
ovoid. It is not equivalent to the ovoid O; of H as its translation group G,
is nonabelian.

One can again obtain a nice “base” for this ovoid by always choosing the
second coordinate to be in the subfield K,. To see that this base is a Baer
elliptic quadric Q (3, ¢), we need to define the appropriate Baer subspace of
PG(3,¢?) containing this set of points. To do so, we take all K ~linear combi-
nations of the basis vectors {(1, 0,0, 0), (0,1,0,0), (0,0, 1, —w™"), (0,0, e, w™te)}.
Using left-normalized K,—coordinates with respect to this basis, we see that
our “ovoidal base” can be expressed as

E={(0,1,0,0)} U{( l(w_1 —1)(a* — wb?),a,b) : a,b € K,}.

1, -
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To see that this is an elliptic quadric in our Baer subspace, simply observe
that it satisfies the equation 2zoz; + (1 — w™)z3 + (1 — w)z3 = 0 and note
that w is a nonsquare in K,. Thus O, also can be obtained by taking the
points of ‘H lying on the secants to £, which are necessarily hyperbolic lines,
through the point P. However, this time the Baer elliptic quadric & is not
permutable with the Hermitian surface H, as direct computation shows the
two polarities do not commute. (]

Magma [5] computations indicate (for small ¢) that the full stabilizer in
PGU (4,4?) has order ¢*(¢> — 1), one half as large as for O;. We also mention
that there are no subgroups of order ¢? in the stabilizer that act regularly on
the chords of O, through P. This is significant difference with the permutable
case.

Thus for ¢ odd two inequivalent translation ovoids are obtained from
the semiclassical Shult set, depending upon whether the Baer subline H is
orthogonal or not to the Baer subline [, . In both cases the translation ovoid
has a base which is Baer elliptic quadric embedded in the Hermitian surface,
but this elliptic quadric is permutable with H if and only if the two Baer
sublines on [, are orthogonal. This answers one of questions raised in [8].
We should also mention that the permutable Baer elliptic quadrics Q7 (3, q)
embedded in H are the only known examples of special sets on H, as defined
in [8]. These are point sets of size ¢* + 1 with the property that any three
distinct points of the set span a secant plane of H. The non—permutable
Baer elliptic quadrics embedded in H, such as the base & for our translation
ovoid Oy, are not special sets as some triples of points on & span tangent
planes to H.

Next we look at semiclassical Shult sets for even ¢. Again we pick a
convenient basis for the vector space K over its subfield K,. Namely, pick
some element w # 1 in K, whose absolute trace is 1, and thus the polynomial
22 + x + w is irreducible over K,. Letting 3 and 3% denote the two roots of
this polynomial in K, we take {1, 3} as our basis for K over K,. Note that
B+ %=1 and B9 = w.

As in the last construction, we choose a non—canonical embedding for
our affine Baer subplane F'in A = AG(2,4¢*). Namely, we let F' = {(1,a +
bB,a +bB%) : a,b € K}, so that lo = {(0,1,2) : z € K | 27t = 1}. We
choose H = {(0,1,2) : 2 € K | 277! = w} as our Baer subline on [, disjoint
from [ . For even g, orthogonal Baer sublines of [ must share exactly one
point, and hence we cannot choose H to be orthogonal to [,,. In fact, there



is only one choice for our subline H, up to projective equivalence. We dualize
and embed in PG(3,¢?) as usual, so that the resulting Hermitian surface has
equation zoz! + zlz, + 23 + wal™ = 0. Direct computations show that

the resulting ovoid of H is
O3 =1{(0,1,0,0)} U{(1l,,a + b3, w " (a+b3%)) : a,b € K,, a € K |

a+a’ = (w +1)(a* + ab + wb?)}.

There is no convenient subset of this ovoid that can serve as a “base”,
as opposed to the situation for odd ¢. In particular, there is no Baer elliptic
quadric Q7 (3, q) contained in O3, as any such quadric embedded in H must
be a complete partial ovoid for even ¢ (see [1], for instance). However, we can
find a Baer elliptic quadric that will determine O3 in an analogous fashion
to the previous two cases. This time the Baer elliptic quadric will have only
two points on the Hermitian surface. Namely, let

E3=1{(0,1,0,0)} U {(1,a®> + ab+ wb*, a + bB,w™ " (a + bB%)) : a,b € K,}.

Then &; is the Baer elliptic quadric obtained by intersecting the hyperbolic
quadric of PG(3, ¢*) whose equation is w™tzgr; +z9r3 = 0 with the Baer sub-
space whose basis vectors are {(1, 0,0, 0), (0, 1,0,0), (0,0, 1,w™), (0,0, 3,w™39)}.
The ¢? secant lines to & through the point P meet the Hermitian surface H

in chords whose union is the ovoid O3. Once again, this ovoid is indeed a
translation ovoid.

Theorem 3.4. The ovoid O3 is a translation ovoid of 'H whose translation
group Gs of order ¢* is nonabelian and of exponent 4.

Proof.  Direct computations show that

1 z y wly?
_ 0 1 0 0 . q — -1 q+1
0 y O 1

is a nonabelian group of order ¢® and exponent 4 that stabilizes H and has
the appropriate action on Os. [

Magma [5] computations indicate (for small ¢) that the full stabilizer of
O3 in PGU(4,4%) has order ¢®(¢*> — 1), the same as for Oy. Again there is
no subgroup of order ¢ acting regularly on the chords through P.
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Thus we obtain three inequivalent ovoids from the semiclassical Shult set.
All of these are translation ovoids, but only one arises from a special set. In
particular, we have shown the following characterization.

Theorem 3.5. Let O be a translation ovoid of H and let Sy be the associated
spread of PG(3,q). Then Sy is reqular if and only if O is classical or O arises
from a Baer elliptic quadric £ by taking all points on H lying on the secants
to € through one of its points.

We emphasize that the Baer elliptic quadric in the above theorem may or
may not be embedded in H, and if so, may or may not be permutable with
‘H. As a final comment in this section, we mention that in the classical case
the stabilizer of a point in PGL(2, ¢%) acts transitively on the Baer sublines
of [, disjoint from that point, and hence there is only one choice, up to
equivalence, for the Baer subline H. As previously mentioned, the resulting
ovoid is a secant plane section of H, namely H(2, ¢?).

4 Some New Translation Ovoids

In this section we construct two new families of translation ovoids on H. We
will assume throughout this section that ¢ is an odd square prime power. We
write ¢ = p?® for some odd prime p and some integer e > 1. As before, we
let K denote the finite field GF(¢?), and we let K, be its subfield of order q.
Similarly, we let K 4 denote its subfield of order p®, and we let Tr denote the
trace from K to K 5. That is, Tr(z) = 2 + 2V9 + 27+ 29 for any = € K.

Consider the set Fr = {(1,a,Tr(a)) : a € K} of ¢* affine points in
m = PG(2,¢%), where we assume that [, has equation z; = 0 as before. The
secant lines to Fr meet [, in the set Ur = {(0,1,Tr(b)/b) : b € K | b # 0} of
slope points. We first need to find a Baer subline on [, that is disjoint from
UT.

Proposition 4.1. Let Uy be the above set of slope points for the set Fr.
Then the Baer subline H = {(0,0,1)}U{(0,1,2): 2z € K | z+27=4} of I
is disjoint from Urp.

Proof.  Suppose that (0,1, Tr(b)/b) is a point of H for some nonzero
b e K. Then 4! — Tr(b)(b + b%) = (b+ b9)[(b + b7) + (b + b7)Vi] —
(b-+07)%+ (b+b7)vV?t! and hence (b+07)% —4b"T = —(b4b7)Vitl € K 4. In
fact, b+ b7 # 0 as 4 # 0. Thus (b+ b9)* — 467" is a nonzero element of K 4,
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and hence a nonzero square in K. As in the previous section, take {1, ¢} as
a basis for K over K,, where € + € = 0 and €* = w is a primitive element
of K,. Expressing b = r + se, where r,s € K,, the above computations
show that (b+ 09)? — 467! = 412 — 4(r? — ws?) = 4ws? is a nonzero square
in K,, contradicting the fact that w must be a nonsquare in K,. Thus
HnNUr = 0. ]

Thus Fr is a Shult set, and we may apply the procedure described in
Section 2. Namely, we dualize and embed in PG(3,¢?), as usual, so that the
resulting Hermitian surface H has equation zox?+zle, +zoxi+alrg+42it =
0. Note that the Hermitian surface must agree with the Baer subpencil H*
on mp. Straightforward computations then show that the resulting ovoid O
of H is

Or ={(0,1,0,0)} U{(1,, Tr(b) — 4b,b) : b,a € K |
a+ a? = 4b7 — Tr(b) (b + b7)}.

The important question is whether or not there is an appropriate collineation
group acting to make this a translation ovoid.

Theorem 4.2. The ovoid Or is a translation ovoid of H whose translation
group Gy of order ¢* is nonabelian of exponent p.

Proof.  Direct computations show that
Lz Tr(y) -
0 1 0
0 —y? 1
0 —Tr(y) 0

4y

Gr =

Y
8 z,y € K | +2% =4y — Tr(y)(y + y*)
1

is a nonabelian group of order ¢® and exponent p that stabilizes H and has
the appropriate action on Orp. (]

When ¢ = 9, the full stabilizer of O7 in PGU (4, ¢*) has order 223°. There
is no subgroup of order ¢? in the stabilizer that acts transitively on the chords
through P, and there does not seem to be any particularly nice description
for a “base” of this ovoid.

In order to say something about the resulting semifield spread of L+ =
PG (3, q), we need to know something about the line intersections of the Shult
set Fr.
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Proposition 4.3. The ¢? points of Fy can be partitioned equally on Vq lines
of slope 0 in the affine plane AG(2,q*). For each such line the q/q points of
Fr are partitioned into \/q affine Baer sublines.

Proof.  The horizontal lines of AG(2,¢?) to be used are those indexed
by elements of K 5. More precisely, for any fixed ¢t € K s, let m; be the
horizontal line consisting of those points with second coordinate equal to t.
Then the (affinely represented) points of Fp lying on m, are precisely Y; =
{(a,t) :a € K | Tr(a) = t}. Using the fact that Tr(a) = (a+a?)+ (a+a?)V¥,
we let uy, ug, ..., u 4 denote the elements of K, whose trace from K, to K ;
is t. Then the g,/q collinear points of Y; are partitioned into the /g affine
Baer sublines B; = {(a,u;) : @ € K | a +a? = u;}, for i = 1,2,...,,/q.
Allowing ¢ to vary over all elements of K 5, we thus partition all points of
Frp. ]

Theorem 4.4. The semifield spread Sy of L+ = PG(3,q) arising from the
translation ovoid Oy is a semifield flock spread.

Proof. From Proposition 4.3 we know that the ¢? chords of Oy lie
on ,/q planes through P, each such plane containing ¢,/q of these chords.
Moreover, in any such plane o the ¢,/q hyperbolic lines containing these
chords of O are partitioned into /g affine Baer subpencils, each one being
completed to a Baer subpencil by adjoining the tangent line t = 7p N o of
H. Allowing o to vary, we get ¢ Baer subpencils whose ¢? hyperbolic lines
contain the ¢? chords of Oy through P, one per line. Hence Proposition 2.1
implies that the spread S is a union of ¢ reguli pairwise meeting in the line
L, and therefore St arises from the flock of a quadratic cone by Theorem 3.1
in [7]. O

From Theorem 2.2 we know that S is not a regular spread and hence
contains only the ¢ reguli described in the above proof (see [7]). When ¢ = 9,
MAGMA [5] computations show that this spread is the one associated with
the Dickson/Kantor/Knuth semifield. The full stabilizer of Sy in PGL(4,9)
has order 2°3%.

For our next family of translation ovoids we let f be any divisor of e,
where again ¢ = p* is an odd square prime power. Consider the set Fz =
{(1,a,a?") : a € K} of ¢ affine points in 7 = PG(2, ¢*). The secant lines to
Fp meet I in the set Ug = {(0,1,0?’ 1) : b e K | b+ 0} of slope points.
Again our first task if to find a Baer subline on [, that is disjoint from Up.
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Proposition 4.5. Let Ug be the above set of slope points for the set Fp.
Then the Baer subline H = {(0,0,1)}U{(0,1,2): 2z € K |2+ 2= 0} of I
is disjoint from Up.

Proof.  Suppose that (0, 1, bpf_l) is a point of H for some nonzero b €
K. Then b® D=1 — _1 and hence the multiplicative order of b, say o(b),
divides ged(¢® —1,2(g—1)(p” —1)). Hence o(b)[2(q—1) ged(5(g+1),pf —1).
Since ¢ = p*°, we know that %(q + 1) is odd. Moreover, since f|e, we have
ged(qg+1,p" — 1) = 2. Therefore ged(2(g+1),p —1) =1 and o(b)|2(q — 1).
This implies that 6®'=D@=1 = 1 contradicting the above condition on b.
Hence HNUg = 0. O

Thus Fp is also a Shult set, and we may apply the usual procedure to
obtain an ovoid. This time the resulting Hermitian surface H has equation
o]+ xdxs + 2oxd +2dxs = 0. Straightforward computations then show that
the resulting ovoid Op of H is

Op = {(0.1,0.0} U{(La.p,b) :ba € K |atal = - + 42},
Once again this turns out to be a translation ovoid.

Theorem 4.6. The ovoid Op is a translation ovoid of H whose translation
group G of order ¢* is nonabelian of exponent p.

Proof.  Direct computations show that

1 €T yp‘f y
0 1 0 0

G = 0 —y 1 0 rr,y € K | x+al= —(yq+pf+yqz7f+l)
0 —y» 0 1

is a nonabelian group of order ¢® and exponent p that stabilizes H and has
the appropriate action on Op. [

For the ovoid Op it is particularly easy to describe other collineations
in its stabilizer. Namely, the cyclic group of order 2(q — 1) generated by
the diagonal matrix Diag(1, gatp’ bl z) for some z € K of order 2(q — 1)
is easily seen to stabilize both H and Og. Moreover, this group normalizes
G and meets Gp trivially. All these computations follow from the fact
that z#'+1 = 24+’ Hence we see that the stabilzer of Op in PGU(4, ¢?)
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contains the semidirect product of G by a cyclic group of order 2(¢g — 1).
In practice, MAGMA [5] computations show that this is the full stabilizer
for small values of q. Once again there does not appear to be any natural
“base” for this translation ovoid.

Elementary computations show that every secant line of the Shult set Fg
meets it in exactly p/ points, and hence Op contains no Baer subpencils.
Thus the resulting semifield spread Sp of L+ = PG(3,q) contains no reguli
through the line L. In practice, at least for small values of ¢, this spread is
regulus—free. When ¢ = 9, Magma [5] computations show that this spread
has a full stabilizer in PGL(4,9) of order 273*. As the associated semifield of
order 81 has all three nuclei equal to GF'(9), it is one of the Hughes—Kleinfeld
semifields (see [3]).

5 Concluding Remarks

We conclude by making some general remarks about Shult sets in the plane
7 = PG(2,¢%). By using the collineation group of 7 leaving invariant [,
and the elation group of m with axis [, we may assume without loss of
generality that the Baer subline H on [, containing no slope point of our
Shult set is in canonical position (so H = {(0,0,1)}U{(0,1,¢) : t € K,}) and
also that the point (1,0,0) is in our Shult set. We will call such a Shult set
normalized. Moreover, any such Shult set looks like F' = {(1,a, f(a)) : a €
K}, where f is a permutation polynomial of K such that W ¢ K,
for any two distinct elements aq, a, € K. We will call a normalized Shult set
a translation Shult set if it admits a translation group of the plane acting
regularly on it. Thus for any translation Shult set the above permutation
polynomial f must be additive and the associated translation group of the

U a flo)
plane is T = 01 0 ca € K j. Conversely, if f is an additive
00 1

permutation polynomial of K such that @ ¢ K, for all nonzero a € K,
then /' = {(1,a, f(a)) : a € K} is a normalized translation Shult set with
the above translation group 7" acting regularly on it.

Let F' be a normalized translation Shult set as above. If ¢ is even, then
applying the procedure described in Section 2, we obtain the ovoid

O={(1,b, f(a),a?) :a,be K|b+b!=a’f(a)+ f(a)la}U{(0,1,0,0)}
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of the Hermitian surface H whose equation is zox? + xfz; + zo2d + 2dzs =
0. Straightforward computations show that this is a translation ovoid with
associated translation group

I b fla)? af
0 1 0 0
G = 0 a4 L0 ca,be K |b+b1=alf(a)+ f(a)la

0 f(a) O 1

If ¢ is odd, choose € € K such that €2 = —¢, and then the standard lifting
procedure of Section 2 produces the ovoid

O={(1,b,e *f(a)?,—€e *a?) 1 a,b € K | b+b? = ¢ *(a’f(a)—f(a)%)}uU{(0,1,0,0)}

of the Hermitian surface whose equation is zox} + xfz1 + exoxd — exdas = 0.
This is a translation ovoid with associated translation group

1 b e f(a)? —etal
G = 8 —1a (1) 8 ta,b € K | b+ b1 = e Ha’f(a) — f(a)la)
0 —f(a) 0 1

Thus we see that studying translation ovoids of H is equivalent to study-
ing (normalized) translation Shult sets of the plane 7, which in turn is
equivalent to studying additive permutation polynomials f of GF(¢*) such
@ ¢ GF(q) for all nonzero a € GF(a?). Explicitly describing such permuta-
tion polynomials and sorting out projective equivalences among the resulting
translation ovoids is a nontrivial task. Our examples in Sections 3 and 4 were
not normalized for ease of computation and to make the descriptions simpler.
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