Rendiconti di Matematica e delle sue Applicazioni
|
|
ISSN 1120-7183 (print)
ISSN 2532-3350 (online) |
Back to:
Published Volumes >
Volume 42 (3-4) (2021)
Abstract. We study a model of dislocations in two-dimensional elastic media. In this model, the displacement satisfies the system of linear elasticity with mixed displacement-traction homogeneous boundary conditions in the complement of an open curve in a bounded planar domain, and has a specified jump, the slip, across the curve, while the traction is continuous there. The stiffness tensor is allowed to be anisotropic and inhomogeneous. We prove well-posedness of the direct problem in a variational setting, assuming the coefficients are Lipschitz continuous. Using unique continuation arguments, we then establish uniqueness in the inverse problem of determining the dislocation curve and the slip from a single measurement of the displacement on an open patch of the traction-free part of the boundary. Uniqueness holds when the elasticity operators admits a suitable decomposition and the curve satisfies additional geometric assumptions. This work complements the results in Arch. Ration. Mech. Anal., 236(1):71-111, (2020), and in Preprint arXiv:2004.00321, which concern three-dimensional isotropic elastic media Rend. Mat. Appl. (7) 42 (2021) 183-195; pdf |