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Preface

These notes are about the geometry of finite fields. The central purpose is to look
at the implications that GF

�
qn � is an n-dimensional vector space over GF

�
q � to

geometries such as PG
�
n � 1 � q � , AG

�
n � q � and the classical polar spaces. The very

basics of finite geometry have also been included in an attempt to make the notes
as self-contained as possible and requiring only some knowledge of linear algebra.

I have taken parts of Chapters 1, 2, 4 and 6 from

“Projective and Polar Spaces” by Peter Cameron, available from
www.maths.qmw.ac.uk/ pjc/

I am very grateful for the permission to use this material and the LATEXsource
files. It may prove helpful to use his notes alongside these. Other notes that
should prove useful are

“Generalized Polygons and Semipartial Geometries” by F. de Clerck, J. A. Thas
and H. Van Maldeghem, available from www.cage.rug.ac.be/ fdc/

“Flocks, ovals and generalised quadrangles (Four Lectures in Napoli, June
2000)” by Maska Law and Tim Penttila, available from

thysanotus.maths.uwa.edu.au/research/reports/

“Classical Groups” by Peter Cameron, available from
www.maths.qmw.ac.uk/ pjc/

Chapter 1 is a brief introduction to projective spaces and concludes with the basic
idea of how to see PG

�
n � 1 � q � and AG

�
n � q � as subsets of elements of the field
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GF
�
qn � . Chapter 2 introduces some interesting subsets of points found in projec-

tive spaces, in particular maximal arcs in finite projective planes and introduces
related incidence structures such as inversive planes and partial geometries. We
also prove a theorem about maximal arcs using finite fields.

Chapter 3 is an introduction to polar spaces including representing the classical
polar spaces as subsets of finite fields. The section is concluded with the intro-
duction of m-systems of polar spaces and the construction of maximal arcs from
particular m-systems.

Chapter 4 contains a very brief introduction to generalised quadrangles and is
mainly concerned with ovoids and spreads of the symplectic generalised quadran-
gle which are again considered as subsets of finite fields.

In addition to those notes mentioned above the following texts may well be of use.

The books by J. W. P. Hirschfeld [Hir] and J. W. P. Hirschfeld and J. A. Thas [HT]
provide a comprehensive reference to projective geometries related to finite fields.
The book by D. R. Hughes and F. C. Piper [HP] is a useful reference for projective
planes. The book on finite fields by R. Lidl and H. Niederreiter [LN] contains a
section on linearised polynomials which are in essence what these notes are about.
Although now out of print the book about the classical groups by D. E. Taylor
[Tay] is worth searching out and finally for further reading on bilinear forms see
Chevalley [Che].

I am grateful to Prof. D. Jungnickel for his careful reading of these notes which
eliminated many mistakes, to Prof. D. Ghinelli for giving me the opportunity
to give a course at “La Sapienza” for which these notes were compiled, and to
Francesca Merola and Daniele Gewurz for their help with the course and with the
notes. Corrections or any other comments will be gratefully received at the e-mail
address below.

Simeon Ball, London and Rome, 2001
simeon@maths.qmw.ac.uk
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1

Projective spaces

1.1 Projective spaces

A theorem of Galois states that a finite field has prime power order and for any
prime power q, there is a unique finite field of order q. The unique field of order
q is denoted by GF

�
q � . If q � pd with p prime, its additive structure is that of

a d-dimensional vector space over its prime field GF
�
p � (the integers modulo p).

Its multiplicative group is cyclic (of order q � 1), and its automorphism group is
cyclic (of order d). If d � 1 (that is, if q is prime), then GF

�
q � is the ring of

integers mod q.

A projective space of dimension n over a field F can be constructed in either of
two ways: by adding a hyperplane at infinity to an affine space, or by “projection”
of an

�
n � 1 � -dimensional space. Both methods have their importance, but the

second is the more natural.

Thus, let V be an
�
n � 1 � -dimensional vector space over F . The projective space

PG
�
n � F � is the geometry whose points, lines, planes, . . . are the vector subspaces

of V of dimensions 1, 2, 3, . . . .

Note the dimension shift: a d-dimensional projective subspace (or flat) is a
�
d �

1 � -dimensional vector subspace. This is done in order to ensure that familiar
geometrical properties hold. For example, two points lie on a unique line; two
intersecting lines lie in a unique plane; and so on. Moreover, any d-dimensional
projective subspace is a d-dimensional projective space in its own right (when

1



2 1. Projective spaces

equipped with the subspaces it contains).

To avoid confusion (if possible) the term rank (in symbols, rk) is reserved for
vector space dimension, so that unqualified “dimension” will be geometric di-
mension.

A hyperplane is a subspace of codimension 1 (that is, of dimension one less than
the whole space). If H is a hyperplane and L a line not contained in H, then H � L
is a point.

A projective plane (that is, PG
�
2 � F � ) has the property that any two lines meet in

a (unique) point. For, if rk
�
V � � 3 and U � W � V with rk

�
U � � rk

�
W � � 2, then

U � W � V , and so rk
�
U � W � � 1; that is, U � W is a point.

A geometric property of projective spaces is the following.

Proposition 1.1 (Desargues’ Theorem) In Figure 1.1, the three points p12 � p13 � p23

are collinear.

� � � � � � � � � � � � � � � � � � � � �
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Figure 1.1: Desargues’ Theorem

In the case where the figure is not contained in a plane, the result is obvious
geometrically. For each of the three points p12 � p13 � p23 lies in both the planes



1.1. Projective spaces 3

a1a2a3 and b1b2b3; these planes are distinct, and both lie in the 3-dimensional
space spanned by the three lines through o, and so their intersection is a line.

The case where the figure is contained in a plane π can be deduced from the
“general” case as follows. Take a plane H �� π containing p12 and p13. Choose
a4, b4 �� π collinear with o in the 3-space spanned by H and o in such a way that
p14

� H (p14 is defined in the same way as the other pi j). The geometric argument
of the preceding paragraph shows that p12, p14 and p24 are collinear and that p13,
p14 and p34 are collinear. The line joining p24 and p34 is contained in H and the
non-planar Desargues’ Theorem for the triangles a2a3a4 and b2b3b4 implies that
p23 is on this line. Therefore H contains p23 as well as p13 and p12 and π also
contains these points . The two planes H and π meet in a line so these points are
collinear.

(The crucial fact is that the plane can be embedded in a 3-dimensional space.)

Let V be a vector space of rank n � 1 over F , and V � its dual space. The vector
space V � has the same rank as V . Thus we have projective spaces PG

�
n � F � ’s,

standing in a dual relation to one another. More precisely, we have a bijection
between the flats of the PG

�
n � F � ’s, given by

U � Ann
�
U � ��� f � V � :

���
u � U � �

fu � 0 �����
This correspondence preserves incidence and reverses inclusion:

U1 � U2 � Ann
�
U2

� � Ann
�
U1

� �
Ann

�
U1 � U2

� � Ann
�
U1

� � Ann
�
U2

� �
Ann

�
U1 � U2

� � Ann
�
U1

� � Ann
�
U2

���
Moreover, the (geometric) dimension of Ann

�
U � is n � 1 � dim

�
U � .

This gives rise to a duality principle, where any configuration theorem in projec-
tive space translates into another in which inclusions are reversed and dimensions
suitably modified. For example, in the plane, the dual of the statement that two
points lie on a unique line is the statement that two lines meet in a unique point.

We turn briefly to affine spaces. The description closest to that of projective spaces
runs as follows. Let V be a vector space of rank n over F . The points, lines, planes,
. . . of the affine space AG

�
n � F � are the cosets of the vector subspaces of rank 0,

1, 2, . . . . (No dimension shift this time!) In particular, points are cosets of the zero



4 1. Projective spaces

subspace, in other words, singletons, and we can identify them with the vectors of
V . So the affine space is “a vector space with no distinguished origin”.

The other description is: AG
�
n � F � is obtained from PG

�
n � F � by deleting a hyper-

plane together with all the subspaces it contains.

The two descriptions are matched up as follows. Take the vector space

V � Fn � 1 ��� � x0 � x1 � � � � � xn
� : x0 � � � � � xn

� F ���
Let W be the hyperplane defined by the equation x0 � 0. The points remaining
are rank 1 subspaces spanned by vectors with x0 �� 0; each point has a unique
spanning vector with x0 � 1. Then the correspondence between points in the two
descriptions is given by ! �

1 � x1 � � � � � xn
� " � �

x1 � � � � � xn
���

In AG
�
n � F � , we say that two subspaces are parallel if (in the first description) they

are cosets of the same vector subspace, or (in the second description) they have
the same intersection with the deleted hyperplane. Parallelism is an equivalence
relation. Now the projective space can be recovered from the affine space as fol-
lows. To each parallel class of d-dimensional subspaces of AG

�
n � F � corresponds

a unique
�
d � 1 � -dimensional subspace of PG

�
n � 1 � F � . Adjoin to the affine space

the points (and subspaces) of PG
�
n � 1 � F � , and adjoin to all members of a parallel

class all the points in the corresponding subspace. The result is PG
�
n � F � .

The distinguished hyperplane is called the hyperplane at infinity or ideal hyper-
plane. Thus, an affine space can also be regarded as “a projective space with a
distinguished hyperplane”.

1.2 Projective planes

Projective and affine planes are more than just spaces of smallest (non-trivial)
dimension: as we will see, they are exceptional. The geometry PG

�
2 � F � has the

following properties:

(PP1) Any two points lie on exactly one line.

(PP2) Any two lines meet in exactly one point.
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(PP3) There exist four points, no three of which are collinear.

The term projective plane will now be used in a more general sense, to refer to
any structure of points and lines which satisfies conditions (PP1)-(PP3) above.

In a projective plane, let p and L be a point and line which are not incident. The
incidence defines a bijection between the points on L and the lines through p. By
(PP3), given any two lines, there is a point incident with neither; so the two lines
contain equally many points. Similarly, each point lies on the same number of
lines; and these two constants are equal. The order of the plane is defined to be
one less than this number. The order of PG

�
2 � F � is equal to the cardinality of F .

Given a finite projective plane of order n, each of the n � 1 lines through a point p
contains n further points, with no duplications, and all points are accounted for in
this way. So there are n2 � n � 1 points, and the same number of lines.

Do there exist projective planes not of the form PG
�
2 � F � ? The easiest such ex-

ample is infinite; finite examples will appear later.

Example: Free planes. Start with any configuration of points and lines having
the property that two points lie on at most one line (and dually), and satisfying
(PP3). Perform the following construction. At odd-numbered stages, introduce
a new line incident with each pair of points not already incident with a line. At
even-numbered stages, act dually: add a new point incident with each pair of
lines for which such a point doesn’t yet exist. After countably many stages, a
projective plane is obtained. For given any two points, there will be an earlier
stage at which both are introduced; by the next stage, a unique line is incident with
both; and no further line incident with both is added subsequently; so (PP1) holds.
Dually, (PP2) holds. Finally, (PP3) is true initially and remains so. If we start
with a configuration violating Desargues’ Theorem (for example, the Desargues
configuration with the line pqr “broken” into separate lines pq, qr, rp), then the
resulting plane doesn’t satisfy Desargues’ Theorem, and so is not a PG

�
2 � F � .

The Bruck–Ryser Theorem asserts that, if a projective plane of order n exists,
where n # 1 or 2 (mod 4), then n must be the sum of two squares. Thus, for
example, there is no projective plane of order 6 or 14. This theorem gives no
information about 10, 12, 15, 18, . . . . Recently, Lam, Swiercz and Thiel showed
by an extensive computation that there is no projective plane of order 10. The
other values mentioned are undecided.
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An affine plane is an incidence structure of points and lines satisfying the follow-
ing conditions (in which two lines are called parallel if they are equal or disjoint):

(AP1) Two points lie on a unique line.

(AP2) Given a point p and line L, there is a unique line which contains p and is
parallel to L.

(AP3) There exist three non-collinear points.

Again it holds that AG
�
2 � F � is an affine plane. More generally, if a line and all

its points are removed from a projective plane, the result is an affine plane. (The
removed points and line are said to be “at infinity”. Two lines are parallel if and
only if they contain the same point at infinity.

Conversely, let an affine plane be given, with point set P and line set L . It follows
from (AP2) that parallelism is an equivalence relation on L . Let Q be the set
of equivalence classes. For each line L � L , let L � � L $%� Q � , where Q is the
parallel class containing L. Then the structure with point set P $ Q , and line set� L � : L � L � $&� Q � , is a projective plane. Choosing Q as the line at infinity, we
recover the original affine plane.

In a finite affine plane, there is an integer n ' 1 such that every line has n points,
every point lies on n � 1 lines, there are n2 points and there are n � 1 parallel
classes with n lines in each. The number n is the order of the affine plane. All
these facts are left as an exercise.

1.3 Desarguesian planes

Theorem 1.2 A projective plane is isomorphic to PG
�
2 � F � for some F if and only

if it satisfies Desargues’ Theorem.

I do not propose to give a proof of this important result; but some comments on
the proof are in order.

The field operations (addition and multiplication) can be defined geometrically,
once a set of four points with no three collinear has been chosen. By (PP3), such
a set of points exists in any projective plane. So it is possible to define two binary
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operations on a set consisting of a line with a point removed, and to coordinatise
the plane with this algebraic object. Now any field axiom translates into a certain
“configuration theorem”, so that the plane is a PG

�
2 � F � if and only if all these

“configuration theorems” hold. What is not obvious, and quite remarkable, is that
all these “configuration theorems” follow from Desargues’ Theorem.

Another method, more difficult in principle but much easier in detail, exploits the
relation between Desargues’ Theorem and collineations.

Let p be a point and L a line. A central collineation with centre p and axis L is a
collineation fixing every point on L and every line through p. It is called an elation
if p is on L, a homology otherwise. The central collineations with centre p and
axis L form a group. The plane is said to be

�
p � L � -transitive if this group permutes

transitively the set M ()� p � L � M � for any line M �� L on p (or, equivalently, the
set of lines on q different from L and pq, where q �� p is a point of L).

� � � � � � � � � � � � � � � � � � � � �
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Figure 1.2: The Desargues configuration

Theorem 1.3 A projective plane satisfies Desargues’ Theorem if and only if it is�
p � L � -transitive for all points p and lines L.

Proof Assume that the plane is
�
p � L � -transitive for all points p and lines L. Let

us take another look at the Desargues configuration (Fig. 1.2). Let L be the line rq.
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We wish to show that p is incident with L. There is a central collineation taking
a1 to a2 which is completely determined determined at every point. For example
the line b1a1 meets L in r and ra2 meets ob1 in b2. Therefore b1 is taken to b2.
Similarly c1 is taken to c2 and p is fixed by the collineation. Since p �� o it is
incident with L.

Conversely, we need to find a central collineation taking a1 to a2 fixing the line
L pointwise and every line incident with o. The collineation is now completely
determined at every point and specifically b1 is taken to b2 and c1 is taken to c2.
The point p is fixed and we have a collineation.

In view of Theorem 1.2 projective planes over fields are called Desarguesian
planes.

1.4 The geometry of finite fields

The field GF
�
qn � is a vector space of rank n over GF

�
q � . In Section 1.1 we

defined PG
�
n � 1 � GF

�
q � � (which we denote from now on as PG

�
n � 1 � q � ) from

the subspaces of V , a vector space of rank n over GF
�
q � . The following theorem

allows us to identify the subspaces of GF
�
qn � by polynomials.

Theorem 1.4 The set

U �+* x � GF
�
qn �-,,, n . 1

∑
i / 0

aix
qi � 0 0

is a subspace over GF
�
q � . If U has rank r (projective

�
r � 1 � -dimensional sub-

space) then the GF
�
qn � -rank of the matrix B � �

bi j
� defined by bi j � aqi

j . i, where
the indices are taken modulo n, is at most n � r.

Proof It is easy to check that the set U of zeros of ∑n . 1
j / 0 a jxq j

form a subspace
and any element of U is also a zero of

n . 1

∑
j / 0

aqi

j xqi 1 j � n . 1

∑
j / 0

aqi

j . ix
q j �

where again the indices are taken modulo n.
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For all x � U the vector x � �
x � xq � xq2 � � � � � xqn 2 1 � � V

�
n � qn � is in the kernel of B.

Moreover if x � λy for x and y � U and λ � GF
�
qn � then x � λy and xq � λyq and

λ � x 3 y � xq 3 yq � GF
�
q � . There are r elements of U linearly independent over

GF
�
q � and therefore r vectors of the form

�
x � xq � xq2 � � � � � xqn 2 1 � linearly indepen-

dent over GF
�
qn � . Hence the kernel of B is a subspace over GF

�
qn � of rank at

least r and by the rank-nullity theorem the GF
�
qn � -rank of B is at most n � r.

Given a subspace U of rank r the polynomial

∏
u 4 U

�
x � u �

is a monic polynomial of degree qr of the form

xqr � r . 1

∑
j / 0

a jx
q j �

The previous theorem allows us to calculate necessary and sufficient conditions
on the coefficients to determine when such a polynomial (sometimes referred to a
as a linearised polynomial) is a subspace. Note they are precisely the linearised
polynomials which are factors of the polynomial

xqn � x � ∏
ε 4 GF 5 qn 6 � x � ε ���

It is a simple matter to calculate these polynomials for the rank 1 subspace (points)
and the rank n � 1 subspaces (hyperplanes) by applying Theorem 1.4. The set* x � GF

�
qn � ,,, xq � ax � 0 0

is a rank 1 subspace of GF
�
qn � when aqn 2 1 � qn 2 2 �8797:7 � q � 1 � 1 . The set* x � GF

�
qn � ,,, xqn 2 1 � n . 2

∑
i / 0

a1 � q �;7:7:7 � qn 2 i 2 2
xqi � 0 0

is a rank n � 1 subspace when aqn 2 1 � qn 2 2 �;7:7:7 � q � 1 � 1.

Note that we now know all the polynomials defining the points and lines of PG
�
2 � q � .
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We now look for a similar way of considering AG
�
n � GF

�
q �<� (which we shall

denote from now on as AG
�
n � q � ). The field GF

�
qn � is a vector space of rank n

and we follow 1.1. A coset of a subspace of rank r is a set of size qr of the form* x � λ ,,, r

∑
i / 0

aix
qi � 0 0

where λ � GF
�
qn � and the set of zeros of the polynomial ∑r

i / 0 aixqi
is a subspace

of rank r. Therefore a subspace of AG
�
n � q � is a set* x ,,, r

∑
i / 0

aix
qi � r

∑
i / 0

aiλqi � 0 0 �
Note that a polynomial of the form ∑r

i / 0 aixqi � b defines a subspace of AG
�
n � q �

of dimension r if and only if it is a factor of xqn � x.

A point of AG
�
n � q � is a singleton set � x � where x � GF

�
qn � . Therefore we refer

to the elements of GF
�
qn � as the points of AG

�
n � q � . The lines of AG

�
n � q � are sets* x � GF

�
qn � ,,, xq � ax � �

λq � aλ � � 0 0
where aqn 2 1 � qn 2 2 �;7:7:7 � q � 1 � 1 and λ � GF

�
qn � .

It is sometimes useful to view projective and affine spaces in this way because it
is often simple to calculate an algebraic condition for a geometric property which
in turn can lead to solutions of otherwise difficult problems.

Let us consider three points u, v and w in AG
�
2 � q � . What is the condition that they

are collinear ? A line of AG
�
2 � q � is* x � GF

�
q2 � ,,, xq � ax � b � 0 0

where aq � 1 � 1 and b � GF
�
q2 � . The points u, v and w are collinear iff there

exists a and b such that

b �=� au � uq �=� av � vq �=� aw � wq

which implies that �
u � v � q . 1 � �

v � w � q . 1 � �
w � u � q . 1 �
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Consider the following problem: Let S be a set of q � 1 points of AG
�
2 � q � and let

N be the set of points disjoint from S with the property that every line incident
with a point of N is incident with a point of S . Such a point p � N is called a
nucleus. How large can the set N be ? Let us consider AG

�
2 � q � as GF

�
q2 � and

define f � GF
�
q2 �?> X @ by

f
�
X � � ∑

b 4 S

�
X � b � q . 1 �

If x � N A GF
�
q2 � then the values of

�
x � b � q . 1 for b � S are pair-wise distinct

and non-zero. However
�<�

x � b � q . 1 � q � 1 � �
x � b � q2 . 1 � 1 in GF

�
q2 � so

�
x � b � q . 1

is a
�
q � 1 � � st root of unity. The sum of these roots of unity is zero and so

f
�
x � � 0. The polynomial f

�
X � has exactly degree q � 1 (it is not identically zero

since the coefficient of X q . 1 is 1). Hence f can have at most q � 1 zeros and
therefore B N BDC q � 1.

This is the Blokhuis-Wilbrink theorem on nuclei.

Exercises

1. Show that the sets � x � GF
�
q4 � B xq2 � cxq � ex � 0 �

are rank 2 subspaces over GF
�
q � (lines of PG

�
3 � q � ) if and only if eq3 � q2 � q � 1 � 1

and cq � 1 � eq � eq2 � q � 1.

2. Prove that a set S of q � k points in AG
�
2 � q � can have at most k

�
q � 1 � nuclei.

(Hint: look at the coefficient of T q in the polynomial

F
�
T � X � � ∏

b 4 S

�
T � �

X � b � q . 1 ���
What does the polynomial F

�
T � x � look like when x is a nucleus ?) Hence show

that a set of points in AG
�
2 � q � which is incident with every line has at least 2q � 1

points. Such a set is called a blocking set.
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2

Subsets of projective spaces

2.1 Spreads and translation planes

Let V be a vector space over F , having even rank 2n. A spread S is a set of
subspaces of V of rank n, having the property that any non-zero vector of V lies
in a unique member of S . A trivial example occurs when n � 1 and S consists of
all the rank 1 subspaces.

The importance of spreads comes from the following result, whose proof is straight-
forward.

Proposition 2.1 Let S be a spread in V , and L the set of all cosets of members of
S . Then

�
V � L � is an affine plane. The projective plane obtained by adding a line

at infinity L∞ is
�
p � L∞

� -transitive for all p � L∞.

For finite planes, the converse of the last statement is also true. An affine plane
with the property that the projective completion is

�
p � L∞

� -transitive for all p � L∞
is called a translation plane.

Example. Let K be an extension field of F with degree n. Take V to be a rank
2 vector space over K, and S the set of rank 1 K-subspaces. Then, of course,
the resulting affine plane is AG

�
2 � K � . Now forget the K-structure, and regard V

13
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as an F- vector space. Such a spread is called Desarguesian, because it can be
recognised by the fact that the affine plane is Desarguesian.

Projectively, a spread is a set of
�
n � 1 � -dimensional flats in PG

�
2n � 1 � F � , which

partitions the points of F . We will examine further the case n � 1.

Lemma 2.2 Given three pairwise skew lines in PG
�
3 � F � , there is a unique com-

mon transversal through any point on one of the lines.

Proof Let L1 � L2 � L3 be the lines, and p � L1. The quotient space by p is a pro-
jective plane PG

�
2 � F � , and Π1 � !

p � L2
" and Π2 � !

p � L3
" are distinct lines in this

plane; they meet in a unique point, which corresponds to a line M containing p
and lying in Π1 and Π2, hence meeting L2 and L3.

Now let R E be the set of common transversals to the three pairwise skew lines.
The lines in R E are pairwise skew, by 2.2.

Lemma 2.3 A common transversal to three lines of R E is a transversal to all of
them.

Let R be the set of all common transversals to R E . The set R is called a regulus,
and R E (which is also a regulus) is the opposite regulus. Thus, three pairwise skew
lines lie in a unique regulus.

A spread is regular if it contains the regulus through any three of its lines.

Theorem 2.4 A spread is Desarguesian if and only if it is regular.

If we take a regular spread, and replace the lines in a regulus in this spread by those
in the opposite regulus, the result is still a spread; for a regulus and its opposite
cover the same set of points. This process is referred to as derivation. It gives rise
to non-Desarguesian translation planes:

Proposition 2.5 If B F BF' 2, then a derivation of a regular spread is not regular.
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Proof Choose two reguli R1, R2 with a unique line in common. If we replace R1

by its opposite, then the regulus R2 contains three lines of the spread but is not
contained in the spread.

It is possible to push this much further. For example, any set of pairwise disjoint
reguli can be replaced by their opposites.

2.2 Ovals

For projective geometries over finite fields, it is very natural to ask for charac-
terisations of interesting sets of points by hypotheses on their intersections with
lines.

If a polynomial f in x1 � � �<� � xn � 1 is homogeneous, that is, a sum of terms all of the
same degree, then f

�
v � � 0 implies f

�
αv � � 0 for all α � F . So, if f vanishes at a

non-zero vector, then it vanishes at the rank 1 subspace (the point of PG
�
n � F � ) it

spans. The algebraic variety defined by f is the set of points spanned by zeros of
f . We are concerned here only with the case n � 2, in which case (assuming that
f does not vanish identically) this set is called an algebraic curve.

Now consider the case where f has degree 2, and F � GF
�
q � , where q is an odd

prime power. The curve it defines may be a single point, or a line, or two lines;
but, if none of these occurs, then it is equivalent (under the group PGL

�
3 � q � ) to

the curve defined by the equation x2
1 � x2

2 � x2
3 � 0 (see Exercise 1). Any curve

equivalent to this one is called a conic (or irreducible conic).

It can be shown that a conic has q � 1 points, no three of which are collinear. This
leads us to define an oval as a set of points with the property that no three are
collinear. A conic is therefore an oval and when q is odd Segre’s theorem says
that the converse is true.

Theorem 2.6 (Segre’s Theorem) For q odd, an oval is a conic.

I do not wish to give a proof of this important theorem, a proof can be found in
Cameron [2] or Hirschfeld [Hir] or Hughes and Piper [HP].

The analogue of Segre’s Theorem over GF
�
q � with even q is false. In this case, the

tangents to an oval S all pass through a single point n, the nucleus of the oval; and,
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for any p � S, the set S $G� n � (H� p � is also an oval. But, if q ' 4, then at most one
of these ovals can be a conic; these ovals have q common points. For sufficiently
large q (q I 16) there are other ovals, not arising from this construction. For
information on ovals in planes of even order see [1] or [4].

2.3 Ovoids and inversive planes

Ovoids are 3-dimensional analogues of ovals. They have added importance be-
cause of their connection with inversive planes, which are one-point extensions of
affine planes.

An ovoid in PG
�
3 � F � is a set O of points with the properties

(O1) no three points of O are collinear;

(O2) the tangents to O through a point of O form a plane pencil.

(If a set of points satisfies (O1), a line is called a secant, tangent or external line if
it meets the set in 2, 1 or 0 points respectively. The plane containing the tangents
to an ovoid at a point x is called the tangent plane at x.)

The classical examples of ovoids are the elliptic quadrics. Let αx2 � βx � γ be an
irreducible quadratic over the field F . The elliptic quadric consists of the points
of PG

�
3 � F � whose coordinates

�
x1 � x2 � x3 � x4

� satisfy

x1x2 � αx2
3 � βx3x4 � γx2

4 � 0 �
The proof that these points do form an ovoid is left as an exercise.

Over finite fields, ovoids are rare. Barlotti and Panella showed the following ana-
logue of Segre’s theorem on ovals:

Theorem 2.7 Any ovoid in PG
�
3 � q � , for q an odd prime power, is an elliptic

quadric.

For even q, just one further family is known, the Suzuki–Tits ovoids which we will
construct in Section 4.3
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An inversive plane is, as said above, a one-point extension of an affine plane. That
is, it is a pair

�
X � C � , where X is a set of points, and C a collection of subsets of X

called circles, satisfying

(I1) any three points lie in a unique circle;

(I2) if x � y are points and C a circle with x � C and y 3� C, then there is a unique
circle C E satisfying y � C E and C � C E �J� x � ;

(I3) there exist four non-concircular points.

It is readily checked that, for x � X , the points different from x and circles con-
taining x form an affine plane. The order of the inversive plane is the (common)
order of its derived affine planes.

Proposition 2.8 The points and non-trivial plane sections of an ovoid form an
inversive plane.

Proof A plane section of the ovoid O is non-trivial if it contains more than one
point. Any three points of O are non-collinear, and so define a unique plane
section. Given x, the points of O different from x and the circles containing x
correspond to the lines through x not in the tangent plane Tx and the planes through
x different from Tx; these are the points of the quotient space not incident with the
line Tx 3 x and the lines different from Tx 3 x, which form an affine plane.

An inversive plane arising from an ovoid in this way is called egglike. Dembowski
proved:

Theorem 2.9 Any inversive plane of even order is egglike (and so its order is a
power of 2).

This is not known to hold for odd order, but no counterexamples are known.

There are configuration theorems (the bundle theorem and Miquel’s theorem re-
spectively) which characterise egglike inversive planes and “classical” inversive
planes (coming from the elliptic quadric) respectively.
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2.4 Maximal arcs and partial geometries

Let π be a projective plane (not necessarily PG
�
2 � F � ) of order n. A subset of

points M of π with the property that every line is incident with 0 or r points of M
is called a maximal arc of degree r. A point, an affine plane and the whole plane
π are maximal arcs of degree 1, n and n � 1 respectively and are known as trivial
maximal arcs. In this section we assume that M is a non-trivial maximal arc.

Proposition 2.10 The set M has rn � n � r points and the set of lines L that are
incident with no points of M is dual to a maximal arc of degree n 3 r in the dual
plane π � .
Proof The number of points in M follows directly by counting the number of
points in M that are incident with a line through a point of M . Let p be a point
of π not in M . Then there are n � n 3 r � 1 lines incident with p and incident with
r points of M and therefore n 3 r lines incident with p and incident with no points
of M . Hence every point of π is incident with either 0 or n 3 r of these (external)
lines (0-secants).

Note that r divides n and if n � pd for some prime p then r � pe.

A maximal arc of degree 2 is called a hyperoval. The set of external lines to
a hyperoval dualise to a maximal arc of degree q 3 2 in the dual plane. We turn
our attention for the moment to the case π � PG

�
2 � q � . The following theorem

is Denniston’s construction of maximal arcs. It constructs maximal arcs of every
feasible order when q is even.

Theorem 2.11 Let x2 � bx � 1 be an irreducible quadratic form over GF
�
q � , q �

2h, and let Cλ be a conic in PG
�
2 � q � defined by the equation x2 � bxy � y2 � λz2 �

0. Let H be a subgroup of order 2e of the additive group of GF
�
q � . Then the set

M �K$ λ 4 HCλ is a maximal arc of degree 2e in PG
�
2 � q � .

Proof The conic C0 is degenerate and consists of the single point
�
0 � 0 � 1 � . The

other q � 1 conics Cλ have the common nucleus
�
0 � 0 � 1 � , are disjoint and cover

every point not on the line z � 0. If L is a line incident with
�
0 � 0 � 1 � then it is

incident with precisely one point of Cλ for every λ and therefore is incident with
2e points of M .
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Let L be a line not incident with
�
0 � 0 � 1 � and assume that L has equation ax � cy �

z � 0. If L has no points incident with Cλ then�
1 � λa2 � x2 � bxy � �

1 � λc2 � y2 � 0

has no solutions in which x and y are not both zero. We make the substitution
v � b . 1 � 1 � λa2 � xy . 1 and conclude that

v2 � v � b . 2 � 1 � λa2 � � 1 � λc2 � � 0

has no solutions in GF
�
q � . The function Trq L 2

�
x � � x � x2 � x4 � � �<� � xq M 2 �

GF
�
2 � for all x � GF

�
q � . If the above quadratic has no solutions in GF

�
q � then

Trq L 2
�
b . 2 � 1 � λa2 � � 1 � λc2 �<� � 1

since Trq L 2
�
v2 � v � � v � vq � 0. The quadratic b . 2x2 � b . 1x � b . 2 � 0 has

no solutions by assumption from which it follows that Trq L 2
�
b . 2 � � 1 � since

Trq L 2
�
b . 2x2 � b . 1x � � 0. If λ � λ1 and λ � λ2 have the property that

Trq L 2
�
b . 2λ

�
a2 � c2 � � λ2a2c2b . 2 � � 0

the additive property of the trace function Tr
�
x � y � � Tr

�
x � � Tr

�
y � implies that

λ � λ1 � λ2 does too. In characteristic 2 every element is the additive inverse
of itself. Therefore the set G : �+� λ � GF

�
q � B Cλ � L � /0 � forms a subgroup of

GF
�
q � � . The line L is incident with q points not incident with the line z � 0 and

so there are q 3 2 quadratics that have two solutions in GF
�
q � and q 3 2 that have no

solutions, hence B G B�� q 3 2.

If H C G then L � M � /0. If H is not a subgroup of G then GF
�
q �N� � HG and

H � G has index 2 in G and therefore B G � H B�� 2e 3 2 � 2e . 1; the line L meets M
in 2e . 1 � 2 � 2e points.

The only known examples of maximal arcs in PG
�
2 � q � which are not Denniston

maximal arcs are the hyperovals, the duals of the external lines to a hyperoval
and those constructed by Thas (1974). There are about 10 infinite families of
hyperovals in PG

�
2 � q � known, see [1] or [4]. The Thas (1974) maximal arcs are

of degree O q where q � 24e � 2. These are constructed from the Suziki-Tits ovoid
via the Hamilton-Quinn-Thas construction which we shall see in Section 3.5. We
shall construct the ovoid in Section 4.3.
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When q is odd there are no known non-trivial maximal arcs. It has been shown by
computer ( Penttila and Royle [8]) that none of the planes of order 9 (the smallest
planes) contain maximal arcs. When the plane is Desarguesian this is always the
case. We need some preliminary lemmas before we prove this.

Lemma 2.12
∏

εq 1 1 / 1

�
1 � εT � � 1 � T q � 1

Proof Let U �J� T . 1. Then

∏
εq 1 1 / 1

�
1 � εT � � ∏

εq 1 1 / 1

U . q . 1 � U � ε � � U . q . 1 � Uq � 1 � 1 � � 1 � T q � 1 �
Lemma 2.13 (Lucas’ Theorem) Let p be a prime, a � a0 � a1 p � a2 p2 � � � � and
b � b0 � b1 p � b2 p2 � � � � be integers with a ' 0. The binomial coefficientP

a
b Q � P

a0

b0 Q P
a1

b1 Q P
a2

b2 Q � � � �
mod p ���

Proof The coefficient of xb in the expansion of
�
1 � x � a is R ab S and modulo p�

1 � x � a � �
1 � x � a0 � a1 p � a2 p2 �8797:7 � �

1 � x � a0
�
1 � xp � a1

�
1 � xp2 � a2 �<� �<�

The assertion follows by equating the coefficient of xb in the above equation.

Lemma 2.14 If b � GF
�
q � for all b � B and B

�
X � � ∏b 4 B

�
1 � bX � then

B
�
X � ∑

b 4 B

�
1 � bX � q . 1 ��� �

X � Xq � B E � X � �
where B E is the derivative of B with respect to X.

Proof By computing the derivative of B
�
X � and expanding the denominator as

an infinite sum we get

B E � X � �UT ∑
b 4 B

� b
1 � bX V B

�
X � �=�=T ∑

b 4 B

∞

∑
i / 0

bi � 1xi V B
�
X ���
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Every b � B are elements of GF
�
q � and so bq � b. Hence�

X � Xq � T ∑
b 4 B

∞

∑
i / 0

bi � 1X i V � ∑
b 4 B

q . 1

∑
i / 0

biX i � ∑
b 4 B

�
1 � bX � q . 1 �

Lemma 2.15 If
F
�
T � X � � ∏Fi

�
T � X �

where Fi
�
T � x � divides some polynomial G

�
T � for X � x (X is evaluated at some x)

then F
�
T � x � divides FX

�
T � x � G �

T � where FX
�
T � x � denotes the partial derivative

of F
�
T � X � with respect to X evaluated at X � x.

Proof We differentiate F
�
T � X � with respect to X ,

FX
�
T � X � � ∑

i
∂Fi ∏

j W/ i

Fj � �
∑

i

∂Fi

Fi

� F �
The terms in the denominator are factors of G

�
T � when we evaluate X � x. Hence

multiplying the above by G
�
T � and putting X � x we see the bracket becomes a

polynomial in T and that F
�
T � x � divides FX

�
T � x � G �

T � .
Theorem 2.16 The only maximal arcs in PG

�
2 � q � when q is odd are the trivial

ones.

Proof Let M be a maximal arc of degree r X q. There is a line external to M so
we may assume that it is a set of points of AG

�
2 � q � and as in Section 1.4 that it is

a set of elements of GF
�
q2 � . Define the polynomials F in two variables and σk in

one variable by

F
�
T � X � : � ∏

b 4 M

�
1 � �

1 � bX � q . 1T � � rq . q � r

∑
k / 0

σkT k

where σk is the k-th elementary symmetric function of the set of polynomials� � 1 � bX � q . 1 B b � M � , a polynomial of degree at most k
�
q � 1 � in X .

The point 1 3 x � GF
�
q2 � ( M is not contained in the arc so every line incident with

1 3 x is incident with either 0 or r points of M . In the multiset
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in F

�
T � x � every factor occurs exactly r times. Therefore F

�
T � x � is an r-th power.

Every line incident with a point 1 3 x � M is incident with exactly r � 1 other
points of M . In the multiset � � 1 3 x � b � q . 1 B b � M � every

�
q � 1 � -st root of unity

is repeated r � 1 times and the element 0 appears once. Therefore by Lemma 2.12

F
�
T � x � � ∏

b 4 M

�
1 � �

1 3 x � b � q . 1xq . 1T � � �
1 � xq2 . 1T q � 1 � r . 1 � �

1 � T q � 1 � r . 1 �
Finally for x � 0 the coefficient of T j in F

�
T � 0 � is R rq . q � r

j S which we can evaluate
using Lemma 2.13 and conclude that

F
�
T � 0 � � �

1 � T � rq . q � r � 1 � T r � T q � � �<� � T rq . q � r �
The coefficient of T k for 0 X k X r in F

�
T � x � is 0 for all x � GF

�
q2 � , and so

σk
�
x � � 0. The degree of σk is at most k

�
q � 1 � X q2, so these polynomials are

identically zero. The first coefficient of F that is not necessarily identically zero
therefore is σr. For all x � GF

�
q2 � the value of σk

�
x � , the coefficient of T k, is zero

unless r divides k or q � 1 divides k. Hence for all x � GF
�
q2 � we have

F
�
T � x � � 1 � q . q M r � 1

∑
i / 1

σirT
ir � r . 1

∑
i / 1

σi 5 q � 1 6 T i 5 q � 1 6 �
The coefficient of T r in F

�
T � 0 � is 1 and therefore σr

�
0 � � 1 and importantly it is

not identically zero. On the other hand the coefficient of T r in
�
1 � T q � 1 � r . 1 is

zero. Therefore σr
�
x � � 0 for all 1 3 x � M and so the polynomial

B
�
X � : � ∏

b 4 M

�
1 � bX �

divides σr
�
X � .

The main objective of the proof is to show
�
Bσ̂r

� E # 0 which will lead swiftly to a
contradiction for p �� 2.

The coefficient of T q � 1 in F
�
T � x � is � R r . 1

1 S � 1 for all 1 3 x � M . Therefore
σq � 1

�
x � � 1. The coefficient of T q � 1 in F

�
T � x � is zero for all x � GF

�
q2 � ( M

and therefore σq � 1
�
x � � 0.
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The polynomial � ∑b 4 M
�
1 � bX � q2 . 1 is equal to 1 for all X � x � M since there

are rq � q � r terms in the sum, one of which will be zero the others of which will
be 1. For all other elements of GF

�
q2 � it will be zero, since every term in the sum

will be 1. Now σq � 1 takes the same values for all x � GF
�
q2 � and both are of

degree q2 � 1. Hence they are the same. The polynomial identity�
X � Xq2 � B E � X � � σq � 1

�
X � B �

X �
follows by applying Lemma 2.14 to M . We differentiate this, multiply by B and
evaluate X � x � GF

�
q2 � , to get the relation

BB E � B2σ Eq � 1

for all x � GF
�
q2 � .

By Lemma 2.15 F
�
T � x � divides�

1 � T q � 1 � FX
�
T � x ���

Define the quotient of this division (dependent on x) to be Q
�
T � and by computa-

tion
Q

�
T � � σ ErT r � R

�
T � T 2r � σ Eq � 1T q � 1

where R
�
T � is an r-th power (considered as a polynomial in T ). We have that

F
�
T � x � Q �

T � � �
1 � T q � 1 � FX

�
T � x �

and by multiplying by B
�
x � that for all x � GF

�
q2 �T q . q M r � 1

∑
i / 0

B
�
x � σirT

ir V Q
�
T � � �

1 � T q � 1 � B �
x � FX

�
T � x ���

By equating the coefficient of T q � 1 � r we see that

Bσrσ Eq � 1 � B
�
σ Eq � 1 � r � σ Er ���

Note that since B
�
X � divides σr

�
X � we can use the relation that

B2σ Eq � 1 � BB E
and rearranging terms the above gives

Bσ Eq � 1 � r � �
Bσr

� E
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for all x � GF
�
q2 � . Equating successively the coefficient of T i 5 q � 1 6 � r for 1 X i X r

gives
Bσ Ei 5 q � 1 6 � r � Bσ E 5 i . 1 6 5 q � 1 6 � r � �

Bσr
� E �

Since B M B�� rq � q � r it follows that σ 5 r . 1 6 5 q � 1 6 � r # 0 and so�
Bσr

� E � 0

for all x � GF
�
q2 � . The degree of Bσr is at most

�
rq � q � r � � r

�
q � 1 � X q2 it

follows that
�
Bσr

� E # 0 identically, and hence Bσr is a p-th power. Now B
�
X �

does not have multiple factors so Bp . 1 divides σr. The degree of σr is at most
r
�
q � 1 � and it is not identically zero. Therefore

�
p � 1 � � rq � q � r � C r

�
q � 1 �

which gives a contradiction for p ' 2.

A partial geometry is a set of points and lines with the following properties.

(PG1) every two points are incident with at most one line;

(PG2) for all anti-flags
�
p � L � (p a point not incident with the line L) there are

exactly α points incident with L and collinear with p.

Proposition 2.17 Let S be a partial geometry with α ' 1. Then every line is
incident with a constant s � 1 number of points and every point is incident with a
constant t � 1 number of lines.

Proof If two lines L1 and L2 are skew the number of lines meeting both L1 and L2

is α B L1 BY� α B L2 B . If L1 and L2 are concurrent then the number of lines meeting both
L1 and L2 is

�
α � 1 � � B L1 B<� 1 � � �

α � 1 � � B L2 B � 1 � . Hence since α ' 1 every line
is incident with a constant number of lines. Dually the same argument works.

This also holds for α � 1 with some extra conditions. Such a partial geometry is
called a generalised quadrangle and these geometries will be the topic of Chapter
4.

For more details on partial geometries see de Clerck, Thas and van Maldeghem
[5]. The following examples are constructed from maximal arcs.
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Example: S
�
M � Let M be a non-trivial maximal arc of degree r in a projective

plane π of order n. Let the points of S
�
M � be the points of π ( M and the lines be

the lines that are incident with r points of M . Then S
�
M � is a partial geometry

with α � n � n 3 r � 1 � r, s � n � r and t � n � n 3 r.

Example: T �2 �
M � Let M be a non-trivial maximal arc of degree r in a pro-

jective plane π or order n which is embedded in PG
�
3 � q � as a subplane. Hence

π Z� PG
�
2 � q � and n � q and q is necessarily even, by Theorem 2.16. Let the points

of T �2 �
M � be the points of AG

�
3 � q � � PG

�
3 � q � ( π and the lines be the lines of

PG
�
3 � q � incident with exactly one point of M . Incidence in the partial geometry

is the incidence in the projective space. Let
�
p � L � be an anti-flag of T �2 �

M � . Then
the plane spanned by p and L in PG

�
3 � q � meets the plane π in a line M that is in-

cident with r points of M . The lines incident with p and the r � 1 points of M ( L
are the only lines of T �2 �

M � that meet the line L. The parameters are α � r � 1,
s � q � 1 and t � rq � q � r � 1.

Note that T �2 �
M � is a generalised quadrangle when M is a hyperoval.
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Polar spaces

3.1 Dualities and polarities

Recall that the dual V � of a finite-dimensional vector space V over a commutative
field F is a vector space of the same dimension over the field F , and there is thus
an inclusion-reversing bijection between the projective space PG

�
n � F � and itself;

there exists a duality of PG
�
n � F � , an inclusion-reversing bijection of PG

�
n � F � .

Let π be a duality of PG
�
n � F � . The fundamental theorem of projective geometry

says that π is induced by a semilinear transformation T from V � Fn � 1 to its dual
space V � , where T is associated to an automorphism σ of F: that is,�

v1 � v2
� T � v1T � v2T ��

αv � T � ασvT �
Define a function b : V [ V \ F by the rule

b
�
v � w � � �

v � � wT � �
that is, the result of applying the element wT of V � to v. Then b is a sesquilinear
form: it is linear as a function of the first argument, and semilinear as a function
of the second — this means that

b
�
v � w1 � w2

� � b
�
v � w1

� � b
�
v � w2

�
and

b
�
v � αw � � ασb

�
v � w ���

27
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(The prefix “sesqui-” means “one-and-a-half”.) If we need to emphasise the anti-
automorphism σ, we say that b is σ-sesquilinear. If σ is the identity, then the form
is bilinear.

The form b is non-degenerate if, b
�
v � w � � 0 for all w � V implies v � 0 and,

b
�
v � w � � 0 for all v � V implies w � 0.

Theorem 3.1 Any duality of PG
�
n � F � , for n ' 1, is induced by a non-degenerate

σ-sesquilinear form on the underlying vector space, where σ is an automorphism
of F.

Conversely, any non-degenerate sesquilinear form on V induces a duality.

U ]\ U ^ : �_� v � V : b
�
v � w � � 0 for all w � U ���

Obviously, a duality applied twice is a collineation. The most important types of
dualities are those whose square is the identity. A polarity of PG

�
n � F � is a duality`

which satisfies U ^a^ � U for all flats U of PG
�
n � F � .

A sesquilinear form b is reflexive if b
�
v � w � � 0 implies b

�
w � v � � 0.

Proposition 3.2 A duality is a polarity if and only if the sesquilinear form defining
it is reflexive.

Proof b is reflexive if and only if

v � !
w " ^ � w � !

v " ^ �
Hence, if b is reflexive, then U � U ^b^ for all subspaces U . But by non-degeneracy,
dimU ^a^ � dimV � dimU ^ � dimU ; and so U � U ^a^ for all U . Conversely,
given a polarity

`
, if w � !

v " ^ , then v � !
v " ^a^ � !

w " ^ (since inclusions are
reversed).

The form b is said to be σ-Hermitian if b
�
w � v � � b

�
v � w � σ for all v � w � V . This

implies that, for any v, b
�
v � v � lies in the fixed field of σ. If σ is the identity, such

a form (which is bilinear) is called symmetric.

A bilinear form b is called alternating if b
�
v � v � � 0 for all v � V . This implies

that b
�
w � v � �c� b

�
v � w � for all v � w � V . (Expand b

�
v � w � v � w � � 0, and note
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that two of the four terms are zero.) Hence, if the characteristic is 2, then any
alternating form is symmetric (but not conversely); but, in characteristic different
from 2, only the zero form is both symmetric and alternating.

Clearly, an alternating or Hermitian form is reflexive. Conversely, we have the
following:

Theorem 3.3 A non-degenerate reflexive σ-sesquilinear form is either alternat-
ing, or a scalar multiple of a σ-Hermitian form. In the latter case, if σ is the
identity, then the scalar can be taken to be 1.

The proof of this theorem is quite lengthy and so is not included here. A partial
proof can be found in Cameron ([2]).

If b is a non-zero reflexive σ-sesquilinear form then σ2 is the identity. For every
scalar α is a value of b, say b

�
v � w � � α; then

α � b
�
v � w � � b

�
w � v � σ � b

�
v � w � σ2 � ασ2 �

Let V be a vector space over F . A quadratic form on V is a function f : V \ F
satisfyingd

f
�
λv � � λ2 f

�
v � for all λ � F , v � V ;d

f
�
v � w � � f

�
v � � f

�
w � � b

�
v � w � , where b is bilinear.

Now, if the characteristic of F is not 2, then b is a symmetric bilinear form. Each
of f and b determines the other, by

b
�
v � w � � f

�
v � w � � f

�
v � � f

�
w �

and
f
�
v � � 1

2b
�
v � v � �

the latter equation coming from the substitution v � w in the second defining
condition. So nothing new is obtained.

On the other hand, if the characteristic of F is 2, then b is an alternating bilinear
form, and f cannot be recovered from b. Indeed, many different quadratic forms
correspond to the same bilinear form.
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We say that the bilinear form is obtained by polarisation of f .

Now, in characteristic different from 2, we can take either quadratic forms or
symmetric bilinear forms. For consistency, we will take quadratic forms in this
case too. This leaves us with three types of forms to study: alternating bilinear
forms; σ-Hermitian forms where σ is not the identity; and quadratic forms.

We have to define the analogue of non-degeneracy for quadratic forms. Of course,
we could require that the bilinear form obtained by polarisation is non-degenerate;
but this is too restrictive. We say that a quadratic form f is non-singular if for all
w � V b

�
v � w � � 0 and f

�
v � � 0 implies v � 0, where b is the associated bilinear

form.

If the characteristic is not 2, then non-singularity is equivalent to non-degeneracy
of the bilinear form.

Now suppose that the characteristic is 2, and let W be the radical of b. the space
on which b is identically zero. The restriction of f to W satisfies

f
�
v � w � � f

�
v � � f

�
w � �

f
�
λv � � λ2 f

�
v ���

The field F is called perfect if every element is a square. If F is a finite field of
characteristic 2 then it is perfect. In this case, f is semilinear, and its kernel is a
hyperplane of W . We conclude:

Theorem 3.4 Let f be a non-singular quadratic form, which polarises to b, over
a field F.

(a) If the characteristic of F is not 2, then b is non-degenerate.

(b) If F is a perfect field of characteristic 2, then the radical of b has rank at
most 1.

3.2 Classification of forms

As explained in the last section, we now consider a vector space V of finite rank
equipped with a form of one of the following types: a non-degenerate alternating
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bilinear form b; a non-degenerate σ-Hermitian form b, where σ is not the identity;
or a non-singular quadratic form f . In the third case, we let b be the bilinear
form obtained by polarising f ; then b is alternating or symmetric according as the
characteristic is or is not 2, but b may be degenerate. In the other two cases, we
define a function f : V \ F defined by f

�
v � � b

�
v � v � — this is identically zero if

b is alternating.

We say that V is anisotropic if f
�
v � �� 0 for all v �� 0. Also, V is a hyperbolic line

if it is spanned by vectors v and w with f
�
v � � f

�
w � � 0 and b

�
v � w � � 1. (The

vectors v and w are linearly independent, so V has rank 2; so, projectively, it is a
“line”.)

Theorem 3.5 A space carrying a form of one of the above types is the direct sum
of a number r of hyperbolic lines and an anisotropic space U.

Proof If V is anisotropic, then there is nothing to prove. (V cannot contain a
hyperbolic line.) So suppose that V contains a vector v �� 0 with f

�
v � � 0.

We claim that there is a vector w with b
�
v � w � �� 0. In the alternating and Her-

mitian cases, this follows immediately from the non-degeneracy of the form. In
the quadratic case, if no such vector exists, then v is in the radical of b; but v is a
singular vector, contradicting the non-singularity of f .

Multiplying w by a non-zero constant, we may assume that b
�
v � w � � 1.

Now, for any value of λ, we have b
�
v � w � λv � � 1. We wish to choose λ so that

f
�
w � λv � � 0; then v and w will span a hyperbolic line. Now we distinguish

cases. If b is alternating, then any value of λ works. If b is Hermitian, we have

f
�
w � λv � � f

�
w � � λb

�
v � w � � λσb

�
w � v � � λλσ f

�
v �� f

�
w � � �

λ � λσ � ;
and there exists λ with Tr

�
λ � � f

�
w � . Finally, if f is quadratic, we have

f
�
w � λv � � f

�
w � � λb

�
w � v � � λ2 f

�
v �� f

�
w � � λ �

so we choose λ � f
�
w � .

Now let W1 be the hyperbolic line
!
v � w � λv " , and let V1 � W1̂ , where orthogo-

nality is defined with respect to the form b. It is easily checked that V � V1 e W1,



32 3. Polar spaces

and the restriction of the form to V1 is still non-degenerate or non-singular, as
appropriate. Now the existence of the decomposition follows by induction.

The number r of hyperbolic lines is called the polar rank or Witt index of V . As
in Cameron [2] we will call U the germ of V .

To complete the classification of forms over a given field, it is necessary to deter-
mine all the anisotropic spaces.

The alternating case is trivial:

Proposition 3.6 The only anisotropic space carrying an alternating bilinear form
is the zero space.

In combination with Theorem 3.5, this shows that a space carrying a non-degenerate
alternating bilinear form is a direct sum of hyperbolic lines.

Theorem 3.7 (a) An anisotropic quadratic form in n variables over GF
�
q � exists

if and only if n C 2. There is a unique form for each n except when n � 1 and q is
odd, in which case there are two forms, one a non-square multiple of the other.

(b) Let q be square and let σ be the field automorphism α ]\ α f q. Then there is
an anisotropic σ- Hermitian form in n variables if and only if n C 1. The form is
unique in each case.

Proof (a) Consider first the case where the characteristic is not 2. The multiplica-
tive group of GF

�
q � is cyclic of even order q � 1; so the squares form a subgroup

of index 2, and if η is a fixed non-square, then every non-square has the form ηα2

for some α. It follows easily that any quadratic form in one variable is equivalent
to either x2 or ηx2.

Next, consider non-singular forms in two variables. By completing the square,
such a form is equivalent to one of x2 � y2, x2 � ηy2, ηx2 � ηy2.

Suppose first that q # 1
�
mod 4 � . Then � 1 is a square, say � 1 � β2. Thus x2 �

y2 � �
x � βy � � x � βy � , and the first and third forms are not anisotropic. Moreover,

any form in 3 or more variables, when converted to diagonal form, contains one
of these two, and so is not anisotropic either.
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Now consider the other case, q #=� 1
�
mod 4 � . Then � 1 is a non-square, so the

second form is
�
x � y � � x � y � , and is not anisotropic. Moreover, the set of squares

is not closed under addition (else it would be a subgroup of the additive group, but
1
2

�
q � 1 � doesn’t divide q); so there exist two squares whose sum is a non-square.

Multiplying by a suitable square, there exist β � γ with β2 � γ2 �=� 1. Then� �
x2 � y2 � � �

βx � γy � 2 � �
γx � βy � 2 �

and the first and third forms are equivalent. Moreover, a form in three variables
is certainly not anisotropic unless it is equivalent to x2 � y2 � z2, and this form
vanishes at the vector

�
β � γ � 1 � ; hence there is no anisotropic form in three or more

variables.

The characteristic 2 case is an exercise.

(b) Now consider Hermitian forms. If σ is an automorphism of GF
�
q � of order 2,

then q is a square and ασ � α f q. Every element of GF
� O q � has the form αασ.

In one variable, we have f
�
x � � µxxσ for some non-zero µ � GF

� O q � ; writing
µ � αασ and replacing x by αx, we can assume that µ � 1.

In two variables, we can similarly take the form to be xxσ � yyσ. Now � 1 �
GF

� O q � , so � 1 � λλσ; then the form vanishes at
�
1 � λ � . It follows that there is no

anisotropic form in any larger number of variables either.

3.3 Classical polar spaces

Polar spaces describe the geometry of vector spaces carrying a reflexive sesquilin-
ear form or a quadratic form in much the same way as projective spaces describe
the geometry of vector spaces.

The polar spaces associated with the three types of forms (alternating bilinear,
Hermitian, and quadratic) are referred to by the same names as the groups asso-
ciated with them: symplectic, unitary, and orthogonal respectively. Of what do
these spaces consist?

Let V be a vector space carrying a form of one of our three types. Recall that as
well as a sesquilinear form b in two variables, we have a form f in one variable
(either f is defined by f

�
v � � b

�
v � v � , or b is obtained by polarising f ) and we

make use of both forms. A subspace of V on which b vanishes identically is called
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a totally isotropic subspace, while a subspace on which f vanishes identically
is called a totally singular subspace. Every totally isotropic subspace is totally
singular, but the converse is false. In the case of alternating forms, every subspace
is totally singular.

