|
Quaderni Elettronici del Seminario di Geometria Combinatoria
1E (Febbraio 2001), 1--14
Università degli Studi di Roma "La Sapienza" - Dipartimento di
Matematica
|
Laura BADER, Dina GHINELLI and Tim PENTTILA
On a class of flocks of the quadratic cone
(Febbraio 2001)
Abstract. In PG(3,q), with q odd, we study the
special class of flocks of quadratic cones with f(t) =
t2k+1 and g(t)= tk+1, which
generalises all known infinite families of monomial flocks.
We show that new infinite classes of these flocks do not exist for small
k, and, in general, if they exist, there are strong restrictions on
the characteristic of the field GF(q). Furthermore, we prove that
they are necessarily unique for each particular odd k, while at
most two classes of examples may exist for each particular even k.
AMS Subject Classification: Primary 51E20, Secondary 51A45.
Keywords: flock, spread, translation plane.
Authors:
- Laura Bader
- Dipartimento di Matematica e Applicazioni - Università di
Napoli "Federico II"
Complesso di Monte S. Angelo - Edificio T, Via Cintia, I-80126 Napoli
(Italy)
e-mail: laura.bader@dma.unina.it
- Dina Ghinelli
- Dipartimento di Matematica - Università di Roma "La
Sapienza"
Piazzale Aldo Moro, I-00185 Roma (Italy)
e-mail:
dina@mat.uniroma1.it
- Tim Penttila
- Department of Mathematics and Statistics - University of
Western Australia
WA 6907 Australia
e-mail: penttila@maths.uwa.edu.au
The following versions are available: