Superfici di Riemann: argomenti scelti
Anno accademico 2015/2016

Lezioni

Orario:
Aula:

Prima lezione:

Lunedì 13-15 e Mercoledì 12:30-14:30
Aula B

Lunedì 9 novembre 2015

Durata del corso:

Modalità d’esame:

36 ore di lezione

orale/seminariale

Riunione preliminare

martedì 3 novembre 2015, Aula B

Libri e appunti utili
Abikoff, The real-analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer
Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Studies 10
Fletcher-Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics 11, Oxford University Press
Gardiner-Lakic, Quasiconformal Teichmüller theory, Surveys and Monographs, vol. 76, American Mathematical Society
Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 5, Springer
Hubbard, Teichmüller theory and applications to geometry, topology and dynamics, vol. 1, Matrix Edtions
Farb-Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press
Benedetti-Petronio, Lectures on hyperbolic geometry, Springer
Keen-Lakic, Hyperbolic geometry from a local viewpoint, London Mathematical Society Student Texts 68, Cambridge University Press
Labourie,
Notes on hyperbolic surface
Casson-Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Text 9, Cambridge University Press
Thurston, The geometry and topology of three-manifolds, appunti in formato elettronico, Princeton University Press
Arbarello-Cornalba-Griffiths, Geometry of algebraic curves 2, Grundlehren der Mathematischen Wissenschaften vol. 268, Springer
Labourie, Lectures on representations of surfaces groups, Zurich Lectures in Advanced Mathematics, European Mathematical Society
Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research lectures on mathematics and physics - Notes
Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) vol. 55 (1987) n. 1, pp. 55-126
Bradlow-Garcia-Prada-Goldman-Wienhard,
Notes on representation of surface groups
Goldman, The complex-symplectic geometry of SL(2,
C)-characters over surfaces, Algebraic groups and arithmetic, pp. 375-407, Tata Inst. Fund. Res., Mumbai 2004
Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), pp. 169-198, Contemp. Math. 74, AMS
Burger-Iozzi-Wienhard, Higher Teichmüller spaces from SL(2,
R) to other Lie groups, Handbook of Teichmuller theory vol. IV, pp. 539-618, IRMA Lect. Math. Theor. Phys. 19, EMS

Docente
Gabriele Mondello
Dipartimento di Matematica “Guido Castelnuovo”, ufficio 118, primo piano.
Telefono:             06 4991-3283
E-mail:                 mondello
[at] mat [punto] (etc)
Ricevimento:      su appuntamento.


Programma, diario delle lezioni, note

Programma di massima e possibili argomenti di seminario
Diario delle lezioni


Altre informazioni

Le comunicazioni avverranno durante le lezioni e per posta elettronica, individualmente o tramite mailing list.
Per essere aggiunti alla mailing list del corso, contattatemi per e-mail.