The classical polar space (or simply the polar space) associated with a vector
space carrying a form is the geometry whose flats are the totally isotropic or totally
singular subspaces (in the above sense). Note that, if the form is anisotropic, then
the only member of the polar space is the zero subspace. The polar rank of a
classical polar space is the largest vector space rank of any totally isotropic or
totally singular subspace; it is zero if and only if the form is anisotropic. Where
there is no confusion, polar rank will be called simply rank. We use the terms
point, line, plane, etc., just as for projective spaces.

The rank of the polar space is the same as the polar rank of V . Consider V as the
direct sum of r hyperbolic lines and an anisotropic space. By Theorem 3.5 any
totally isotropic or totally singular subspace meets each hyperbolic line in at most
a point and meets the anisotropic subspace in the zero subspace; so it’s rank is at
most r.

In a polar space G, for any set S of points, we let S ^ denote the set of points which
are perpendicular to (that is, collinear with) every point of S. For any set S, the set
S ^ is a (linear) subspace of G (that is, if two points of S ^ are collinear, then the
line joining them lies wholly in S ^ ). Moreover, for any point x, x ^ is a hyperplane
of G (that is, a subspace which meets every line).

Polar spaces have good inductive properties. Let G be a classical polar space.
There are two natural ways of producing a “smaller” polar space from G:

(a) Take a point x of G, and consider the quotient space x ^ 3 x, the space whose
points, lines, . . . are the lines, planes, . . . of G containing x.

(b) Take two non-perpendicular points x and y, and consider � x � y � ^ .

In each case, the space constructed is a classical polar space, having the same
germ as G but with polar rank one less than that of G. (Note that, in (b), the
span of x and y in the vector space is a hyperbolic line.) There are more general
versions. For example, if S is a flat of dimension d � 1, then S ^ 3 S is a polar space
of rank r � d with the same germ as G. We will see how this inductive process can
be used to obtain information about polar spaces.
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The classification of finite classical polar spaces was achieved by Theorem 3.5 and
Theorem 3.7. We subdivide these spaces into six families according to their germ,
viz., one symplectic, two unitary, and three orthogonal. (Forms which differ only
by a scalar factor obviously define the same polar space.) The following table
gives some information about them. In the table, r denotes the polar space rank,
n the vector space rank. The significance of the parameter ε will emerge shortly.
This number, depending only on the germ, carries numerical information about
all spaces in the family. Note that, in the unitary case, the order of the finite field
must be a square.

Type n ε Group Label

Symplectic 2r 0 Sp
�
n � q � Wn . 1

�
q �

Unitary 2r � 1
2 U

�
n � q � Hn . 1

�
q �

Unitary 2r � 1 1
2 U

�
n � q � Hn . 1

�
q �

Orthogonal 2r � 1 O � �
n � q � Hyperbolic Q �

n . 1

�
q �

Orthogonal 2r � 1 0 O
�
n � q � Parabolic Qn . 1

�
q �

Orthogonal 2r � 2 1 O . �
n � q � Elliptic Q .

n . 1

�
q �

Table 3.1: Finite classical polar spaces

Theorem 3.8 The number of points in a finite polar space of rank 1 is q1 � ε � 1,
where ε is given in Table 3.1.

Proof Let V be a vector space carrying a form of rank 1 over GF
�
q � . Then V

is the orthogonal direct sum of a hyperbolic line L and an anisotropic germ U of
dimension k (say). Let nk be the number of points.

Suppose that k ' 0. If p is a point of the polar space, then p lies on the hyperplane
p ^ ; any other hyperplane containing p is non-degenerate with polar rank 1 and
having germ of dimension k � 1. Consider a parallel class of hyperplanes in the
affine space whose hyperplane at infinity is p ^ . Each such hyperplane contains
nk . 1 � 1 points, and the hyperplane at infinity contains just one, namely p. So we
have

nk � 1 � q
�
nk . 1 � 1 � �

from which it follows that nk � 1 � �
n0 � 1 � qk. So it is enough to prove the result

for the case k � 0, that is, for a hyperbolic line.
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In the symplectic case, each of the q � 1 projective points on a line is isotropic.

Consider the unitary case. We can take the form to be

b
�
x � y � � x1y f q

1 � x2y f q
2

�
So the isotropic points satisfy x f q � 1

1 � x f q � 1
2 � 0, and a hyperbolic line is incident

with O q � 1 projective points.

Finally, consider the orthogonal case. The quadratic form is equivalent to x1x2,
and has two singular points,

! �
1 � 0 � " and

! �
0 � 1 � " .

Theorem 3.9 In a finite polar space of rank r, there are
�
qr � 1 � � qr � ε � 1 � 3 � q � 1 �

points, of which q2r . 1 � ε are not perpendicular to a given point.

Proof We let F
�
r � be the number of points, and G

�
r � the number not perpen-

dicular to a given point. (We do not assume that G
�
r � is constant; this constancy

follows from the induction that proves the theorem.)

Take a point x, and count pairs
�
y � z � , where y � x ^ , z �� x ^ , and z � y ^ . Choosing

z first, there are G
�
r � choices; then

!
x � z " is a hyperbolic line, and y is a point in!

x � z " ^ , so there are F
�
r � 1 � choices for y. On the other hand, choosing y first, the

lines through y are the points of the rank r � 1 polar space x ^ 3 x, and so there are
F

�
r � 1 � of them, with q points different from x on each, giving qF

�
r � 1 � choices

for y; then
!
x � y " and

!
y � z " are non-perpendicular lines in y ^ , i.e., points of y ^ 3 y,

so there are G
�
r � 1 � choices for

!
y � z " , and so qG

�
r � 1 � choices for z. Thus

G
�
r �hg F �

r � 1 � � qF
�
r � 1 �hg qG

�
r � 1 � �

from which it follows that G
�
r � � q2G

�
r � 1 � .

Since G
�
1 � � q1 � ε, it follows immediately that G

�
r � � q2r . 1 � ε, as required.

The points perpendicular to x lie on lines that are points of x ^ 3 x and the remaining
points are not perpendicular to x. Hence F

�
r � � 1 � qF

�
r � 1 � � G

�
r � .

Now it is just a matter of calculation that the function
�
qr � 1 � � qr � ε � 1 � 3 � q � 1 �

satisfies the recurrence and correctly reduces to q1 � ε � 1 when r � 1.

Theorem 3.10 The number of maximal flats in a finite polar space of rank r is
r

∏
i / 1

�
1 � qi � ε ���
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Proof Let H
�
r � be this number. Count pairs

�
x � U � , where U is a maximal flat

and x � U . We find that

F
�
r �hg H �

r � 1 � � H
�
r �hg � qr � 1 � 3 � q � 1 � �

so
H

�
r � � �

1 � qr � ε � H �
r � 1 ���

Now the result is immediate.

3.4 The polar geometries of finite fields

We consider polar geometries in finite fields as was done in Section 1.4 for the
projective and affine spaces. The field GF

�
qn � is the vector space of rank n over

GF
�
q � carrying a form.

The polynomial in two variables defined by

b
�
x � y � � n . 1

∑
i / 0

Trqn L q
�
αiy

qi
x �

is a bilinear form. The total number of bilinear forms (including degenerate ones)
is qn2

and there are exactly this many possibilities for α � �
α0 � α1 � � � � � αn . 1

� .
Hence we conclude that any bilinear form on GF

�
qn � can be written as above.

Let us consider first the alternating case, n � 2r and b
�
x � y � �=� b

�
y � x � . The coef-

ficients satisfy

α0 �=� α0 and αn . j �=� αqn 2 j

j
�

If the form is degenerate then there exists a y � GF
�
qn � such that

n . 1

∑
i / 0

αiy
qi � 0 �

We saw in Section 1.4 that this is the equation defining a hyperplane of PG
�
n �

1 � q � and that the matrix B � �
bi j

� defined by bi j � αqi

j . i, where the indices are
taken modulo n, does not have full rank, i.e. the determinant of B is zero. We can
choose a canonical form for a non-degenerate alternating form by setting α j � 0
for j �� r and then

b
�
x � y � � Trqn L q

�
γyqr

x �
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where γqr ��� γ. Note that when q is even we can choose γ � 1.

The polynomial

b
�
x � y � � n . 1

∑
i / 0

Trqn L q
�
αixyqi 1 1 i 2 �

is a Hermitian form if b
�
x � y � � b

�
y � x � q1 i 2

. The coefficients satisfy

αn . i . 1 � αqn 2 i 2 1 i 2
i

�
The form is degenerate if there exists a y � GF

�
qn � such that

n . 1

∑
i / 0

αiy
qi 1 1 i 2 � 0 �

As in the alternating case this implies that the matrix B has zero determinant. If
n � 2r � 1 then we can choose a canonical form for a non-degenerate Hermitian
form by setting α j � 0 for j �� r and αr � 1 and then

b
�
x � y � � Trqn L q

�
yqr 1 1 i 2

x ���
If n � 2r then we choose a canonical form for a non-degenerate Hermitian form

by setting α j � 0 for j �� r � 1 � r and γ � αr � αqr 1 1 i 2
r . 1 where γ is chosen so

that γqr 2 1 i 2
yqr 2 1 i 2 � γyqr 1 1 i 2 � 0 has no solutions in GF

�
qn � . Let z � yqr 2 1 i 2

then

γqr 2 1 i 2
z � γzq � 0 which we saw in Section 1.4 has solutions if and only if

γ 5 qr 2 1 i 2 . 1 6 5 1 � q � q2 �;7:7:7 � qn 2 1 6 � 1 �
Hence we choose γ so that γ 5 qr 2 1 i 2 . 1 6 5 1 � q � q2 �87:797 � qn 2 1 6 �� 1 and a non-degenerate
Hermitian form

b
�
x � y � � Trqn L q

�
γqr 2 1 i 2

yqr 2 1 i 2 � γyqr 1 1 i 2
x ���

The polynomial

f
�
x � �kj n M 2 l

∑
i / 0

Trqn L q
�
αix

qi � 1 �
defines a quadratic form over GF

�
q � . If n is even then the coefficient of xqn i 2 1 j � q j

is αq j

n M 2 � αq j 1 n i 2
n M 2

� GF
�
qn M 2 � . If n is odd the number of quadratic forms that can
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be written like this is q
�
n
2
�

and if q is even it is also qn 5 n M 2 . 1 6 � n M 2 � q
�

n
2
�
. This is

the total number of quadratic forms and so any quadratic form can be written as
above. The bilinear form associated to the quadratic form is

b
�
x � y � � j n M 2 l

∑
i / 0

Trqn L q
�
αi

�
xqi

y � yqi
x � ���

By the definition in Section 3.1 the form f is degenerate if there is an x such that

αix
qi � αqn 2 i

i xqn 2 1 � 0

for i � 1 � 2 � �<� � �nm n 3 2 o and f
�
x � � 0.

If n � 2r � 1 then we choose α j � 0 for j �� r and αr � 1 and hence

f
�
x � � Trqn L q

�
xqr � 1 ���

We have to check non-singularity. If the form is singular then there exists an x
such that b

�
x � y � # 0 and f

�
x � � 0.

b
�
x � y � � Trqn L q

�
xqr

y � yqr
x � � Trqn L q

�
xqr � xqr 1 1 � y � # 0

if and only if xq � x � 0. The form f
�
x � on these elements is equal to

� � 1 � rx2 �� 0.
Note that when q is even the set of x satisfying xq �_� x is a point of PG

�
n � 1 � q � ;

this is the nucleus.

If n � 2r � 2 and we wish to find an elliptic form then we choose α j � 0 for

j �� r � 1 and αr � 1 � γ where γ � γqr 1 1 � 1. If the form is singular then there
exists an x such that

b
�
x � y � � Trqn L q

�
γ
�
xqr 1 1

y � yqr 1 1
x � � � Trqn L q

�
γxqr 1 1 � γqr 1 1

xqr 1 1 � y � # 0 �
However by assumption γ � γqr 1 1 � 1. We can check that the form is elliptic by
checking the number of distinct zeros of f . The degree of f is q2r � 1 � qr and the
leading term is of degree qr � 1 � 1. Therefore the number of zeros of f is at most�
qr � 1 � 1 � � qr � 1 � and the number of points in the polar space defined by f is at

most
�
qr � 1 � 1 � � qr � 1 � 3 � q � 1 � . However the hyperbolic polar space has more

points than this and indeed this is equal to the number of points in the elliptic polar
space.
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Type n ε Canonical form Condition

Alternating 2r 0 Trqn L q
�
γyqr

x � γqr ��� γ

Hermitian 2r � 1
2 Trqn L q

�
γyqr 1 1 i 2

x � γqr 2 1 i 2
yqr 2 1 i 2

x � see notes

Hermitian 2r � 1 1
2 Trqn L q

�
yqr 1 1 i 2

x �
Quadratic � 2r � 1 Trqn L q

�
αxqr 2 1 � 1 � γxqr � 1 � see notes

Quadratic 2r � 1 0 Trqn L q
�
xqr � 1 �

Quadratic . 2r � 2 1 Trqn L q
�
γxqr 1 1 � 1 � γqr 1 1 � γ � 1

Table 3.2: The sesquilinear and quadratic forms on GF
�
qn �

If n � 2r and we wish to find a hyperbolic form then we choose α j � 0 for j ��
r � 1 � r, αr . 1 � α and αr � γ. The form is non-singular if there is no x such that
both b

�
x � y � # 0 and f

�
x � � 0. If

b
�
x � y � � Trqn L q

�
α
�
xqr 2 1

y � yqr 2 1
x � � γ

�
xqr

y � yqr
x � � �

Trqn L q
�
αxqr 2 1 � αqr 1 1

xqr 1 1 � γxqr � γqr
xqr � y � # 0

then
αqr 1 1

x � �
γ � γqr � xq � αq2

xq2 � 0 �
Now we have to select α and γ so that this equation has no zeros. If n � 4 one can
choose γ � 0 and αq3 � q �� αq2 � 1.

3.5 m-systems

An partial m-system M of a finite classical polar space G of rank r is a set of
totally singular (projective) m-spaces of G with the property that any totally sin-
gular subspace of rank r (projective

�
r � 1 � -space) containing an element of M is

disjoint from any other element of M .

The set M0 is the set of points that are incident with an element of M .
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Theorem 3.11 A partial m-system M of a finite classical polar space G of rank
r and type ε satisfies B M BFC qr � ε � 1.

Proof We assume m X r � 1 since for m � r � 1 the bound is obvious from The-
orem 3.9.

For every point pi
� G ( M0 let ti be the number of totally singular

�
m � 1 � -spaces

of G containing pi and an element of M .

The number of ordered pairs
�
pi � ξ � where ξ is a totally singular

�
m � 1 � -space

containing pi and an element of M is

∑ ti �pB M B qm � 1F
�
r � m � 1 � �

where F
�
r � is number of points in a polar space of rank r as in Theorem 3.9.

The number of triples
�
pi � ξ � ξ E � where ξ and ξ E are totally singular

�
m � 1 � -spaces

containing pi and an element of M is

∑ ti
�
ti � 1 � �pB M B � B M BY� 1 � F �

r � m � 1 ���
The number N of points pi

� G ( M0 is

F
�
r � �qB M B � qm � 1 � 1 � 3 � q � 1 ���

Apply the inequality N ∑ t2
i � �

∑ ti � 2 I 0 to the above equations and use Theo-
rem 3.9 to conclude that� B M BY� qr � ε � 1 � � 1 �qB M BY� qr � I 0 �
We call a partial m-system of size qr � ε � 1 an m-system. If we have an m-system
then the inequality in the proof is in fact an equality which implies that every point
not in M0 lies on a constant number of totally singular

�
m � 1 � -spaces that contain

an element of M . It is a simple matter to calculate this constant and we have the
following.

Theorem 3.12 Let M be an m-system of a finite classical polar space of rank r,
with m X r � 1 and let M0 be the set of points that are incident with an element
of M . A point that is not in M0 is incident with precisely qr . m . 1 � ε � 1 totally
singular

�
m � 1 � -spaces that contain an element of M .
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A 0-system is called an ovoid and an
�
r � 1 � -system is called a spread.

Theorem 3.13 Let M be an m-system of a finite classical polar space and let M0

be the set of points that are incident with an element of M . Every maximal totally
isotropic subspace is incident with precisely

�
qm � 1 � 1 � 3 � q � 1 � points of M0.

Proof Let ti be the number of points of M0 incident with a maximal totally
isotropic subspace γi. The quotient space of each isotropic point is a polar space
of rank one less and so

∑ ti �pB M0 B H �
r � 1 � �

where H
�
r � is as in Theorem 3.10. We shall count triples

�
x � y � γi

� where x and y
are elements of M0 incident with γi. Let

`
denote the polarity. The points x and y

are orthogonal y � x ^ , and either lie in the same element of the m-system or not.
In both cases the number of maximal totally isotropic subspaces is equal to the
number of maximal totally isotropic subspaces in their quotient space. The hyper-
plane x ^ meets every element of the m-system, excepting that which is incident
with x, in an

�
m � 1 � -dimensional subspace. Hence

∑ ti
�
ti � 1 � �+B M0 B H �

r � 2 � � q �
qm � 1 � 3 � q � 1 � � qr � ε � qm � 1 � 3 � q � 1 �<���

Now we can calculate
H

�
r � ∑ t2

i � �
∑ ti � 2

and conclude that this is zero. Hence the ti � t are constant,

H
�
r � t �pB M0 B H �

r � 1 � �
and substituting from Theorem 3.10 concludes the proof.

A symplectic spread of PG
�
2n � 1 � q � is a spread of the symplectic polar space of

V
�
2n � q � . The translation plane constructed from the spread as in Proposition 2.1

is called a symplectic translation plane. The Hamilton-Quinn-Thas construction
of maximal arcs in symplectic translation planes require the existence of certain
m-systems of the symplectic polar space.

Theorem 3.14 Let V be a vector space of rank 2n with an alternating form, let
W2n . 1

�
q � denote the associated symplectic polar space and let PG

�
2n � 1 � q � de-

note the (ambient) projective space. Let M be an m-system of W2n . 1
�
q � with the
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property that each element of M is contained in an element of S , an
�
n � 1 � -

system (a spread) of W2n . 1
�
q � . Embed PG

�
2n � 1 � q � in PG

�
2n � q � and choose a

point x � PG
�
2n � q � ( PG

�
2n � 1 � q � , and let K be the set of affine points on the

cone with vertex x and base M0. The set K defines a maximal arc of degree qm � 1

in the translation plane of order qn associated to the spread S .

Proof We have to show that every subspace Σ E of PG
�
2n � q � of dimension n that

contains an element S of S is incident with either 0 or qm � 1 points of K . If Σ E
is incident with x then Σ E contains the affine part of the cone with vertex x and
base MS, where MS is the element of the m-system contained in S. Hence Σ E is
incident with qm � 1 points of K . From now on assume that Σ E is not incident with
x. We have to show that Σ, the projection of Σ from x, a subspace of PG

�
2n � 1 � q �

of dimension n that contains an element S � S , is incident with either 0 or qm � 1

points of M0 ( S.

Let
`

be the polarity of W2n . 1
�
q � . The subspace Σ ^ is a subspace of dimension

n � 2 contained in Σ. If Σ ^sr MS then
�
Σ ^ � ^ � Σ A MŜ and Σ is incident with no

point of M0 ( S since by definition the perp-space of an element of an m-system
is disjoint from all the other elements of the m-system. If Σ ^ does not contain MS

then Σ ^ � MS is a subspace of dimension m � 1. Let A be the set of q � 1 totally
isotropic subspaces of dimension n � 1 such that A � A implies Σ ^ A A A Σ, and
note S � A . Every subspace in A (t� S � is incident with exactly

�
qm � 1 � 3 � q � 1 �

points of MS, the points of the subspace Σ ^ � MS. By Theorem 3.13 the totally
isotropic subspaces of dimension n � 1 are incident with

�
qm � 1 � 1 � 3 � q � 1 � points

of M0. Hence the subspaces in A (u� S � are incident with
� �

qm � 1 � 1 � � �
qm �

1 � � 3 � q � 1 � � qm points of M0 ( S. Moreover the sets A ( S are disjoint and cover
Σ ( S and so Σ is incident with q � qm � qm � 1 points of M0 ( S.

For applications of the Hamilton-Quinn-Thas construction see [6]. An up-to-date
survey of m-systems can be found in [10].
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Generalised quadrangles

4.1 Axioms

Consider a rank 2 geometry with the following properties.

(Q1) Every two points are incident with at most one line;

(Q2) For all anti-flags
�
p � L � (the point p is not incident with the line L) there is

exactly one point incident with L and collinear with p.

We have already seen these axioms in Section 2.4. A generalised quadrangle is a
partial geometry with α � 1 which satisfies a further axiom.

(Q3) There is no point collinear with all others.

The axioms (Q1)–(Q3) are self-dual; so the dual of a generalised quadrangle is
also a generalised quadrangle.

Two simple classes of examples are provided by the complete bipartite graphs,
whose points fall into two disjoint sets (with at least two points in each, and whose
lines consist of all pairs of points containing one from each set), and their duals,
the grids. Any generalised quadrangle in which lines have just two points is a
complete bipartite graph, and dually. We note that any line contains at least two
points, and dually: if L were a singleton line � p � , then every other point would be
collinear with p (by (Q2)), contradicting (Q3).

45
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Apart from complete bipartite graphs and grids, all generalised quadrangles have
orders. The following is analogous to Proposition 2.17 for α � 1.

Proposition 4.1 Let G be a generalised quadrangle in which there is a line inci-
dent with at least three points and a point incident with at least three lines. Then
the number of points incident with a line, and the number of lines incident with a
point, are constants.

Proof First observe that, if lines L1 and L2 are disjoint, then they have the same
cardinality; for collinearity sets up a bijection between the points on L1 and those
on L2.

Now suppose that L1 and L2 intersect. Let p be a point on neither of these lines.
Then one line through p meets L1, and one meets L2. We want to show that there
a line L3 disjoint from both L1 and L2. The points on L1 and L2 together with p
generate a grid using axioms (Q1) and (Q2). However there is a point on 3 lines
by assumption so there is a line L3 disjoint from both L1 and L2. It follows that L1

and L2 both have the same cardinality as L3.

The other assertion is proved dually.

We say G is a generalised quadrangle of order s, t if every line is incident with
s � 1 points and every point is incident with t � 1 lines.

The classical generalised quadrangles are the classical polar spaces of rank 2 over
GF

�
q � . The parameters are s � q and t � q1 � ε, where ε is given in Table 3.1.

We have already seen a way to construct generalised quadrangles that are not clas-
sical. In Section 2.4 T �2 �

H � , where H is a hyperoval is a generalised quadrangle
with parameters s � q � 1 and t � q � 1, q � 2h. There are many other construc-
tions of non-classical generalised quadrangles known. See for example [5] or [7].

Theorem 4.2 Let G be a finite GQ with orders s � t.
(a) G has

�
s � 1 � � st � 1 � points and

�
t � 1 � � st � 1 � lines.

(b) s � t divides st
�
s � 1 � � t � 1 � ;

(c) if s ' 1, then t C s2;
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(d) if t ' 1, then s C t2.

Proof (a) is proved by elementary counting. (b) is shown by an argument involv-
ing eigenvalues of matrices. (c) is proved by elementary counting and (d) is dual
to (c).

4.2 The symplectic generalised quadrangle

The symplectic generalised quadrangle and the orthogonal parabolic generalised
quadrangle have the same parameters s � t � q. Indeed there is an isomorphism
between the dual of W3

�
q � and Q4

�
q � . Before we prove this isomorphism we

introduce the Klein correspondence.

Let x � y � V
�
4 � q � . The Plücker coordinates are defined for 1 C i X j C 4 by

pi j � xiy j � yix j
�

The vector p � �
p13 � p24 � p14 � p23 � p12 � p34

� � V
�
6 � q � is a zero of the quadratic

form f
�
x � � x1x2 � x3x4 � x5x6. Moreover the Plücker coordinates for

�
x � y � are

the same as those for
�
x � y � λx � for λ � F . Hence there is a correspondence

(the Klein correspondence) between the rank 2 subspaces of V
�
4 � q � and the zeros

of a hyperbolic quadratic form on V
�
6 � q � . Projectively this is a correspondence

between the lines of PG
�
3 � q � and the points of the hyperbolic quadric Q �

5

�
q � ,

which is known as the Klein quadric.

Theorem 4.3 The dual of the symplectic generalised quadrangle is isomorphic to
the parabolic generalised quadrangle, dual of W3

�
q � Z� Q

�
4 � q � , and vice-versa.

Proof Let W3
�
q � denote the symplectic generalised quadrangle with an alternat-

ing form given by

b
�
x � y � � x1y2 � y1x2 � x3y4 � y3x4 � p12 � p34

�
The Plücker coordinates of the totally isotropic lines (the lines of W3

�
q � ) satisfy

p12 �k� p34. Hence these lines correspond to the zeros of the form on V
�
5 � q �

given by g
�
x � � x1x2 � x3x4 � x2

5.



48 4. Generalised quadrangles

We can also look at the symplectic generalised quadrangle in the finite field GF
�
q4 � .

Firstly a point of the symplectic generalised quadrangle is a point of PG
�
3 � q � and

in Section 1.4 we saw that � x � GF
�
q4 � B xq � ax � 0 �

is a point of PG
�
3 � q � if and only if aq3 � q2 � q � 1 � 1. Hence it makes sense to

replace xq . 1 by x and to take for the set of points of the symplectic generalised
quadrangle the set � x � GF

�
q4 � B xq3 � q2 � q � 1 � 1 ���

In Section 3.4 we calculated a canonical form for an alternating form on GF
�
q4 � ,

b
�
x � y � � Trq4 L q

�
γxq2

y �
where γq2 ��� γ � In Section 1.4 (Exercise 1) a line L of PG

�
3 � q � is� x � GF

�
q4 � B xq2 � cxq � ex � 0 �

where eq3 � q2 � q � 1 � 1 and cq � 1 � eq � eq2 � q � 1. Let x and y be orthogonal, the
form b

�
x � y � � 0, and satisfy xq2 � cxq � ex � 0 and yq2 � cyq � ey � 0. We can

deduce that�
xqy � yqx � e � xq2

yq � yq2
xq and

�
xqy � yqx � c �=� �

xq2
y � yq2

x �
and �

γc � γqecq � � xqy � yqx � � b
�
x � y � � 0 �

The points of Sp
�
4 � q � were taken to be the

�
q3 � q2 � q � 1 � -st roots of unity and

again to find the lines we replace xq . 1 by x. A totally isotropic line of the form
b
�
x � y � is � x B xq � 1 � cx � e � 0 �

where γc �=� γqecq as well as eq3 � q2 � q � 1 � 1 and cq � 1 � eq � eq2 � q � 1.

Let η � γ1 . q. In the case when c � 0 there are q2 � 1 lines where each totally
isotropic line is given by � x B xq � 1 � e � 0 �
where eq2 � 1 � 1. In the case c is non-zero let d � c . 1 and so e ��� ηdq . 1 and

ηdq3 � q � η . 1dq2 � 1 � 1 � 0 �
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For each d satisfying this equation there is a totally isotropic line which is given
by � x B dxq � 1 � x � ηdq � 0 ���
When q is even the alternating form is also symmetric and we can assume that
γ � 1, and hence η � 1. The equations cq � 1 � eq � eq2 � q � 1 and c � ecq imply that
c2 � eq � 1 � eq2 � 1 � 1 � and by taking square roots that c � e 5 q � 1 6 M 2 � e 5 q2 � q � 2 6 M 2.
Thus we have that the totally isotropic lines of W3

�
q � when q is even are given by

Le : �_� x B xq � 1 � �
e 5 q � 1 6 M 2 � e 5 q2 � q � 2 6 M 2 � x � e � 0 � Av� x B xq3 � q2 � q � 1 � 1 �

where eq3 � q2 � q � 1 � 1. A short manipulation shows that

xq � 1 � �
e 5 q � 1 6 M 2 � e 5 q2 � q � 2 6 M 2 � x � e � 0

if and only if
eq � 1 � �

xq2 � q � xq . 1 � e � x2q � 0 �
Hence x � Le if and only if e � Lx2q . Hence we see that W3

�
q � is self-dual when q

is even.

Let π be the duality of W3
�
q � where π maps the point x to the line Lxσ where σ

is an automorphism of GF
�
q4 � . Since π is incidence-preserving π induces a map

on the lines given by π � which takes the line Le to the point eσ M 2q. Now π is a
polarity if π � π is the identity. That is if, for all x � GF

�
q4 � , �

xσ � σ M 2q � x. Hence
we have a polarity if q is not a square and we choose σ � O 2q or σ � q2 O 2q.

4.3 Ovoids and spreads

In Section 3.5 we defined an ovoid and a spread of a polar space to be a 0-system
and an

�
r � 1 � -system respectively. In general we define an ovoid O of a gen-

eralised quadrangle G to be a set of points with the property that every line is
incident with exactly one point of O. A spread S of a generalised quadrangle is a
set of lines with the property that every point is incident with exactly one line of
S . The dual of an ovoid is a spread in the generalised quadrangle dual to G and
vice-versa. One can check that this definition coincides with the definition of an
ovoid and a spread for the classical generalised quadrangles given in Section 3.5.

It is a simple matter to deduce the following proposition.
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Proposition 4.4 An ovoid of a GQ of order
�
s � t � has st � 1 points and a spread

of a GQ of order
�
s � t � has st � 1 lines.

In Section 2.3 we defined an ovoid of PG
�
3 � q � . There is a connection between

ovoids of PG
�
3 � q � and ovoids of GQ’s and it comes from the following proposi-

tion.

Proposition 4.5 If q is even, an ovoid O of W3
�
q � is an ovoid of PG

�
3 � q � .

Proof The totally isotropic lines incident with a point x � O lie in a plane and are
all tangents to the ovoid. Therefore it is only necessary to prove that the hyperbolic
lines (the lines of PG

�
3 � q � that are not totally isotropic) are incident with either 0

or 2 points of O. Let l be a hyperbolic line incident with a point x of O and let
`

be the polarity defining W3
�
q � . Then l ^ A x ^ and so l ^ is incident with no points

of O. There are q2 � q2 � 1 � hyperbolic lines and so there is a set N of q2 � q2 � 1 � 3 2
hyperbolic lines that contains all the hyperbolic lines incident with a point of O.
Let ni be the number of lines of N that are incident with i points of O. Counting
in two ways the pairs

�
x � l � where x � O and l � N we get

∑ ini � �
q2 � 1 � q2 �

Counting in two ways the unordered triples
�
x � y � l � where x and y � O and l � N

we get

∑ i
�
i � 1 � ni � �

q2 � 1 � q2 �
Hence ∑ i

�
i � 2 � ni � 0 and every hyperbolic line is incident with 0 or 2 points of

O.

Now we shall prove that a polarity of a GQ gives an ovoid. A self-conjugate point
of a polarity π is a point x with the property that x is incident with π

�
x � . A self-

conjugate line of a polarity π is a line l with the property that l is incident with
π . 1 � l � .
Proposition 4.6 Let x be a non self-conjugate point and e � π

�
x � . The point x E

of e adjacent to x is the point π . 1 � e E � where e E is the line joining x and x E ; in
particular, x E and e E are self conjugate.
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Proof The line π
�
x E � meets π

�
x � and is incident with x.

Proposition 4.7 Every line is incident with a unique self-conjugate point and ev-
ery point is incident with a unique self-conjugate line.

Proof The two statements are dual so it is sufficient to prove the first. If π . 1 � e � �
e, π . 1 � e � is self-conjugate and if there exists another self-conjugate point y � e,
the line π

�
y � is incident with y and π . 1 � e � and therefore π

�
y � � e. Suppose on the

contrary that π . 1 � e � �� e. The point x � e adjacent to π . 1 � e � is self-conjugate (c.f.
Proposition 4.6). If x � e is self-conjugate, π

�
x � is incident with x and π . 1 � e � and

is adjacent to π . 1 � e � .
This implies immediately that the set of self-conjugate points of a polarity is an
ovoid and the set of self-conjugate lines is a spread. In the previous section we
saw a polarity of Sp

�
4 � q � with q even and not a square. This was discovered by

Tits who constructed the ovoid and showed that it’s stabiliser group is the Suzuki
group, see [11]. The self-conjugate points given by this polarity have the property
that x is incident with the line Lxσ , where σ � O 2q. That is

xq � 1 � �
xσ 5 q2 � q � 2 6 M 2 � xσ 5 q � 1 6 M 2 � x � xσ � 0 �

The zeros of this equation are the Tits ovoid of W3
�
q � . A small calculation shows

that these zeros are elements of the set

T : �J� x � GF
�
q4 � B xq2 � 1 � xσq . q � 1 � xq . σ � 1 � 1 � 0 ���

The set of self-conjugate lines dual to the Tits ovoid is called the Lüneburg spread.

The only other known ovoid of W3
�
q � when q is even is that given by the isotropic

points of the orthogonal elliptic form, the elliptic quadric. As we have seen such
a quadratic form polarises to an alternating form when q is even. In Section 3.4
we calculated a non-degenerate orthogonal elliptic form over GF

�
q4 � to be

f
�
x � � Trq4 L q

�
γxq2 � 1 � � xq2 � 1 � xq3 � q

where γq2 � γ � 1. Note that b
�
x � y � � f

�
x � y � � f

�
x � � f

�
y � � Trq4 L q

�
yq2

x � . The

zeros of f satisfy xq2 � 1 � xq3 � q and again we replace xq . 1 by x to find the zeros
corresponding to projective points. The set

E : �J� x � GF
�
q4 � B xq2 � 1 � 1 � 0 �

is an ovoid of Sp
�
4 � q � and it is called the elliptic quadric.
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